EXAMPLES OF ENERGY ESTIMATES

Different variations of the 'Energy method' can be used to show that PDEs apo&eel] to

show that discrete approximations are stable, and to establish (global) conveatesoader

mesh refinements. The energy approach is very broadly applicable, and can handle esany cas
which include boundary conditions, variable coefficients, and nonlinearities. However, this
flexibility and power comes at a price of often significant technical ditfycul

Examplel: Show that the heat equation
ut = U)(x
(1)

with  initial condition u(x,0) =f(x),
boundary conditionsu(-1,t) =u(1,t) =0

is 'well posed', i.e. some norm of the solution can be bounded by the initial data:
Tu(,t) Il <cie I f(-) I ¢, >0

Choosing to consider théLnorm [lull? = |1, udx , we obtain
% full?> = 2 ﬁl U udx substitute U, = Uy

= 2 ﬁl Uy U dX partial integration; end contributions vanish

-2 [ (u)2dx< 0 ,

JuG, % < )17

Example2: Show well-posedness when (1) is generalized to
Ur = a(x, t)ux + b(x,t)ux +c(x,t)
where a(xt) is differentiable and satisfiea(x,t) > ap > 0.

Using the notation
(uv) = ﬁl u-vdx complex conjugation of first argument is
often appropriate in caseswandv
complex - not essential issue in the present

context
lull® = (uu) ,

we obtain



0 2 _
s lull =1+ +1

where
| = (u,aux) + (aux, U) partial integration
= —(ux, auy) — (u,axux) — (auy, Ux) — use [(u,av)l < llallollull vl where
lall, :sypl al (a generalization of
the Cauchy- Schwarz inequality
[uv)l<lulllivil)
—(axuy,u) + a(Uuy + Uxu)| fl boundary terms vanish
<=2(uy,auy) +2 | ax ||oo|| ull I uxll
<-2aoll uxl®+21 all.. y = lul ,/a—; | uxll use inequality2ab < a2 +b?
2
2 [EN 2
< -3 aoll uxll +2( anll | VN[

I = (ubuy) +(buy,u) use same inequalities as above

< 2060, llull 1 uyl
b 2
g[” I Jl|u||2+ao||ux|| |

Il = (ucu) + (cuu) < 2l cll..llull®

Thus

2 2
2|laxlls + 1 bl

1?2 +allul? where ¢ = ———F——=+2l cll,,

A

0 2
Zlhull® < -Za0llu

2
allull®

IN

and we obtain directly (or by referring to Gronwall's lemiié) < a ¢(t) + g(t) =
$(t) < e $(0) + /5 g(s) e ds in its special case a(t) =0 )

-, 117 < et || £(:-)1I2

[]
Example3:. Show that the Forward Euler - FD2 scheme
u(x,t+Kk)—u(x,t) _ u(x—h,t)—2u(x,t) +u(x+h,t)
i = 2 )

applied to (1) is numerically stable for some valueg cf th



Max-norm stability:

Only few FD schemes do not allow any growth in the max-norm. In such cases, stability
can often be proven very easily. We write the scheme (2) as

uix,t+k) = Au(x—h,t) +(1-22) u(xt) + Au(x+h,t).

If 0<Ai< % the three coefficients,, (1-24), 4  are all non-negative, and add up to 1.
Therefore

lux, t +K)| < max{lu(x—h,t)l,lulx I, lux+h,t)l}
and
TuC )l < TE) 1, (for 1= <3).

L2-norm stability:

The general procedure we employ here is quite typical for many FD-schemes. We

introduce first some convenient notation (somewhat tailored to [-hl:];ﬁ ):
S
tn=m-k, x =-1+ih,  u™=u(x;,tm), | um||§,s=hi§p(uim)2 ,
iy —u : 2 A NN y2
D.u = h [Uis —ui] ie. |l D+U||0,N—1 =1 i§0(U|+1 ui)

The FD scheme (2) can now be written

U™~ U = g (um - 20Ul (3)
We multiply this byh(u™! +u™ and sum overto obtain
Tum™t 3= lum gy =

-k

N-1
=n % (U™ +um@um, —2u™+um, use partial summation; withy=ve=uy=v\=0
i=

Zi'\iil Vj (ui_l -2ui + Ui+1) =
= 2R (Vier = Vi) (Uis1 — W)
a2 + b2

N-1
=-t [ 2 (Ut —u™)(ufhy - Uim)] - use inequalityab < <

k[ N m my 2
Th E‘O(uiﬂ_ui)

N-1 N-1
Kk
< | DUy e S - uny?) -

2
-k “ D.um ” ON-1



2 2
= %(” D.um1t HO,N—l - ” D+Um||o,N—1)-

We introduce nowS™ = | u™||3, — % | D+um||(2),N_1 . Because of the inequality above,
this quantity satisfies

2 2 2 2
Sml—gn = || ymt HO,N -l Um“o,N - % ( | DLum™t HO,N—l - D+Um||o,N—1) <0 ,

i.e. it cannot grow witm. Stability of the numerical scheme (2) will follow if we can
show that this bound o8™  implies a bound [ba™||5 (note that no condition on
A= h_k2 has entered yet - it must come in now). We get

E]
mo= lum i — 2 Z (ufhy - um)?2 use @-b)? =a>2ab+b? < 2(% + ?)
m|| 2 X m2 1
> [[uM|[gn — 24h Eb (um assume now that< 5(1-¢) for some
e>0.

2 2 2
= | Um”o,N - (1_8)“ Um”o,N = ¢l Um“oN

Therefore,
2 2
fumlign<+S" <+ <+ 1 ll§n

holds if 4 < %(1 —¢) . Note that this argument gave a sufficient, but not necessary
condition for stability - it failed to establish stability wher 3.

The casel :% can be taken care of separately. Equation (3) becomes in this case

-1
u™t = 5 (Ul +uly)
Squaring both sides give
(umh2 = 2 (UM, +uly)? use inequalitfa +b)? < 2(a? + b?)

1 - .
< 3 (U +Ul)? sum overi

2 2 2 2
| UmﬂHO,N < %“ Um“oN +%“ Um”o,N = Um“oN . [l



Example4: Show that the equation
QU 00w 10U _
ot ¥2 ox T(-0ug =0

is stable when approximated in space—afqyz Do and left continuous

wln

for 6 =
in time.

We first note that the ca§e=§ is the only one for which the period-3 pattern
e(t) —¢(t) 0 ...does not go to infinity at a finite time, according to the

L0 e(t) —e® O
relation
de(t) cp(1-30/2)
a0
wherec, is a constant which depends on the space approximatﬁo-n% < foDo

Considering a periodic- or infinite-domain problem, we get

%Zl’, =2y, ui%:%; uiDouiz—%Zi‘, u?Dou; =0

since (by reordering of the sum)

2lh 2. U? (Uisa = Ui-1) = =2 u? Do .
1 |

[]

_ 1 _
Eil Ui DoUi2 =%h ZIJ Ui (Ui2+1 - Ui2—1) -



