
EM (Expectation Maximization) Algorithm: Part I

Motivating Example:

• Have two coins: Coin 1 and Coin 2

• Each has it’s own probability of seeing “H” on any one flip. Let

p1 = P ( H on Coin 1 )

p2 = P ( H on Coin 2 )

• Select a coin at random and flip that one coin m times.

• Repeat this process n times.

• Now have data
X11 X12 · · · X1m

X21 X22 · · · X2m
...

...
...

...
Xn1 Xn2 · · · Xnm

Y1
Y2
...
Yn

Here, the Xij are Bernoulli random variables taking values in {0, 1} where

Xij =


1 , if the jth flip for the ith coin chosen is H

0 , if the jth flip for the ith coin chosen is T

and the Yi live in {1, 2} and indicate which coin was used on the nth trial.

Note that all the X’s are independent and, in particular

Xi1, Xi2, . . . , Xim|Yi = j
iid∼ Bernoulli(pj)

We can write out the joint pdf of all nm + n random variables and formally come up
with MLEs for p1 and p2. Call these MLEs p̂1 and p̂2. They will turn out as expected:

p̂1 = total # of times Coin 1 came up H
total # times Coin 1 was flipped

p̂2 = total # of times Coin 2 came up H
total # times Coin 2 was flipped

• Now suppose that the Yi are not observed but we still want MLEs for p1 and p2. The
data set now consists of only the X’s and is “incomplete”.

• The goal of the EM Algorithm is to find MLEs for p1 and p2 in this case.



Notation for the EM Algorithm:

• LetX be observed data, generated by some distribution depending on some parameters.
Here, X represents something high-dimensional. (In the coin example it is an n ×m
matrix.) These data may or may not be iid. (In the coin example it is a matrix with
iid observations in each row.) X will be called an “incomplete data set”.

• Let Y be some “hidden” or “unobserved data” depending on some parameters. Here,
Y can have some general dimension. (In the coin example, Y is a vector.)

• Let Z = (X, Y ) represent the “complete” data set. We say that it is a “completion”
of the data given by X.

• Assume that the distribution of Z (likely a big fat joint distribution) depends on some
(likely high-dimensional) parameter θ and that we can write the pdf for Z as

f(z; θ) = f(x, y; θ) = f(y|x; θ)f(x; θ).

It will be convenient to think of the parameter θ as “given” and to write this instead
as

f(z|θ) = f(x, y|θ) = f(y|x, θ)f(x|θ).

(Note: Here, the f ’s are different pdfs identified by their arguments. For example
f(x) = fX(x) and f(y) = fY (y). We will use subscripts only if it becomes necessary.)

• We usually use L(θ) to denote a likelihood function and it always depends on some
random variables which are not shown by this notation. Because there are many groups
of random variables here, we will be more explicit and write L(θ|Z) or L(θ|X) to denote
the complete likelihood and incomplete likelihood functions, respectively.

• The complete likelihood function is

L(θ|Z) = L(θ|X, Y ) = f(X, Y |θ).

• The incomplete likelihood function is

L(θ|X) = f(X|θ).



The Algorithm

The EM Algorithm is a numerical iterative for finding an MLE of θ. The rough idea is to
start with an initial guess for θ and to use this and the observed data X to “complete” the
data set by using X and the guessed θ to postulate a value for Y , at which point we can then
find an MLE for θ in the usual way. The actual idea though is slightly more sophisticated.
We will use an initial guess for θ and postulate an entire distribution for Y , ultimately
averaging out the unknown Y . Specifically, we will look at the expected complete likelihood
(or log-likelihood when it is more convenient) E[L(θ|X, Y )] where the expectation is taken
over the conditional distribution for the random vector Y given X and our guess for θ.

We proceed as follows.

1 Let k = 0. Give an initial estimate for θ. Call it θ̂(k).

2 Given observed data X and assuming that θ̂(k) is correct for the parameter θ, find the

conditional density f(y|X, θ̂(k)) for the completion variables.

3 Calculate the conditional expected log-likelihood or “Q-function”:

Q(θ|θ̂(k)) = E[ln f(X, Y |θ)|X, θ̂(k)].

Here, the expectation is with respect to the conditional distribution of Y given X and
θ̂(k) and thus can be written as

Q(θ|θ̂(k)) =
∫

ln(f(X, y|θ)) · f(y|X, θ̂(k)) dy.

(The integral is high-dimensional and is taken over the space where Y lives.)

4 Find the θ that maximizes Q(θ|θ̂(k)). Call this θ̂(k+1).

Let k = k + 1 and return to Step 2 .

The EM Algorithm is iterated until the estimate for θ stops changing. Usually, a tolerance
ε is set and the algorithm is iterated until

||θ̂(k+1) − θ̂(k)|| < ε.

We will show that this stopping rule makes sense in the sense that once that distance is less
than ε it will remain less than ε.

At this point, burning questions remain. How do we choose starting values? When will this
algorithm converge to something?


