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Abstract

Multivariate interpolation of smooth data using smooth radial basis functions is
considered. The behavior of the interpolants in the limit of nearly flat radial basis
functions is studied both theoretically and numerically. Explicit criteria for different
types of limits are given. Using the results for the limits, the dependence of the error
on the shape parameter of the radial basis function is investigated. The mechanisms
that determine the optimal shape parameter value are studied and explained through
approximate expansions of the interpolation error.
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1 Introduction

The history of radial basis function (RBF) approximations goes back to 1968, when mul-
tiquadric RBFs were first used by Hardy to represent topographical surfaces given sets of
sparse scattered measurements [1, 2]. Today, the literature on different aspects of RBF
approximation is extensive. RBFs are used not only for interpolation or approximation of
data sets [3], but also as tools for solving e.g., differential equations [4, 5, 6, 7, 8, 9, 10, 11].
However, their main strength remains the same: The ability to elegantly and accurately ap-
proximate scattered data without using any mesh. There have been some concerns about the
computational cost and stability of the RBF methods, but many different viable approaches
to overcome these difficulties have been proposed, see for example [12, 13, 14, 15, 16] and
the references therein.

There are two main groups of radial basis functions, piecewise smooth and infinitely
smooth. Some examples of both are given in Table 1. Typically, the piecewise smooth RBFs
lead to an algebraic rate of convergence to the desired function as the number of points
increase [17, 18], whereas the infinitely smooth RBFs yield a spectral or even faster rate of
convergence [19, 20]. This is of course assuming that the desired function itself is smooth.
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Table 1: Some examples of radial basis functions.
Piecewise smooth RBFs φ(r)

Piecewise polynomial (Rn) |r|n, n odd

Thin Plate Spline (TPSn) |r|n ln |r|, n even

Infinitely smooth RBFs φ(r)

Multiquadric (MQ)
√

1 + r2

Inverse multiquadric (IM) 1√
1+r2

Inverse quadratic (IQ) 1
1+r2

Gaussian (GA) e−r2

Bessel (BE) J0(2r)

In this paper, we focus on interpolation of smooth data using RBFs even though some of
the results may give insights also into cases were differential equations are solved. A typical
interpolation problem has the following form: Given scattered data points xj , j = 1, . . . , N
and data fj = f(xj) find an interpolant

s(x) =
N∑

j=1

λj φ(
∥∥x− xj

∥∥), (1)

where x is a point in d space dimensions and ‖ · ‖ is the Euclidean norm. The interpolation
conditions are

s(xi) =
N∑

j=1

λj φ(
∥∥xi − xj

∥∥) = fi, i = 1, . . . , N.

This is summarized in a system of equations for the unknown coefficients λj ,

Aλ = f, (2)

where Aij = φ(
∥∥xi − xj

∥∥), λ = (λ1, . . . , λN )T , and f = (f1, . . . , fN )T . We are interested in
the case where φ(r) is infinitely smooth and belongs to the class of functions that can be
expanded in even powers as

φ(r) = a0 + a1r
2 + a2r

4 + . . . =
∞∑

j=0

ajr
2j . (3)

Table 2 gives the expansion coefficients for the smooth RBFs in Table 1. All of these RBFs
can be augmented by a shape parameter ε. This is done in such a way that φ(r) is replaced
by φ(εr). In previous studies [16, 11], we have found that for smooth data, the most accurate
results are often obtained for very small values of ε both for interpolation problems and when
solving elliptic partial differential equations. Small shape parameter values lead to almost
flat RBFs, which in turn leads to severe ill-conditioning of the coefficient matrix A in (2).
Hence, this is a region that has not been very well explored. However, even though the
condition number of A is unbounded when ε → 0, the limiting interpolant is often well
behaved. In fact, it can be shown that the limit, if it exists, is a (multivariate) finite order
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Table 2: Expansion coefficients for infinitely smooth RBFs.
RBF Coefficients

MQ a0 = 1, aj =
(−1)j+1

2j

Qj−1
k=1

2k−1
2k

, j = 1, . . .

IM a0 = 1, aj = (−1)j
Qj

k=1
2k−1
2k

, j = 1, . . .

IQ aj = (−1)j , j = 0, . . .

GA aj =
(−1)j

j!
, j = 0, . . .

BE aj =
(−1)j

(j!)2
, j = 0, . . .

polynomial [21]. In one space dimension, under some mild assumptions on the RBF, the
limit is the Lagrange interpolating polynomial if the points are distinct [22].

The aim of this paper is to extend the results of [22] to multivariate interpolation. Work
in the same direction has been done independently by Schaback [23]. Some of the results that
we present coincide with those in Schaback’s paper. However, our approach is different from
his and allows us to add information about the degree of the limiting polynomial and give
precise conditions on the RBFs and the data points for different limit results. Furthermore,
we can explain the behavior of the error in the interpolant for small ε and give reasons for
why there is often a small nonzero optimal value of the shape parameter.

The outline of the paper is as follows. We start by presenting five examples, where the
resulting limit interpolants are quite different. Section 3 contains definitions and background
for the theorems concerning limit interpolants stated in Section 4. Section 5 contains the
proofs of the theorems. Then, in light of the theoretical results, we go back to the examples
and discuss them in Section 6. The ε-dependence of the error is considered in Section 7 and
finally, we summarize the results in Section 8.

2 Examples of limit properties

In this section, we present a number of examples with different limit properties. All the
examples are in two space dimensions, and clearly there are many more possibilities for
the limits than in just one dimension, where we normally get the Lagrange interpolating
polynomial. Explanations for the various results are given later in Sections 5 and 6.

In each example, we use cardinal data for the interpolant. That is, the interpolant takes
the value 1 at the first node point, x1, and is 0 at all other node points. We let x and y
denote the spatial coordinates so that x = (x, y). The limits were computed analytically
using Mathematica. Results are shown for the smooth RBFs defined in Table 1. In the
tables of polynomial coefficients below, s is a factor that multiplies the entire polynomial.

Example 2.1 x1 = (0, 1), x2 = ( 1
4 , 1), x3 = ( 1

2 , 1
2 ), x4 = (1, 3

4 )
The points follow no specific pattern. All the limit interpolants are second order polynomials.
The coefficients of the polynomials are given in the table below and clearly none of them are
the same.
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0 1

1

0

φ(r) s 1 x y x2 xy y2

MQ 1
23

58 − 97 −71 84 −16 36

IM 1
49

94 −191 −73 172 −48 28

IQ 1
31

56 −119 −37 108 −32 12

GA 1
13

18 − 47 − 1 44 −16 − 4

BE 1
4

− 1 − 11 17 12 − 8 −12

Example 2.2 xk =
(

k−1
5 ,

(
k−1
5

)2
)

, k = 1, . . . , 6.

0 1

1

0

In this case, the points lie on a parabola. The degree of the limits
is three. All of the limits are different even though there are some
similarities. It is perhaps noteworthy that the GA limit is somewhat
simpler than the other limits.

φ(r) s 1 x y x2 xy y2 x3 x2y xy2 y3

MQ 1
528

528 −5884 9606 13500 −39375 30375 −625 −1875 −2500 −3750

IM 1
720

720 −8028 21183 10375 −54125 41125 −625 −1875 −3750 −5000

IQ 1
816

816 −9100 26034 9750 −61500 46500 −625 −1875 −4375 −5625

GA 1
96

96 −1072 13726 0 − 7375 5375 0 0 − 625 − 625

BE 1
144

144 −1620 13726 − 7250 −12250 7250 625 1875 −1875 − 625

Example 2.3 xk = (k−1
5 , k−1

5 ), k = 1, . . . , 6.
Here, the points are on the line x = y. For MQ, IM, and IQ, the interpolants show divergence
like O(1/ε2). The coefficients of the divergent terms given below depend on the choice of
RBF. Note that if the interpolant is evaluated on the line (which is in fact a 1D-case) the
divergent terms disappear.

0 1

1

0

MQ: 1
ε2

625
29568 (x− y)2 (18− 7x− 7y)

IM: 1
ε2

625
2826368 (x− y)2 (666− 355x− 355y)

IQ: 1
ε2

625
1559136 (x− y)2 (258− 149x− 149y)

The GA and BE RBF do not lead to divergence. The limits are polynomials of degree
five. The GA limit very nicely turns out to be the 1D Lagrange interpolation polynomial
along the line in the variable (x + y).

GA:
(10− 5x− 5y)

10
(8− 5x− 5y)

8
(6− 5x− 5y)

6
(4− 5x− 5y)

4
(2− 5x− 5y)

2
The BE limit does not factorize as nicely, but there is no divergence.

BE:
1

192
(−6 + 5x + 5y)( −32 + 156x + 156y + 130x2 − 1240xy + 130y2

−600x3 + 1200x2y + 1200xy2 − 600y3

+125x4 + 500x3y − 1750x2y2 + 500xy3 + 125y4)
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Example 2.4 x1 = ( 1
10 , 4

5 ), x2 = ( 1
5 , 1

5 ), x3 = ( 3
10 , 1), x4 = ( 3

5 , 1
2 ), x5 = ( 4

5 , 3
5 ),

x6 = (1, 1
10 ).

0 1

1

0

These six points do not follow any particular pattern. The MQ, IM,
IQ, and GA RBF interpolants all have the same limit, p(x), which is
the unique second order polynomial interpolating the cardinal data.
The BE RBF gives a different limit, which is a third order polynomial.

p(x) =
1

28274
(−7711− 81420x + 132915y + 82300x2 − 55450xy − 91550y2)

BE: − 1
1017250518

(−354545067− 2047021330x + 4593056085y

+2554383300x2 − 4166831700xy − 2554383300y2

−310763000x3 + 1319845500x2y + 932289000xy2

−439948500y3)

Example 2.5 xk = 1
2

(
cos

(
(k−1)π

3

)
+ 1, sin

(
(k−1)π

3

)
+ 1

)
, k = 1, . . . , 6.

0 1

1

0

The points lie on a circle. There is no unique interpolating polyno-
mial. Nevertheless, all RBFs, including the BE RBF have the same
limit interpolant of degree three,

p(x) =
1
6
(1− 4x− 4y − 4x2 + 24xy + 4y2 + 8x3 − 24xy2).

3 Definitions

This section contains definitions for multi-index notation, gives some properties of polyno-
mial interpolation, and looks at expansions of smooth RBFs. This is all needed for the
theorems in the following section and their proofs.

3.1 Multi-index notation

Since we consider multivariate interpolation in any number of dimensions, multi-indices
greatly simplify awkward expressions. We need some basic operations and some different
types of multi-index sets.

Definition 3.1 Let j = (j1, j2, . . . , jd), where each jn is a non-negative integer, be a multi-
index. Then define the following properties for multi-indices j and k.

(a) The absolute value |j| = ∑d
n=1 jn.

(b) Addition, and multiplication by scalars, m = αj + βk = (αj1 + βk1, . . . , αjd + βkd), is
allowed if the result is a multi-index.
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(c) Polynomial ordering of a sequence of multi-indices is determined in the following way:
The multi-index j comes before k in the sequence if |j| < |k|, or if |j| = |k|, jn = kn,
n = 1, . . . , p and jp+1 > kp+1.

(d) If x = (x1, x2, . . . , xd) is a point in d-dimensional space then xj = xj1
1 xj2

2 · · ·xjd

d .

(e) Derivatives can be expressed with multi-indices as φ(j)(x) = ∂|j|φ(x)

∂x
j1
1 ···∂x

jd
d

.

(f) The factorial of a multi-index is j! = j1! · · · jd!.

(g) The multi-indices j and k have the same parity if jn and kn have the same parity for
n = 1, . . . , d.

Definition 3.2 Let JK , where K ≥ 0, be the polynomially ordered sequence of all multi-
indices j such that |j| ≤ K. Let JK(n) denote the nth multi-index in the sequence.

Definition 3.3 Let Ip,K , where 0 ≤ p ≤ d and K ≥ 0, be the polynomially ordered sequence
of all multi-indices j such that j1, . . . , jp are odd numbers, jp+1, . . . , jd are even numbers,
and |j| ≤ K. Let Ip,K(n) denote the nth multi-index in the sequence.

Definition 3.4 Let Ii
p,K be the ith unique permutation of Ip,K . Each set Ip,K has

�
d
p

�
unique permutations. A permutation of a set is done in such a way that the same permutation
is applied to each multi-index. The order of the multi-indices in the original set is retained
for the new set. Unique permutations lead to sets that are distinguishable from each other.

Example 3.1 The set I1,3 = {(1, 0, 0), (3, 0, 0), (1, 2, 0), (1, 0, 2)} for d = 3 has three unique
permutations I1

1,3 = I1,3, I2
1,3 = {(0, 1, 0), (0, 3, 0), (2, 1, 0), (0, 1, 2)}, and

I3
1,3 = {(0, 0, 1), (0, 0, 3), (0, 2, 1), (2, 0, 1)}.

Definition 3.5 Let Ij
2m be the polynomially ordered set of all multi-indices k such that

|j + k| = 2m, and j and k have the same parity.

Example 3.2 The set I
(0,0)
4 = {(4, 0), (2, 2), (0, 4)} and the set I

(1,0)
4 = {(3, 0), (1, 2)}.

3.2 Polynomial spaces and unisolvency

As mentioned before, the limit of an RBF interpolant as the shape parameter goes to zero
must be polynomial if it exists [21]. In the following sections, it will become clear that there
are close parallels between plain polynomial interpolation and interpolation in the limit of
flat RBFs. The following definitions and relations are useful in this context.

Definition 3.6 Let PK,d be the space of all polynomials of degree ≤ K in d spatial dimen-
sions. The dimension of PK,d is given by

NK,d =
(

K + d
K

)
. (4)

A basis for PK,d is given by {pi(x)}NK,d

i=1 , where pi(x) = xJK(i). Table 3 shows some examples
of the values of NK,d. A relation that may be useful is that NK,d −NK−1,d = NK,d−1.
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Table 3: The dimension, N(K, d), of the space of all polynomials of degree ≤ K in d
variables.

K d = 1 d = 2 d = 3
0 1 1 1
1 2 3 4
2 3 6 10
3 4 10 20
4 5 15 35
5 6 21 56
6 7 28 84
7 8 36 120
8 9 45 165

A property that is connected with the distribution of the data points is polynomial unisol-
vency [24]. The following theorem gives necessary and sufficient conditions for unisolvency.
The proof is straightforward and will not be given here.

Theorem 3.1 Let x1, x2, . . . , xn be n point locations, and let p1(x), p2(x), . . ., pn(x) be
n linearly independent polynomials. Then {xi} is unisolvent with respect to {pi(x)}, i.e.,
there is a unique linear combination

∑
βjpj(x) which interpolates any given data over the

point set, if and only if det(P ) 6= 0, where

P =




p1(x1) p2(x1) · · · pn(x1)
p1(x2) p2(x2) · · · pn(x2)

...
...

...
p1(xn) p2(xn) · · · pn(xn)


 .

Corollary 3.1 If det(P ) = 0, then the nullspace of P describes all the possible ambiguities
in the resulting interpolant of the specified form.

Definition 3.7 Let NK−1,d < N ≤ NK,d and let {xi}N
i=1 be a set of distinct points that

is non-unisolvent with respect to any choice of N linearly independent basis functions from
PK,d. There is a smallest integer M > K such that the matrix P , constructed from a basis
in PM,d and the point set under consideration, has exactly rank N . We can form a minimal
non-degenerate basis {pi(x)}N

i=1, using a subset of the basis in PM,d corresponding to linearly
independent columns in P . The degree of the minimal non-degenerate basis is M .

Corollary 3.2 If NK−1,d < N ≤ NK,d and if {xi}N
i=1 is unisolvent with respect to any set

of N linearly independent polynomials from PK,d, then

(i) if N = NK,d there is a unique interpolating polynomial of degree K for any given data
on the point set,

(ii) if N < NK,d there is an interpolating polynomial of degree K for any given data on
the point set for each choice of N linearly independent basis functions.

If the point set {xi}N
i=1 is non-unisolvent and the degree of the minimal non-degenerate basis

is M , then
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(iii) there is an interpolating polynomial of degree M for any given data on the point set,
for each choice of a minimal non-degenerate basis.

3.3 Expansions of RBFs

The class of RBFs that we consider has expansions in r of type (3). For one particular basis
function in the linear combination forming the interpolant (1) we have

φ(‖x− xk‖) = φ(rk) = a0 + a1r
2
k + a2r

4
k + a3r

6
k + . . .

Viewing the RBF as a polynomial of infinite degree, we need to express the expansion in
powers of x. We start with considering just one term. The coefficient of xj in r2m

k (|j| ≤ 2m)
is

r2m
k

∣∣
xj =

∑

`∈Ij
2m

(−1)|j|
m!

( j+`
2 )!

(j + `)!
j! `!

x`
k. (5)

If we collect all contributions with power j in x from the basis function we get

φ(‖x− xk‖)|xj =
∞∑

m=|b j+1
2 c|

am

∑

`∈Ij
2m

(−1)|j|
m!

( j+`
2 )!

(j + `)!
j! `!

x`
k, (6)

where if for example j = (1, 2, 2), the sum over m starts at
∣∣∣
⌊

(2,3,3)
2

⌋∣∣∣ = 3. Note that there

is a certain system in how the coefficients are formed. For example, the coefficient of xj for
any j with all even components only contain x`

k for ` with all even components. There is a
decoupling of powers with different parity.

In the theorems, certain subsets of these coefficients are important. We need the matrices
defined below, which consist of coefficients for powers with the same parity and with the
total powers of x and xk both restricted to be ≤ K.

Definition 3.8 Let the elements of the matrix Ap,K be defined by

Ap,K(r, c) = am(−1)|j|
m!

( j+k
2 )!

(j + k)!
j!k!

(7)

where j = Ip,K(r), k = Ip,K(c), and 2m = |j + k|. The size of the matrix is determined by
the number of elements in Ip,K .

To illustrate what the definition leads to, we give two examples of index sets and matrices.
The first example for the one dimensional case gives the matrices that were derived in [22].

Example 3.3 In one space dimension, (7) is reduced to

Ap,K(r, c) = am(−1)j

(
j + k

j

)
.

For K = 5, we get I0,5 = {(0), (2), (4)} and I1,5 = {(1), (3), (5)}, leading to the matrices

A0,5 =




a0 a1 a2

a1 6a2 15a3

a2 15a3 70a4


 , A1,5 = −




2a1 4a2 6a3

4a2 20a3 56a4

6a3 56a4 252a5



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Example 3.4 In three space dimensions, (7) instead becomes

Ap,K(r, c) =
am(−1)|j|m!

( j1+k1
2 )!( j2+k2

2 )!( j3+k3
2 )!

(
j1 + k1

j1

)(
j2 + k2

j2

)(
j3 + k3

j3

)
,

For K = 5, we get the four multi-index sets
I0,5 = {(0, 0, 0), (2, 0, 0), (0, 2, 0), (0, 0, 2), (4, 0, 0), (2, 2, 0), (2, 0, 2), (0, 4, 0), (0, 2, 2), (0, 0, 4)},
I1,5 = {(1, 0, 0), (3, 0, 0), (1, 2, 0), (1, 0, 2), (5, 0, 0), (3, 2, 0), (3, 0, 2), (1, 4, 0), (1, 2, 2), (1, 0, 4)},
I2,5 = {(1, 1, 0), (3, 1, 0), (1, 3, 0), (1, 1, 2)}, and
I3,5 = {(1, 1, 1), (3, 1, 1), (1, 3, 1), (1, 1, 3)}.
The four corresponding matrices are

A0,5 =




a0 a1 a1 a1 a2 2a2 2a2 a2 2a2 a2

a1 6a2 2a2 2a2 15a3 18a3 18a3 3a3 6a3 3a3

a1 2a2 6a2 2a2 3a3 18a3 6a3 15a3 18a3 3a3

a1 2a2 2a2 6a2 3a3 6a3 18a3 3a3 18a3 15a3

a2 15a3 3a3 3a3 70a4 60a4 60a4 6a4 12a4 6a4

2a2 18a3 18a3 6a3 60a4 216a4 72a4 60a4 72a4 12a4

2a2 18a3 6a3 18a3 60a4 72a4 216a4 12a4 72a4 60a4

a2 3a3 15a3 3a3 6a4 60a4 12a4 70a4 60a4 6a4

2a2 6a3 18a3 18a3 12a4 72a4 72a4 60a4 216a4 60a4

a2 3a3 3a3 15a3 6a4 12a4 60a4 6a4 60a4 70a4




,

A1,5 = −




2a1 4a2 4a2 4a2 6a3 12a3 12a3 6a3 12a3 6a3

4a2 20a3 12a3 12a3 56a4 80a4 80a4 24a4 48a4 24a4

4a2 12a3 36a3 12a3 24a4 144a4 48a4 120a4 144a4 24a4

4a2 12a3 12a3 36a3 24a4 48a4 144a4 24a4 144a4 120a4

6a3 56a4 24a4 24a4 252a5 280a5 280a5 60a5 120a5 60a5

12a3 80a4 144a4 48a4 280a5 1200a5 400a5 600a5 720a5 120a5

12a3 80a4 48a4 144a4 280a5 400a5 1200a5 120a5 720a5 600a5

6a3 24a4 120a4 24a4 60a5 600a5 120a5 700a5 600a5 60a5

12a3 48a4 144a4 144a4 120a5 720a5 720a5 600a5 2160a5 600a5

6a3 24a4 24a4 120a4 60a5 120a5 600a5 60a5 600a5 700a5




,

A2,5 =




8a2 24a3 24a3 24a3

24a3 160a4 96a4 96a4

24a3 96a4 160a4 96a4

24a3 96a4 96a4 288a4


 , A3,5 = −




48a3 192a4 192a4 192a4

192a4 1600a5 960a5 960a5

192a4 960a5 1600a5 960a5

192a4 960a5 960a5 1600a5


 .

4 Theorems concerning limits

Now we have enough background to state some theorems about interpolants in the limit
ε → 0. We use the cases (i), (ii), and (iii) from Corollary 3.2 to categorize the data points
and we require the RBF φ(r) to fulfill the following conditions:

(I) The Taylor expansion of φ(r) is of type (3).
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(II) The matrix A in system (2) is non-singular in the interval 0 < ε ≤ R, for some R > 0.

(III) The matrices Ap,J from Definition 3.8 are non-singular for 0 ≤ p ≤ d and 0 ≤ J ≤ K
when the expansion coefficients for φ(r) are used.

Theorem 4.1 Consider the interpolation problem (1)–(2). If the node points {xi} are of
type (i) and the RBF satisfies (I)–(III), then the limit of the RBF interpolant as the shape
parameter ε → 0 is the unique interpolating polynomial P (x) of degree K to the given data.
For ε > 0, the interpolant has the form

s(x, ε) = P (x) + ε2p1(x) + ε4p2(x) + · · · ,

where pj(x) are polynomials of degree K+2j. If the data is such that P (x) becomes of degree
K −Q then the interpolant takes the form

s(x, ε) = P (x) + ε2r+2pr+1(x) + ε2r+4pr+2(x) + · · · ,

where r = bQ
2 c and pr+j(x) are polynomials of degree K + 2j − 1 if Q is odd and K + 2j if

Q is even.

Theorem 4.2 Consider the interpolation problem (1)–(2). If the node points {xi} are of
type (ii) and the RBF satisfies (I)–(III), then the limit of the RBF interpolant as the shape
parameter ε → 0 is a polynomial P (x) of degree K that interpolates the given data. The
exact polynomial depends on the choice of RBF. The form of the interpolant is the same as
in the previous case and for low degree data, we get the same kind of change in the expansion.

Theorem 4.3 Consider the interpolation problem (1)–(2). If the node points {xi} are of
type (iii) and the RBF satisfies (I)–(III), then the limit of the RBF interpolant as the shape
parameter ε → 0, if it exists, is a polynomial P (x) of degree M that interpolates the given
data. For ε > 0 the interpolant has the form

s(x, ε) = P (x) + ε2p1(x) + ε4p2(x) + · · · ,

where pj(x) are polynomials of degree M + 2j.
If the limit does not exist, i.e., there are divergent terms, the interpolant takes the form

s(x, ε) = ε−2zpz(x) + ε−2z+2pz−1(x) + · · ·+ ε−2p1(x) + P (x) +O(ε2),

where z =
⌊

M−N0
2

⌋
and N0 is the degree of the lowest order polynomial in the nullspace of

the matrix P corresponding to a basis of PM,d. The polynomials pj(x) have degree M − 2j
and are in the nullspace of P . Note that some of the polynomials pj may be zero, that is, the
divergence may be of lower order than ε−2z, which is the worst possible case. This depends
on the specific point distribution.

Also here, if the data is such that P (x) becomes of degree M − Q, the degrees of the
polynomials pj(x) are lowered by the same amount. The number of possible divergent terms

is then lowered to z =
⌊

M−Q−N0
2

⌋
.
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Remark: If we could discard the divergent terms, we would get a limit that makes
sense also with the non-unisolvent point sets. This may be possible to achieve, at least in
some cases, using the Contour-Padé approach described in [16]. Furthermore, in [21], we
conjectured that the divergent terms are always zero if the GA RBF is used. Schaback [23]
showed that the limit when using GA RBFs is least in a certain sense.

Corollary 4.1 If Theorem 4.1 or 4.2 holds, then the coefficients of the linear combination
in the interpolant, λj , j = 1, . . . , N , grow as ε−2K as ε → 0. If instead Theorem 4.3 holds,
the growth is of order ε−2M .

Conjecture 4.1 Condition (III) holds for all commonly used RBFs such as MQ, IM, IQ
and GA.

We have no proof for this except that we have found it to be true for all cases that we
have been able to test. For basis functions that fail condition (III), it is hard to give any
general guidelines as to what happens as the shape parameter ε → 0. The limit of the
RBF interpolant may or may not exist and in general, the degree of the limit if it exists
is different from what a basis function that fulfills the condition would give. This type of
function seems to be less prone to divergence in non-unisolvent cases, but we have not found
any other clear advantages so far.

5 Proofs

The proofs for the theorems are constructive in nature and give some insights that we can
use in the discussion of errors in the following section. They are therefore presented here in
quite a lot of detail. The approach is similar to the method used in [22], but is here extended
to any number of space dimensions.

5.1 General ingredients in the proofs

We consider the interpolation problem (1)–(2) with node points xk, k = 1, . . . , N , in d
dimensions, where NK−1,d < N ≤ NK,d.

From condition (I), the basis function φ(r) has an expansion in even powers of r. If we
include a shape parameter ε, we have

φ(εr) = a0 + ε2a1r
2 + ε4a2r

4 + · · · =
∞∑

j=0

ε2jajr
2j . (8)

Each entry in the matrix A of the system (2) can be expanded in even powers of ε as above.
Condition (II) says that A is non-singular for an interval 0 < ε ≤ R. Since, for this range of
ε-values, the system can be solved by Cramer’s rule, each element in λ must be a rational
function of ε2. This means that for some finite q we have

λ = ε−2K(ε−2qλ−q + · · ·+ λ0 + ε2λ1 + · · ·). (9)
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Let the discrete moments of λr = (λ1,r, . . . , λN,r)T be defined in the following way

σ(`)
r =

N∑

k=1

λk,rx
`
k, r = −q, . . . ,∞. (10)

If we pick N linearly independent polynomials pi(x) = x`i and form a matrix T , where
tij = pj(xi) (as for P in Theorem 3.1), in such a way that T is nonsingular, then

σr = TT λr, r = −q, . . . ,∞, (11)

where σr = (σ(`1)
r , . . . , σ

(`N )
r )T . When σr is known, we can compute any other moment σ

(`)
r

through

σ(`)
r =

N∑

k=1

λk,rx
`
k ≡ vT λr = vT T−T σr. (12)

Combining the two expansions (8) and (9) and inserting them into the form of the inter-
polant (1) yields

s(x, ε) =
N∑

k=1

λkφ(‖x− xk‖) = ε−2K(ε−2qP−q(x) + · · ·+ ε2KPK(x) + · · ·), (13)

where P−q+s =
∑s

m=0 am

∑N
k=1 λk,−q+s−mr2m

k . We need the coefficient of each polynomial
term. If we use (5) as we did for (6) and also apply definition (10), we get

P−q+s|xj =
s∑

m=|b j+1
2 c|

am

∑

`∈Ij
2m

(−1)|j|
m!

( j+`
2 )!

(j + `)!
j! `!

σ
(`)
−q+s−m.

The highest degree terms that can contribute to P−q+s have |j| = 2s and we can express
the polynomial as

P−q+s(x) =
∑

j∈J2s




s∑

m=|b j+1
2 c|

am

∑

`∈Ij
2m

(−1)|j|
m!

( j+`
2 )!

(j + `)!
j! `!

σ
(`)
−q+s−m


 xj . (14)

Note that some of the terms with total power 2s are usually missing from the polynomial.
In the expression this shows only through the fact that the sum over m is empty in those
cases. A close inspection of the polynomial terms reveals that:

• The coefficients of xj in P−q+s, where 2s − |j| = J all involve the same discrete
moments σ

(`)
−q+r with 2r + |`| = J .

• J = 0 corresponds to the highest order terms in each polynomial, J = 1 corresponds
to the next to highest order terms in each polynomial, and so on for larger J .

• For each J the number of moments that are involved is finite, since r ≥ 0, |`| ≥ 0, and
2r + |`| = J . If we can compute these moments, we can also find the coefficients of the
corresponding terms in every polynomial P−q+s.
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Definition 5.1 The vector σi
p,J has elements σ

(`)
−q+r, where for the kth element, ` = Ii

p,J(k)
and r = (J − |`|)/2.

Definition 5.2 The elements of the vector pi
p,J

are the coefficients of xj in P−q+s, where
for the kth element j = Ii

p,J (k) and s = (J + |j|)/2. This means that J/2 ≤ s ≤ J holds for
all elements in the vector.

Example 5.1 In two dimensions, the vector of moments
σ1

0,4 = (σ(0,0)
−q+2, σ

(2,0)
−q+1, σ

(0,2)
−q+1, σ

(4,0)
−q , σ

(2,2)
−q , σ

(0,4)
−q )T and the corresponding vector

p1
0,4

= (P−q+2|x(0,0) , P−q+3|x(2,0) , P−q+3|x(0,2) , P−q+4|x(4,0) , P−q+4|x(2,2) , P−q+4|x(0,4) , )T .

With the matrices from Definition 3.8 and the vectors defined above, we can form a sequence
of systems of equations for the discrete moments,

Ap,Jσi
p,J = pi

p,J
, (15)

where p and J have the same parity, 0 ≤ p ≤ d, i = 1, . . . ,

�
d
p

�
, and J = 0, 1, . . . ,∞.

Since condition (III) holds for φ(r), all of the systems are nonsingular and we have a com-
plete description of the relation between the discrete moments and the polynomials P−q+s.
With knowledge of the polynomial coefficients, the systems in (15) can be used directly for
determining the moments.

Following condition (II), there is a whole range of ε-values for which we get a well defined
interpolant to the data. If we relate this to the expansion (13), we see that the polynomial
multiplying ε0 must interpolate the data and all other polynomials must be zero at the data
locations. That is, we get the following conditions

PK interpolates the data at the N node points
Pj , j 6= K interpolate 0 at the N node points. (16)

All of the above holds for each type of point set. In the following three subsections, we go
through the specifics for each case.

5.2 Proof of Theorem 4.1

The point set is of type (i), meaning that the number of points equal NK,d for some K and
the point set is unisolvent with respect to any basis in PK,d. Accordingly, relation (11) holds
for the basis {xJK(i)}NK,d

i=1 .
We know that the degree of P−q+s(x) is at most 2s. Because of the unisolvency, any

polynomial with degree ≤ K that interpolates zero at N points must be identically zero.
Following condition (16), this includes at least the following polynomials

P−q = P−q+1 = · · · = P−q+bK+1
2 c−1 = 0.

We can immediately go ahead and solve all systems in (15) with J ≤ bK+1
2 c− 1, since their

right hand sides are all zero. Because the coefficient matrices are nonsingular, the solutions
are that all involved σi

p,J = 0. Now, remember that the moments for J = 0 determine the
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highest order coefficients in each P−q+s. These will therefore all be zero, and the degree of
every polynomial is reduced by one. This occurs again for every J and after bK+1

2 c steps
we have that the degree of P−q+s is at most 2s − bK+1

2 c. That is, there are now more
polynomials with degree lower than K, which have to be zero. In fact, if we take into
account that the degree continues to be lowered by one for each new J , we finally get

P−q = P−q+1 = . . . = P−q+K−1 = 0.

The degree of P−q+K is K and we have a choice: either P−q+K = PK and interpolates
the data or it is zero at N points. Assume that q > 0 so that P−q+K 6= PK . Then the
polynomial is zero at the data points, which means that it must be identically zero and we
can solve also the systems for J = K. If we look at the discrete moments that have then
been determined, we find that

σ
(`)
−q = 0, |`| ≤ K,

σ
(`)
−q+1 = 0, |`| ≤ K − 2,

σ
(`)
−q+2 = 0, |`| ≤ K − 4,

...
...

σ
(`)

−q+bK
2 c = 0, |`| ≤ K − 2

⌊
K
2

⌋
,

but then following (11), λ−q = 0 and we could have omitted that term in the expansion (9).
We have a contradiction. We must have q = 0 and the expansion of the coefficients of the
interpolant has the following form

λ = ε−2Kλ0 + ε−2K+2λ1 + · · · .
As a byproduct this tells us that the smallest eigenvalue of A is of order ε2K , since λ = A−1f
for any data vector f . This was proved by Schaback [23] and he also gives the magnitudes
in ε for all of the eigenvalues.∗

Because the lower order polynomials are all forced to be zero by condition (16), the
interpolant becomes

s(x, ε) = PK(x) + ε2PK+1(x) + ε4PK+2(x) + · · · .
Unisolvency ensures that PK is the unique interpolating polynomial to the given data. The
degree of PK+j = 2(K + j)−K = K + 2j.

The data may be such that the interpolating polynomial PK becomes of degree K −Q.
In this case, also the systems of equations for J = K, . . . , K + Q − 1 have zero right hand
sides. This corresponds to a lowering of the degree of each polynomial by Q, i.e., PK+j has
degree K + 2j − Q. Condition (16) holds for all the polynomials PK+j and if Q is large
enough to bring the degree down to K or less for a polynomial, then that polynomial is zero.
We get a modified expression for the interpolant

s(x, ε) = PK(x) + ε2r+2PK+r+1(x) + ε2r+4PK+r+2(x) + · · · ,
where r = bQ

2 c. The degree of PK+r+j is K + 2j − 1 if Q is odd and K + 2j if Q is even. ¤
∗In fact the number of eigenvalues of power ε2r follows the numbers NK,d−1. For example in 2D, one

eigenvalue is O(ε0), two eigenvalues are O(ε2), three are O(ε4), . . . , and K + 1 are O(ε2K).
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5.3 Proof of Theorem 4.2

The point set is of type (ii), i.e., it is unisolvent, but the number of points does not coincide
with the dimension of a polynomial space. We have NK−1,d < N < NK,d and we can
choose N linearly independent polynomials such that (11) holds, for example {xJK(i)}N

i=1.
There is no difference between this case and the previous in solving the systems in (15) for
J = 0, . . . ,K − 1. However, when we reach the final step, we need to make some further
considerations.

P−q+K is a polynomial of degree K. It is either the interpolating polynomial or it is zero
in N points. We again assume that q > 0 and that the polynomial interpolates zero, but
this in itself is not enough to make it identically zero.

We proceed in the following way: First we look at the systems of equations for J = K.
We can use the fact that P−q+s ≡ 0 for s < K to write the systems in block form

(
Ap,K−2 Bp

BT
p Cp

) (
σi

p,K |r>0

σi
p,K |r=0

)
=

(
0
pi

p,K
|s=K

)
.

We then perform block Gaussian elimination on the systems to get

(Cp −BT
p A−1

p,K−2Bp)(σi
p,K |r=0) = (pi

p,K
|s=K).

This operation is well defined, since Ap,K−2 is nonsingular, and we also know that the whole
system is nonsingular.

Let `i = JK(i). Then we can express any σ
(`i)
−q with i > N in terms of σ

(`i)
−q with i ≤ N

through relation (12). However, from the systems of equations with J < K, we have already
determined that σ

(`i)
−q = 0 for i ≤ NK−1,d. The total number of unknown moments σ

(`i)
−q left

to solve for is N−NK−1,d. All of the (NK,d−NK−1,d) highest order coefficients in P−q+K can
be expressed as combinations of these moments and are hence not independent of each other.
That is, the number of degrees of freedom in P−q+K is in fact NK−1,d +(N −NK−1,d) = N .
Again the assumption that q > 0 leads to a contradiction since then P−q+K = 0, σ−q = 0,
and through (11) λ−q = 0. We must have q = 0. The polynomial PK (of degree K)
is uniquely determined by the interpolation conditions. However, the proportions of the
highest order coefficients with relation to each other depends on the coefficients aj for the
chosen RBF. The arguments for the modified form of the interpolant when the data is of
low degree are the same as in the previous case. ¤
Example 5.2 Just to illustrate the method, let us look at the problem in Example 2.1. We
have N = 4 points and K = 2. We can choose the basis {1, x, y, x2}. The two systems to
solve for J = K = 2 are A0,2σ0,2 = p

0,2
, and A2,2σ2,2 = p

2,2
. Written out, we have




a0 a1 a1

a1 6a2 2a2

a1 2a2 6a2







σ
(0,0)
−q+1

σ
(2,0)
−q

σ
(0,2)
−q )


 =




0
P−q+2|x2

P−q+2|y2


 and 8a2σ

(1,1)
−q = P−q+2|xy.

First we perform Gaussian elimination on the larger system to reduce the number of un-
knowns. The resulting system is

(
6a2 − a2

1
a0

2a2 − a2
1

a0

2a2 − a2
1

a0
6a2 − a2

1
a0

)(
σ

(2,0)
−q

σ
(0,2)
−q )

)
=

(
P−q+2|x2

P−q+2|y2

)
.
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Then we use (12) to express the higher moments in σ
(2,0)
−q , leading to

σ
(1,1)
−q = − 2

11
σ

(2,0)
−q and σ

(0,2)
−q = − 1

11
σ

(2,0)
−q .

If we let σ
(2,0)
−q = c3 we can write down the exact form of the interpolating polynomial as

P2(x, y) = c0 + c1x + c2y +
c3

11a0
((64a0a2 − 10a2

1)x
2 − 16a0a2xy + (16a0a2 − 10a2

1)y
2).

We have exactly 4 unknowns to be determined by the interpolation conditions. As can now
be seen, a0, a1, and a2 determine which polynomial we will get in the end. If we for example
pick IQ, a0a2 = a2

1 = 1 and the polynomial becomes

P2(x, y) = c0 + c1x + c2y +
c3

11
(54x2 − 16xy + 6y2),

which is in agreement with the result in Example 2.1.

5.4 Proof of Theorem 4.3

When the point set is non-unisolvent (of type (iii)), we have to pick a minimal non-degenerate
basis in order to have relation (11). Therefore, the degree of the basis is M instead of K
even if NK−1,d < N ≤ NK,d. As an example, for points on the line x = y in two space
dimensions, we can choose {pi(x)}N

i=1 = {1, x, x2, x3, . . . , xN−1}.
The condition that a polynomial P−q+s is zero in N points no longer leads to that the

polynomial is zero even if the degree is less than K. Since the problem is non-unisolvent,
the polynomial can be zero at the data points, but still contain elements from the nullspace
of the degree under consideration. The condition that a polynomial interpolates zero can
be expressed as

P−q+s(x) = ns(x),

where ns(x) is a nullspace polynomial of degree s. We have not shown yet that P−q+s is of
degree s, but when we proceed with solving the sequence of systems (15), we can see that
we get the same reduction of degree as in the unisolvent case.

Going back to the example with the line x = y, we get nullspace polynomials n1(x) =
α11(x− y), n2(x) = (α21 + α2xx + α2yy)(x− y), . . . , ns(x) = ps−1(x)(x− y), where ps−1 is
an arbitrary polynomial of degree s− 1.

As in the unisolvent case, we solve the systems Ap,Jσi
p,J = pi

p,J
for one J at a time. For

a fixed J , we can collect the systems for different p and i into one big system

Bσ = p. (17)

The matrix B is nonsingular, since it is block diagonal with nonsingular blocks Ap,J . The
right hand side contains coefficients from the different nullspace polynomials. We can de-
scribe the right hand side as a rectangular matrix C times a vector α containing the pertinent
nullspace coefficients

p = Cα. (18)
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Each nullspace part in the right hand side corresponds to a relation between the unknown
moments. For example, α2x(x2 − xy) has the counterpart (σ(2,0) − σ(1,1)) = 0. In matrix
form, we express this as

CT σ = 0. (19)

Together, equations (17), (18), and (19) define a new system of equations for α

CT B−1Cα = 0. (20)

The matrix C has full column rank and B is nonsingular. Therefore, the only solution is
α = 0, leading to σ = 0. So far, we have exactly the same result as in the unisolvent
case. However, we do not reach the point where assuming that P−q+s 6= PK leads to a
contradiction until J = M , since the minimal nondegenerate basis is of order M and we
need σ

(`)
−q = 0 for |`| ≤ M before λ−q = 0. Hence, we reach the conclusion that P−q+M = PK ,

q = M −K, and the coefficients λ take the form

λ = ε−2Mλ−(M−K) + ε−2M+2λ−(M−K)+1 + · · · .
Note that the condition number of the RBF interpolation matrix A is worse for non-
unisolvent cases. It can be shown that the largest eigenvalue is N + O(ε2) for any point
distribution, whereas the order of the smallest eigenvalue depends on the degree of degen-
eracy of the point set.

After solving the systems for J ≤ M − 1, we have lowered the degree of each polynomial
P−q+s by M . The first polynomial that still has degree ≥ 0 is P−q+dM

2 e = PK−bM
2 c. If M

is even it has degree 0, else the degree is 1. Each of the polynomials PK−bM
2 c, . . . , PK−1

may contain nullspace parts. However, there can be no nullspace part of lower degree than
the first nonzero ns(x). If we denote this lowest possible nullspace degree by N0, then the
number of polynomials that may be nonzero is reduced to z =

⌊
M−N0

2

⌋
. The general form

of the interpolant is

s(x, ε) = ε−2zPK−z(x) + ε−2z+2PK−z+1(x) + · · ·+ ε−2PK−1(x) + PK(x) +O(ε2),

where the degree of PK−j is M − 2j and the divergent terms only contain polynomial parts
that are in the nullspaces. Note that this is a worst case scenario. For example symmetries in
the point set can reduce the number of nonzero terms further. However, there are certainly
cases where this does not happen and then we get divergence in the interpolant as ε → 0.

If the data is such that PK(x) is of degree M − Q, then we get Q extra systems of
the type (20). The degree of each divergent term is then reduced by Q and we get z =⌊

M−Q−N0
2

⌋
for the possible number of divergent terms. ¤

Example 5.3 We illustrate the non-unisolvent case, by going through Example 2.3. Six
points are located on the line x = y. A minimal non-degenerate basis is {1, x, x2, x3, x4, x5}
and consequently, M = 5. Because xk = yk we know from the start that σ(j1,j2) =
σ(j1+k,j2−k). The nullspaces are

n1(x, y) = α11(x− y),
n2(x, y) = (α21 + α2xx + α2yy)(x− y),
n3(x, y) = (α31 + α3xx + α3yy + α3x2x2 + α3xyxy + α3y2y2)(x− y),
n4(x, y) = (α41 + α4xx + · · ·+ α4y3y3)(x− y).
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Remember the condition P−q+s(x) = ns(x). The task here is to find out which of the
coefficients in ns may be nonzero in the final interpolant. Solving the systems for J =
0, . . . , 4, we get for

J = 1 : α11 = 0,
J = 2 : α2x = α2y = 0,
J = 3 : α3x2 = α3xy = α3y2 = α21 = 0,
J = 4 : α4x3 = α4x2y = α4xy2 = α4y3 = α3x = α3y = 0.

The parts of the nullspace polynomials that are still undetermined and may appear in the
interpolant are n3(x) = α31(x − y) and n4(x) = (α41 + α4xx + α4yy + α4x2x2 + α4xyxy +
α4y2y2)(x − y). This is as predicted in the theorem, since z = b 5−1

2 c = 2. The polynomial
that interpolates the data, PK = P−q+5 = P2, is of degree five.

As we are looking at a specific problem, we can go further and see if and how the sym-
metries may provide some extra benefits. Consider the two systems A1,5σ

1
1,5 = p1

1,5
and

A1,5σ
2
1,5 = p2

1,5
. The vectors with the unknown moments are

σ1
1,5 = (σ(1,0)

−q+2, σ
(3,0)
−q+1, σ

(1,2)
−q+1, σ

(5,0)
−q , σ

(3,2)
−q , σ

(1,4)
−q )T ,

σ2
1,5 = (σ(0,1)

−q+2, σ
(0,3)
−q+1, σ

(2,1)
−q+1, σ

(0,5)
−q , σ

(2,3)
−q , σ

(4,1)
−q )T ,

but since xk = yk, these two vectors are actually identical. The right hand sides are

p1
1,5

= ( α31, α4x2 , −α4xy + α4y2 , PK |x5 , PK |x3y2 , PK |xy4)T ,

p2
1,5

= (−α31, −α4y2 , −α4x2 + α4xy, PK |y5 , PK |x2y3 , PK |x4y)T ,

but if the left hand sides of the two systems are identical, then the right hand sides must also
be equal. This immediately gives us

α31 = 0, α4x2 = −α4y2 , α4xy = 0.

Furthermore, we get some symmetry conditions for PK . We can proceed further by using the
fact that σ

(3,0)
−q+1 = σ

(1,2)
−q+1 and σ

(5,0)
−q = σ

(3,2)
−q = σ

(1,4)
−q . If we write down the reduced system

of equations explicitly we have

−




2a1 8a2 24a3

4a2 32a3 160a4

4a2 48a3 288a4

6a3 80a4 592a5

12a3 224a4 2080a5

6a3 144a4 1360a5







σ
(1,0)
−q+2

σ
(3,0)
−q+1

σ
(5,0)
−q


 =




0
α4x2

−α4x2

PK |x5

PK |x3y2

PK |xy4




.

If the 3 × 3 upper part of the matrix is non-singular, we can express the moments in α4x2

and subsequently the coefficients of order five in PK . This is the case for MQ, IM, and IQ
RBFs. However, for the GA and BE RBFs, the 3×3 system is singular and the compatibility
conditions enforce α4x2 = 0. In this case, the coefficients of order five can be expressed in
one of the moments.
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The same procedure for J = 6 yields α4x = −α4y. For the MQ, IM and IQ RBFs, the
moments and all terms of order four in PK can be expressed in α4x2 and α4x. For the GA
and BE RBF, the nullspace coefficients again become zero and the fourth order terms in PK

can instead be expressed in one of the moments and the terms of order five.
Finally, after going through J = 7, 8, and 9, we find that α41 = 0 for all RBFs and

the coefficients in PK = P2 depend on six parameters, which are uniquely determined by the
given data. The interpolant becomes

s(x, ε) = ε−2P1(x) + P2(x) +O(ε2),

where P1(x) = 0 for GA and BE RBFs, and

P1(x) = (α4x(x− y) + α4x2(x2 − y2))(x− y) = (α4x + α4x2(x + y))(x− y)2,

for MQ, IM and IQ RBFs. The coefficients in P1 and P2 depend on the chosen RBF. Going
back to the results in Example 2.3, we find that the form of P1 is in exact agreement.

So why is it that the GA interpolant does not diverge? This may seem like a coincidence,
but we have seen the same behavior in every example we have studied and in our numerical
experiments as well. In [21] we conjecture that the GA RBF never diverges and supply proofs
for some special cases. Why the BE interpolant does not diverge is a slightly different story,
which will be commented upon in the following section.

6 Explanations and discussion

We have already looked at Examples 2.1 and 2.3 in connection with the proofs. Example 2.4
is the unisolvent case with N = N2,2 = 6. Except for the BE RBF, the results are as
predicted by Theorem 4.1. For further discussion of the BE RBF, see subsection 6.3.

6.1 Example 2.2

The point set is non-unisolvent and the points are located on the parabola y = x2. A
minimal non-degenerate basis is {1, x, y, xy, y2, x3}, meaning that M = 3. The lowest degree
nullspace is n2(x) = α1(y − x2) and z =

⌊
M−N0

2

⌋
= 0. There can be no divergent terms,

but the limit does depend on the RBF.
If we use more points on a parabola, we do get divergence. The first divergent case is

for N = 8 points with a term of order ε−2 [21]. In this case M = 4 and N0 = 2 leading to
z = 1. Accordingly, the worst case actually occurs here.

6.2 Example 2.5

Somewhat unexpectedly, we get the same result for all RBFs in this case, even though the
points are on circle and we do have a nullspace. The equation for the circle is (x − 1

2 )2 +
(y− 1

2 )2 = 1
4 or y2 = − 1

4 +x+y−x2. A minimal non-degenerate basis is {1, x, y, x2, xy, x3}
and the first nullspace polynomial is

n2(x, y) = α1(x2 + y2 − x− y + 1
4 ).
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Again M = 3 and N0 = 2 and there can be no divergent terms. From the equations for
J = 0, . . . , 2 we get σ

(j)
−q = 0, |j| ≤ 2 and σ

(j)
−q+1 = 0, |j| = 0. When we look at the equations

for J ≥ 3, we can use relation (12) to reduce the number of unknown moments. If we for
example take A1,3σ

1
1,3 = p1

1,3
and use σ

(1,2)
−q = −σ

(3,0)
−q , the system

−



2a1 4a2 4a2

4a1 20a3 12a3

4a2 12a3 36a3







σ
(1,0)
−q+1

σ
(3,0)
−q

σ
(1,2)
−q


 =




0
P−q+3|x3

P−q+3|xy2




is reduced to ( −8a3

24a3

) (
σ

(3,0)
−q

)
=

(
P−q+3|x3

P−q+3|xy2

)
.

The relative size of the two coefficients in P−q+3 = PK does not depend on the RBF because
of the way the moments cancelled each other out in the first (homogeneous) equation. The
fact that the points are on a circle lead to the same type of relation between the moments
and subsequent cancellations in all systems where the coefficients of the limit interpolant
are present and the final form of the polynomial is

P−q+3(x, y) = s1(8x3 − 24xy2) + (4s2 + 12s1)(x2 − y2) + (8s3 − 24s1)xy
+ s4x + s5y + s6.

The six unknown parameters in the polynomial are the same for all RBFs and are uniquely
determined by the given data. The result is s1 = s6 = 1

6 , s2 = s4 = s5 = − 4
6 , and s3 = 1,

leading to the polynomial in Example 2.5.
In all the experiments we have done, we have never managed to get divergence, or even

different limits for different RBFs, for points on any circle. We believe this is exactly because
of the cancellation property of the moments. There may be divergence for larger number of
points, but our guess is that the result holds independently of N .

6.3 The BE RBF and other special functions

In Example 2.4 all RBFs except the BE RBF have the same limit, which is the unique
interpolating polynomial of degree two. The reason for the deviant behavior is that the
expansion coefficients of the BE RBF do not fulfill the non-singularity condition (III).

Conjecture 6.1 All matrices Ap,K with K > 1 are singular for the expansion coefficients
of the BE RBF.

There is (at least) one function with this property in all even dimensions and some
odd dimensions. Table 4 shows some of the functions. Some properties that these special
functions have in common are

• They seem to fail the conditions det(Ap,K) 6= 0 for K > 1.

• They are the lowest radial eigenmodes that are bounded at the origin of the Laplacian
in d dimensions. The equation they solve is

φ′′ +
(d− 1)

r
φ′ + φ = 0.
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Table 4: Functions with special behavior in d dimensions.
d Function
1 cos(r)
2 J0(r)
3 sinc(r)
4 J1(r)/r
5 No bounded solution.
6 J2(r)/r2

7 No bounded solution.
8 J3(r)/r3

• They have compact support in the Fourier domain.

Using these functions as RBFs in the dimension where they are special does not seem to be
a good idea, at least not for smooth data, since the results are not very accurate. However,
the special functions do seem less prone to divergence for non-unisolvent point sets. They
can be used in a lower dimension (except for cos(r)) and give results similar to other RBFs.
However, at least in dimensions higher than d these functions may lead to singular RBF
matrices, which is not a very desirable property.

7 The principle behind errors and optimal shape pa-
rameter values for smooth functions

A number of authors have performed theoretical studies of the dependence on h of the errors
in radial basis function interpolants, where

h = sup
x∈Ω

min
1≤k≤N

‖x− xk‖

measures the point density in Ω, the domain under consideration. For smooth data functions
and smooth RBFs the convergence is spectral in h [25, 19, 20, 17]. The dependence on the
shape parameter ε has been less studied. Madych [19] gives an error bound proportional
to λ1/(hε) for ε in the range 1/a ≤ ε ≤ 1, where a is the diameter of Ω and 0 < λ < 1.
Cheng et al. [26] found through numerical experiments that the error behaves as λ1/(h

√
ε).

Several other authors have noted that the quality of the solution depends strongly on the
shape parameter and that there is an optimal shape parameter value, which depends on
the function to be interpolated, the node points, the RBF, and the machine precision, see
e.g. [27, 28, 29]. Different methods to locate the optimal shape parameter are also proposed
in these articles.

However, in many cases, it is not possible to compute the solution at the best ε-value
directly in finite precision arithmetic due to the severe ill-conditioning of the RBF interpola-
tion matrix. This is illustrated by the uncertainty principle of Wu and Schaback [30], which
says that the attainable error and the condition number of the RBF interpolation matrix
cannot both be small at the same time. The condition number grows both with decreasing
h and decreasing ε.

A method which circumvents the ill-conditioning and makes it possible to solve the RBF
interpolation problem for any value of the shape parameter ε for point sets of moderate
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size was recently developed [16]. When we started to do experiments with the method and
computing solutions for very small values of the shape parameter, we found that for smooth
functions, the error often has a minimum for some small non-zero value of ε. This behavior
is not limited to the interpolation problem, but shows also for example when solving PDEs
using RBF collocation methods [11]. Examples of typical error curves can be seen in Figure 1.

This is not an artifact of the solution method. It is the actual behavior of the error.
In the following subsections, we look at which parameters determine the optimal shape
parameter values (and the overall ε-dependence in the error), using the techniques from the
proofs in Section 5. We are able to give a reasonable description of the behavior for small
ε, a region which has until recently been very little explored. First we discuss the error in
general. Then we consider the one-dimensional and two-dimensional cases, and finally we
take a quick look at the special case of polynomial data.

7.1 General properties

We consider problems with unisolvent point sets, where we want to find an interpolant to
a smooth multivariate function f(x). In order to express the error in a useful way, we use
Taylor expansions of both the function and the RBF interpolant around x = 0. For the
function, using multi-index notation, we get

f(x) = f(0) +
∂f

∂x1
(0)x1 +

∂f

∂x2
(0)x2 + . . . =

∑

j∈J∞

fjx
j , where fj =

f (j)(0)
j!

. (21)

For the interpolant, we use the expansion from Theorem 4.1,

s(x, ε) = PK(x) + ε2PK+1(x) + ε4PK+2(x) + · · · ≡
∑

j∈J∞

sj(ε)xj , (22)

where, using that the degree of PK+m is K + 2m,

sj(ε) =
∞∑

m=max(0,d |j|−K
2 e)

ε2mPK+m|xj . (23)

The polynomial PK(x) is the unique interpolating polynomial of degree K for the data given
at N = NK,d node points. If we let PK(x) =

∑
j∈JK

pjx
j , the following holds for sj(ε):

sj(ε) =

{
pj +O(ε2), |j| ≤ K,

O(ε2r), r =
⌈
|j|−K

2

⌉
, |j| > K.

(24)

The error in the interpolant can be expressed as an infinite expansion in powers of x by
combining (21) and (22),

e(x, ε) = s(x, ε)− f(x) =
∑

j∈J∞

[sj(ε)− fj ]xj =
∑

j∈J∞

ej(ε)xj . (25)

If we study the error expansion, there are a few things we can say in general
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• The error is zero for all x if and only if sj(ε) = fj for all j.This happens exactly if

i) The function f(x) ≡ ∑N
k=1 λkφ(ε‖x− xk‖) for some λk and ε.

ii) The function f(x) is a polynomial of degree J ≤ K. Then fj = pj , |j| ≤ K and
the error is zero for ε = 0.

• If none of the situations above apply, each term in the error expansion has an optimal
value of ε, for which it is minimized. These ε may all be different, but there will still
be one or more global minima for which we get the overall best solution.

• If f(x) is smooth with a convergent Taylor series in the domain of interest and if ε
is small enough for the expansion of s(x, ε) to converge, then the error expansion is
convergent and truncation of the sum gives an approximation of the error.

• The error is (always) exactly zero at the N collocation points, because of the interpo-
lation conditions.

Remark: The notion of ε being small enough has to do with the convergence radius R of
the expansion (8). We need to have ε2r2

k < R, for all rk. The radius is R = 1 for MQ, IM,
and IQ, whereas for GA we have an infinite radius of convergence.

Under the assumption that the fj decay rapidly and that ε is small, we can write down
a series of approximate error expansions ẽr(x, ε), where all terms of order up to ε2r from
the interpolant and the corresponding fj are included. Let PK+1 =

∑
j∈JK+2

qjx
j and let

PK+2 =
∑

j∈JK+4
tjx

j . Then the approximations of order ε2 and ε4 are

ẽ1(x, ε) =
∑

j∈JK

[
pj − fj + ε2qj

]
xj +

∑

j∈JK+2\JK

[
ε2qj − fj

]
xj , (26)

ẽ2(x, ε) =
∑

j∈JK

[
pj − fj + ε2qj + ε4tj

]
xj +

∑

j∈JK+2\JK

[
ε2qj + ε4tj − fj

]
xj (27)

+
∑

j∈JK+4\JK+2

[
ε4tj − fj

]
xj .

In the two following subsections, these approximations are tested against the actual com-
puted errors to see if they are accurate enough to describe the true behavior of the error.

7.2 The one dimensional case

For ease of discussion, consider a problem in one dimension. The exact error is exactly zero
at the node points. The approximate errors ẽr are not exactly zero at the node points,
but if the discarded fj are small enough, the difference is negligible. Assuming this, the
approximate error (26) is a polynomial of degree K + 2 = N + 1, which is zero at the N
node points and can be written

ẽ1(x, ε) ≈ (ax + b)
N∏

k=1

(x− xk) (28)
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= axK+2 + (b− a

N∑

k=1

xk)xK+1 + . . . + b(−1)N
N∑

k=1

xk.

By identifying the right hand side in (28) with expansion (26), we find that

a(ε) = ε2qK+2 − fK+2, (29)

b(ε) = ε2qK+1 − fK+1 + a(ε)
N∑

k=1

xk. (30)

The same approach for expansion (27) yields

ẽ2(x, ε) ≈ (ax3 + bx2 + cx + d)
N∏

k=1

(x− xk), where (31)

a(ε) = ε4tK+4 − fK+4, (32)

b(ε) = ε4tK+3 − fK+3 + a(ε)
N∑

k=1

xk, (33)

c(ε) = ε4tK+2 + ε2qK+2 − fK+2 + b(ε)
N∑

k=1

xk − a(ε)
2

∑

j 6=k

xjxk (34)

d(ε) = ε4tK+1 + ε2qK+1 − fK+1 (35)

+ c(ε)
N∑

k=1

xk − b(ε)
2

∑

j 6=k

xjxk +
a(ε)
6

∑

i 6=j 6=k, i 6=k

xixjxk

From equations (28) and (31) it is clear that the error approximations have two almost
independent parts. The first part is mainly determined by the choice of ε and the function
we are trying to approximate. The second part (the product of zeros) only depends on
the collocation points. If the points are uniformly distributed in the interval [a, b] and
h = (b− a)/(N − 1) is the distance between adjacent points, then we have the estimate

max
x∈[a,b]

N∏

k=1

(x− xk) < (N − 1)! hN =
(N − 1)!
(N − 1)N

≈
√

2π h1/2 e−1/h,

where Stirling’s formula for the factorial was used for the final approximation. This part
alone corresponds to a spectral rate of convergence. By choosing ε such that the coefficients
a and b, or a, b, c , and d are minimized, the error can be reduced even further. The more
rapid the decay of fj is, the smaller the optimal value of ε becomes, as will be illustrated in
more detail in an example. Note that if the data is polynomial of degree ≤ K, all fj with
|j| > K are zero, and the optimal value of the shape parameter is ε = 0, giving the exact
solution. Figures 1 and 2 show the exact and approximate errors in maximum norm for the
two functions

f1(x) =
65

65 + (x− 1/5)2
,

f2(x) = sin(x).
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The data points are unevenly distributed throughout the interval [−1, 1] and the error,

E(ε) = max
x∈[−1,1]

e(x, ε),

is evaluated using a fine uniform point distribution. The errors given by the approximations
ẽr agree very well with the exact errors. Accordingly, it is reasonable to use the approxi-
mations to explain the error curves. The order of the approximation needs to be increased
with N in order to get good agreement all the way up to the radius of convergence. This
is not unexpected, since for larger N , the error is smaller, and smaller terms become rela-
tively more significant. With the length of the interval being a = 2, we can not expect the
approximations to converge for ε > 1/2 in the case of MQ RBFs. For GA RBFs, even if the
radius of convergence is infinite, the number of terms that are needed for large values of ε
grows fast and we only show results for ε ≤ 1.
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Figure 1: The error in the computed solution (solid lines) for f1(x) for N = 2, 4, 6 and 8
points and the approximation ẽN/2 of the error (except for N = 2 to the right, where ẽN/2+1

is used) (dashed lines). The left part of the figure shows the result for MQ RBFs and the
right part corresponds to GA RBFs.

The ε-dependence in the approximate error curves comes from the coefficients a, b, . . . ,
but is somewhat influenced by the placement of the node points. For most of the error
curves there are clear optima. In order to see exactly where and how these optima arise, we
go through an example in detail.

Example 7.1 Consider a one-dimensional problem with N = 4 distinct points xj , j =
1, . . . , 4. The interpolating polynomial PK = P3 has degree 3. We can use {1, x, x2, x3} as
a basis, meaning that any moment σ(j) with j > 3 can be expressed in moments with j ≤ 3
using relation (12). As a first step, we compute the polynomials P4 and P5 expressed in the
coefficients of P3. In order to do this, we use the systems (15), but add extra equations for
the higher polynomial coefficients. The systems for J = 3 and J = 4 are

−




2a1 4a2

4a2 20a3

6a3 56a4

8a4 120a5




(
σ

(1)
1

σ
(3)
0

)
=




0
p3

q5

t7


 ,
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Figure 2: The error in the computed solution (solid lines) for f2(x) for N = 2, 4, 6 and 8
points and the approximation ẽN/2+1 of the error (except for N = 8 to the right, where
ẽN/2+2 is used) (dashed lines). The left part of the figure shows the result for MQ RBFs
and the right part corresponds to GA RBFs.




a0 a1 a2

a1 6a2 15a3

a2 15a3 70a4

a3 28a4 210a5







σ
(0)
2

σ
(2)
1

σ
(4)
0


 =




0
p2

q4

t6


 .

Together with the requirement that P4(xj) = 0, j = 1, . . . , 4, we can determine all of the
coefficients qj, j = 0, . . . , 5 using these equations. Similarly, P5(xj) = 0 together with the
systems for J = 5 and J = 6 below determines P5(x) completely.

−



2a1 4a2 6a3

4a2 20a3 56a4

6a3 56a4 252a5







σ
(1)
2

σ
(3)
1

σ
(5)
0


 =




p1

q3

t5







a0 a1 a2 a3

a1 6a2 15a3 28a4

a2 15a3 70a4 210a5







σ
(0)
3

σ
(2)
2

σ
(4)
1

σ
(6)
0


 =




p0

q2

t4




If we choose MQ as the RBF and {−1,− 1
2 , 1

3 , 1} as our data points, the resulting polynomials
are

P4(x) =
p3

144
(−288x5 − 42x4 + 337x3 + 41x2 − 49x + 1) +

p2

6
(−6x4 − x3 + 7x2 + x− 1).

P5(x)=
p3

20736
(
64800x7 + 15984x6 − 28944x5 − 16782x4

−44749x3 + 2059x2 + 8893x− 1261
)

+
p2

1728
(
1944x6 + 576x5 + 1596x4 + 19x3 − 4177x2 − 595x + 637

)

+
p1

144
(−90x5 − 21x4 + 104x3 + 22x2 − 14x− 1

)
+

p0

16
(
6x4 + x3 − 7x2 − x + 1

)
.
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Substituting the coefficients of P4 and P5 into the approximation (31) for e2(x, ε), we get
the following expressions for the coefficients in the error polynomial

a(ε) =
25
8

p3ε
4 − f7,

b(ε) =
(

1
4
p3 +

9
8
p2

)
ε4 − f6 +

1
6
f7,

c(ε) =
(

53
24

p3 +
7
48

p2 − 5
8
p1

)
ε4 − 2p3ε

2 − f5 +
1
6
f6 − 43

36
f7,

d(ε) =
(
−1261

3456
p3 +

637
288

p2 − 1
24

p1 +
3
8
p0

)
ε4 +

(
1
24

p3 − p2

)
ε2

− f4 +
1
6
f5 − 43

36
f6 +

49
216

f7.

If the coefficients in the Taylor expansion of the function f(x) decay rapidly, the function is
well approximated by the interpolating polynomial and pj ≈ fj. Therefore, it is reasonable
to assume that d(ε) will be the dominant coefficient in such a case, since it depends on
the lowest order pj and fj. This is true for the function f1(x), where furthermore f2j is
significantly larger than f2j+1. The coefficients a, b, c, and d are shown in the left part of
Figure 3. As expected, the largest coefficient is d(ε), which is approximately given by
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Figure 3: The coefficients a(ε) (with circles), b(ε) (dash-dot line), c(ε) (dashed line), and
d(ε) (solid line) in the error approximation (31) for the functions f1(x) (left) and f2(x)
(right) using MQ RBFs.

d(ε) ≈ 3
8
p0ε

4 − p2ε
2 − f4,

leading to the optimal ε-value

(ε∗)2 =
8
6

p2

p0
+

√(
8
6

p2

p0

)2

+
8
3

f4

p0
≈ 0.012 ⇒ ε∗ ≈ 0.11.
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A comparison with the computed errors in Figure 1 shows that this is exactly the optimal ε
for this problem. (The point set here is the same as for N = 4 in the figure.) If we use the
simpler approximation (28) with terms only up to ε2, the coefficients are

a(ε) = −2p3ε
2 − f5,

b(ε) =
(

1
24

p3 − p2

)
ε2 − f4 +

1
6
f5.

Here, b(ε) is the largest coefficient, leading to

(ε∗)2 ≈ −f4

p2
≈ 0.0156 ⇒ ε∗ ≈ 0.12,

which is also a good approximation of the optimal value for the shape parameter.
The Taylor expansion of the function f2 decays more slowly initially, and all even Taylor

coefficients are zero. The coefficients a, b, c, and d from the approximation (31) are shown
in the right part of Figure 3. For this function, c(ε) is the largest coefficient, since p0 ≈ 0.
The optimal values of the shape parameter given by the largest coefficient in ẽ2(x, ε) and
ẽ1(x, ε) respectively become

(ε∗)2 ≈ 24p3 ± 2
√

144p2
3 + 6f5(53p3 − 15p1)

53p3 − 15p1
≈ 0.0292 (and 0.294) ⇒ ε∗ ≈ 0.17,

(ε∗)2 ≈ −1
2

f5

p3
≈ 0.0265 ⇒ ε∗ ≈ 0.16.

Again, the approximate values are very close to the computed optimal value, which is about
0.16 as can be seen in Figure 2. If we instead use the expansion coefficients for the GA RBF
in all of the computations above for the function f2(x), we get a different optimum. The
simpler approximation yields

(ε∗)2 ≈ −f5

p3
≈ 0.0531 ⇒ ε∗ ≈ 0.23.

Comparing with the right part of Figure 2, this result is also very close to the computed
optimal value, which is approximately 0.25.

We can not give an exact formula for the optimal ε for an arbitrary problem. The optima
depend on the solution function, the RBF, the size of the point set, and to a lesser degree, the
distribution of the points. However, we can give some general properties of the ε-dependence
of the error for RBF interpolation of smooth functions (in one dimension)

• The optimal ε-value depends on the RBF. In our numerical experiments, we have
found that the optima for MQ, IM, and IQ RBFs are similar, whereas the GA RBF
typically has a larger optimal value.

• The ε-dependence of the error is well described by the coefficients in the error approx-
imations ẽr. These coefficients are polynomials of order r in ε2. Therefore, an error
curve which is well approximated by ẽr may have r local minima. Since r grows with
N , the number of local minima typically grows with N as for the function f2(x) in
Figure 2.
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• The optimal ε-value depends on the decay rate of the Taylor expansion of the function
under consideration. A function with a faster decay has a smaller optimal value. This
can be seen in the following way: A function with a rapidly decaying Taylor series is
close to its interpolating polynomial. Only a small correction to the limit interpolant
at ε = 0 is needed.

• Starting at a large ε-value, the error decreases rapidly as ε becomes smaller. The rate
of decrease is higher for larger N . From ε = 1 down to just before the optimal value,
we can confirm the result of [26] that the error curve behaves as C exp(c/

√
ε), where C

and c < 0 may depend on N , but not ε. After the optimal ε-value, the error increases
a little bit and levels out at the polynomial interpolation error (since the ε = 0 limit
gives the interpolating polynomial).

Note that the decay rate is not the only property of the Taylor expansion that has an
influence on the error. In the example above, for a function where fj and fj+2 have the
same sign, the optimal ε on the real axis is ε = 0 (which does not give the exact solution).
In these cases, the true optimum is actually on the imaginary axis, ε = iα. Normally, only
real values of the shape parameter are used in RBF interpolation, since non-singularity of
the coefficient matrix A in (2) cannot be guaranteed otherwise. However, with the Contour–
Padé algorithm [16] we can safely compute for whole regions in the complex ε-plane and
have actually observed this.

7.3 The two-dimensional case

In two space dimensions (or more) we do not get the simple factorization of the error
approximations into two parts that we had in one dimension. The error is still zero at all
node points, but there is no simple way to express this in general. However, if we consider
the approximations (26) and (27), we can instead see it in the following way: All coefficients
in the polynomial with |j| > K depend on ε and the function that is being approximated. By
an appropriate choice of the shape parameter, these can be made as small as possible. The
other coefficients with |j| ≤ K are determined by the condition e(xk, ε) = 0, k = 1, . . . , N .

In the same way as for the one-dimensional case, we can go through an example to see
exactly how the optimal ε-value depends on the highest order coefficients in ẽ1(x, ε) and
what the error curves look like.

Example 7.2 Consider an interpolation problem in two space dimensions with N = 6
points. We assume that the point set is chosen in such a way that the problem is unisolvent.
Then the limiting interpolant has degree K = 2. A suitable basis is {1, x, y, x2, xy, y2}. Us-
ing the systems (15) for J = 2 and J = 3 together with relation (12), we can determine
all the highest coefficients in P3 in terms of the limit interpolant P2. If we use MQ RBFs
and let the data points be x1 = (1/10, 4/5), x2 = (1/5, 1/5), x3 = (3/10, 1), x4 = (3/5, 1/2),
x5 = (4/5, 3/5), and x6 = (1, 1), the resulting polynomial is

P3(x, y)=p2,0(− 7
6x4 − 5

6x2y2 + 1
3y4 + 14731

8625 x3 + 1271
1150x2y + 3232

8625xy2 − 2899
2875y3)

+p1,1(− 3
2x3y − 3

2xy3 + 3492
2875x3 + 4031

1150x2y + 46821
11500xy2 + 12209

11500y3)
+p0,2(1

2x4 − 5
6x2y2 − 7

6y4 − 7097
8625x3 − 451

575x2y − 6943
17250xy2 + 5563

2875y3)
+p1,0(− 1

2x3 − 1
2xy2) + p0,1(− 1

2x2y − 1
2y3)

+c1x
2 + c2xy + c3y

2 + c4x + c5y + c6.
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The six remaining coefficients can be determined from P3(xk, yk) = 0, k = 1, . . . , N . We
can now write down the coefficients ej(ε) for all terms with |j| = K + 1 and |j| = K + 2 in
the approximate error ẽ1(x, ε),

e4,0 = ( − 7
6p2,0 + 1

3p0,2 )ε2 −f4,0,
e0,4 = ( 1

3p2,0 − 7
6p0,2 )ε2 −f0,4,

e2,2 = ( − 5
6p2,0 − 5

6p0,2 )ε2 −f2,2,
e3,1 = ( − 3

2p1,1 )ε2 −f3,1,
e1,3 = ( − 3

2p1,1 )ε2 −f1,3,
e3,0 = ( 14731

8625 p2,0 − 7097
8625p0,2 + 3492

2875p1,1 − 1
2p1,0 )ε2 −f3,0,

e0,3 = (− 2899
2875p2,0 + 5563

2875p0,2 + 12209
11500p1,1 − 1

2p0,1)ε2 −f0,3,
e2,1 = ( 1271

1150p2,0 − 451
575p0,2 + 4031

1150p1,1 − 1
2p0,1)ε2 −f2,1,

e1,2 = ( 3232
8625p2,0 − 6943

17250p0,2 + 46821
11500p1,1 − 1

2p1,0 )ε2 −f1,2.

The coefficients are plotted as functions of ε in the left part of Figure 4 for the function

f3(x) =
25

25 + (x− 1/5)2 + 2y2
.

For all the coefficients of the third order terms, the optimal ε is either at ε = 0 or on the
imaginary axis in the ε-plane. The fourth order terms have optima on the real axis given by
The approximate error e1(x, ε) for N = 6 is shown in Figure 4 together with the computed
errors for N = 6, 10, 15, and 21 points, corresponding to K = 2, 3, 4, and 5. The agreement
between the approximation and the computed error is excellent. The global minimum is a
compromise located at ε∗ ≈ 0.2.

0.01 0.1 0.5
10

−6

10
−4

10
−2

ε

| e
i,j

( 
ε 

) 
|

10
−2

10
−1

10
0

10
−6

10
−4

10
−2

10
0

ε

E
( 

ε 
)

Figure 4: The left part of the figure shows the coefficients ej(ε) for terms with |j| = 4
(solid lines) and |j| = 3 (dashed lines) in the approximate error ẽ1(x, ε). To the right, the
computed error (solid lines) for N = 6, 10, 15, and 21 points is displayed. The dashed line
shows the approximation ẽ1(x, ε) for N = 6.

The example shows that the situation is much more complicated in two (and more) space
dimensions. For each individual term, the best ε is governed by the decay rate of the Taylor
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expansion of the solution function, but many different terms contribute to the error and it
is hard to make them all small at the same time. Still, there is usually a best choice of
shape parameter. Exactly where the optimum is located depends on a compound function
of decay rates of the coefficients in the Taylor expansion and also, to a larger extent than in
1D, on the placement of the node points.

However, the general properties given for the one-dimensional case in the previous sub-
section hold also for two and more dimensions. As can be seen in the right part of Figure 4,
the error curves are very similar to those obtained for the one-dimensional problems.

7.4 The polynomial case

As mentioned previously in Section 7.1 and implicitly in Theorem 4.1, ε = 0 leads to the
exact solution if the given data is polynomial and of degree ≤ K. If the data has degree
K −Q, then the error is of order ε2bQ

2 c+2. This is illustrated in Figure 5 for the functions

f4(x) = 1 + x + x2

f5(x, y) = 1 + x− 2y + x2 − xy + 2y2

in one and two space dimensions respectively. For the one-dimensional problem, the number
of points used are N = 3, . . . , 10, corresponding with K = 2, . . . , 9. In the two-dimensional
case, N = 6, 10, 15, 21, 28, and 36 corresponding with K = 2, . . . , 7.
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Figure 5: The computed error for the functions f4(x) (left) and f5(x) (right) using MQ
RBFs and different numbers of points.

8 Conclusions

In this paper, we have studied RBF interpolation of smooth functions. We have focussed on
the limit of nearly flat RBFs and given explicit expressions for the form of the (multivariate)
interpolants in the limit region in terms of the shape parameter. In order for the limits to
have the given form, the RBF must fulfill certain criteria, but as far as we can determine,
these criteria hold for all of the standard RBFs in use.
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We have used the results for the limits to analyze how the interpolation error depends
on the shape parameter ε and we were able to explain why the error curve very often has
a global minimum for some small nonzero value of ε. We could also explain which factors
influence the optimal shape parameter value and in what way.
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