
EXAMPLES OF ENERGY ESTIMATES

Different variations of the 'Energy method' can be used to show that PDEs are 'well posed', to
show that discrete approximations are stable, and to establish (global) convergence rates under
mesh refinements. The energy approach is very broadly applicable, and can handle many cases
which include boundary conditions, variable coefficients, and nonlinearities. However, this
flexibility and power comes at a price of often significant technical difficulty.

Example 1: Show that the heat equation

ut = uxx 
(1)

with initial condition u(x,0) = f(x),
boundary conditionsu(-1,t) = u(1,t) = 0

is 'well posed', i.e.  some norm of the solution can be bounded by the initial data:
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Example 2: Show well-posedness when (1) is generalized to

 ,u t = a(x, t) uxx + b(x, t) ux + c(x, t)

where  a(x,t) is differentiable and satisfies  a(x, t) m a0 > 0.
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often appropriate in cases of u and v
complex - not essential issue in the present
context

,æuæ2 = (u,u)

we obtain  



Ø
Øt
æ u æ2 = I + II + III

where
      I partial integration= (u,a uxx) + (a uxx,u)

use   where= − (ux,a ux) − (u,axux) − (a ux,ux) − (u,a v) [ æaæ∞æuææ væ
   (a generalization of æaæ∞ =

x
sup a

the Cauchy- Schwarz inequality  
 )(u,v) [ æ uææ væ

 

      boundary terms vanish− (axux,u) + a (u ux + uxu) −1

1

[ −2(ux,a ux) + 2æ axæ∞æ u ææ uxæ

use inequality  [ −2a0æ uxæ
2 + 2æ axæ∞

2
a0
æ u æ

a0

2 æ uxæ 2a b [ a2 + b2

,[ − 3
2 a0æ uxæ

2 + 2
æ axæ∞

2

a0
æ u æ2

    II use same inequalities as above= (u,b ux) + (b ux,u)

[ 2æbæ∞ æuææuxæ

,[
æ bæ∞

2

a0
æ uæ2 + a0 æ uxæ

2

    III .= (u,c u) + (c u,u) [ 2æ cæ∞æ uæ2

Thus

     where    
Ø
Øt
æ uæ2

[ − 1
2 a0 æ uxæ

2 + �æ uæ2
� =

2æaxæ∞
2 + æbæ∞

2

a0
+ 2æ cæ∞

   ,[ �æuæ2

and we obtain directly (or by referring to Gronwall's lemma  � ∏(t) [ ��(t) + g(t) e
  in its special case of  )�(t) [ e�t �(0) + ¶0

t g(s) e�(t−s) ds g(t) h 0

.æu($, t)æ2
[ e� t æ f($)æ2

�

Example 3: Show that the Forward Euler - FD2  scheme 

(2)
u(x, t + k) − u(x, t)

k =
u(x − h, t) − 2u(x, t) + u(x + h, t)
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applied to (1) is numerically stable for some values of   .� = k
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Max-norm stability:

Only few FD schemes do not allow any growth in the max-norm. In such cases, stability
can often be proven very easily. We write the scheme (2) as
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L2-norm stability:

The general procedure we employ here is quite typical for many FD-schemes. We
introduce first some convenient notation  (somewhat tailored to [-1,1];    ):h = 2
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i.e. it cannot grow with m. Stability of the numerical scheme (2) will follow if we can
show that this bound on   implies a bound on   (note that no condition on S m æ umæ0,N
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holds if  . Note that this argument gave a sufficient, but not necessary� [ 1
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Example 4: Show that the equation
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