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Abstract

During the last decade, three main variations have been proposed for solving elliptic
PDEs by means of collocation with radial basis functions (RBFs). In this study, we
have implemented them for infinitely smooth RBFs, and then compared them across
the full range of values for the shape parameter of the RBFs. This was made possible
by a recently discovered numerical procedure that bypasses the ill-conditioning, which
has previously limited the range that could be used for this parameter. We find that
the best values for it often fall outside the range that was previously available. We have
also looked at piecewise smooth versus infinitely smooth RBFs, and found that for PDE
applications with smooth solutions, the infinitely smooth RBFs are preferable, mainly
because they lead to higher accuracy. In a comparison of RBF-based methods against
two standard techniques (a second-order finite difference method and a pseudospectral
method), the former gave a much superior accuracy.

Keywords Radial basis functions, RBF, Poisson’s equation, collocation

1 Introduction

The ideal numerical method for PDE problems should be high-order accurate, flexible with
respect to the geometry, computationally efficient, and easy to implement. The methods
that are commonly used, usually fulfill one or two of the criteria, but not all. Finite difference
methods can be made high-order accurate, but require a structured grid (or a collection of
structured grids). Spectral methods are even more accurate, but have severe restrictions
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on the geometry and, in the Fourier case, also require periodic boundary conditions. Finite
element methods are highly flexible, but it is hard to achieve high-order accuracy, and
both coding and mesh generation become increasingly difficult when the number of space
dimensions increases.

A fairly new approach to solving PDEs is through radial basis functions (RBFs). An
RBF depends only on the distance to a center point xj and is of the form φ(

∥∥x− xj∥∥). The
RBF may also have a shape parameter ε, in which case φ(r) is replaced with φ(r, ε). Some
of the most popular RBFs are given in Table 1.

Table 1: Some commonly used radial basis functions.
Piecewise smooth RBFs φ(r)
Piecewise polynomial (Rn) |r|n, n odd
Thin Plate Spline (TPSn) |r|n ln |r|, n even
Infinitely smooth RBFs φ(r, ε)

Multiquadric (MQ)
√

1 + (εr)2

Inverse multiquadric (IMQ) 1√
1+(εr)2

Inverse quadratic (IQ) 1
1+(εr)2

Gaussian (GS) e−(εr)2

A key feature of an RBF method is that it does not require a grid. The only geomet-
ric properties that are used in an RBF approximation are the pairwise distances between
points. Distances are easy to compute in any number of space dimensions, so working in
higher dimensions does not increase the difficulty. The method works with points scattered
throughout the domain of interest, and the RBF interpolant is a linear combination of RBFs
centered at the scattered points xj ,

s(x, ε) =
N∑
j=1

λj φ(
∥∥x− xj∥∥ , ε),

where the coefficients λj are usually determined by collocation with given discrete data, such
as function values or derivative information. When infinitely smooth RBFs are used, the
approximations feature spectral convergence as the points get denser. This has been proven
strictly only for some special cases [1, 2], although numerical evidence strongly suggests that
it is true in much more general settings. Furthermore, implementation of an RBF method is
straightforward. However, there are some remaining issues such as computational efficiency,
and stability if applied to time-dependent problems without viscosity.

For elliptic problems, there are three main categories of RBF based methods. The first
category only uses the RBFs to find a particular solution of the inhomogeneous PDE. Then
homogeneous fundamental solutions are added in such a way that the boundary conditions
are met [3]. We are going to focus on the second category, which consists of pure collocation
methods. In these, both the PDE and the boundary conditions are satisfied by collocation.
We are going to investigate three slightly differing variations that were developed during
the last decade [4, 5, 6, 7, 8]. We will see that the accuracy of the solutions is a function of
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the shape parameter, and that very small values of ε often give the best results. A problem
that has been common to these RBF methods is the severe ill-conditioning that occur for
small values of ε. This has, until recently, made it impossible to use more than a limited
range of ε-values. In this paper, we are going to use a novel numerical approach [9] that
largely overcomes the numerical ill-conditioning as ε → 0. We are going to compare the
three collocation methods for solving Poisson’s equation across the full range [0,∞] of the
parameter ε.

A third category of collocation methods was recently proposed [10]. Instead of intro-
ducing an RBF expansion with unknown coefficients for the solution to the PDE, (which is
then differentiated and collocated), the inhomogeneous term is interpolated by RBFs, and
then integrated and collocated.

The following sections of this paper are structured as follows: In Section 2, we describe
the test problem. Section 3, briefly describes the three collocation methods from the second
category above. The new Cauchy integral approach that overcomes the ill-conditioning is
summarized very briefly in Section 4. Section 5 contains a variety of numerical comparisons.
While the performance of the three different collocation methods proved comparable, we
observe significant differences in accuracy between different types of RBFs, and different
values of ε. We also compare the accuracy of the RBF method against that of a second-
order finite difference method and that of a Fourier–Chebyshev pseudospectral method.
Section 6 contains some concluding remarks.

2 The elliptic model problem

Let Ω ⊂ R
d be a d-dimensional domain and let ∂Ω be the boundary of the domain. We

want to solve the following Poisson problem:

u(x) = g(x) on ∂Ω,
∆u(x) = f(x) in Ω.

For collocation, we use node points distributed both along the boundary (xj , j = 1, . . . , NB),
and over the interior (xj , j = NB + 1, . . . , NB +NI = N).

In the experiments we use cases where the solution u(x) is known and normalized so that
maxΩ |u(x)| = 1. Let the RBF interpolant be denoted by s(x, ε). We measure the error,
(which depends on ε), in max norm as

E(ε) = max
Ω
|s(x, ε)− u(x)|.

3 Three collocation methods

In this section, the three collocation methods for elliptic PDEs that we are comparing are
presented in the chronological order of their introductions. Note that the basic solution
approach is not limited to elliptic problems. Applications to other types of problems are
found, e.g., in [5], [11], [12].
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Method 1. Straight collocation

A straightforward RBF-based collocation method for elliptic problems was introduced by
Kansa, 1990 [4], [5]. Let the RBF approximation to the solution u(x) be

s(x, ε) =
N∑
j=1

λj φ(
∥∥x− xj∥∥ , ε).

Collocation with the boundary data at the boundary points and with the PDE at the interior
points leads to the equations

s(xi, ε) ≡
N∑
j=1

λj φ(
∥∥xi − xj∥∥ , ε) = g(xi), i = 1, . . . , NB,

∆s(xi, ε) ≡
N∑
j=1

λj ∆φ(
∥∥xi − xj∥∥ , ε) = f(xi), i = NB + 1, . . . , N.

This corresponds to a system of equations with an unsymmetric coefficient matrix, schemat-
ically structured as  φ

∆φ

 λ

 =

 g

f

 .
It has been shown (by example) that, in rare cases, the coefficient matrix may become
singular [13]. However, practical experience shows that in general the method works well [14].

Method 2. Symmetric collocation

A variation that leads to a symmetric coefficient matrix was derived by Wu, 1992 [6]; see
also Fasshauer, 1996 [7]. It has been shown for this method that the symmetry assures a
non-singular system of equations [6].

The idea is to modify the basis functions in the interpolant by using the operator in the
partial differential equation that is being studied. For each node point, we look at what the
operator is and then apply it to the basis function centered in that point. Here, that means
that the basis function is just φ for boundary points, and ∆φ for interior points, leading to

s(x, ε) =
NB∑
j=1

λj φ(
∥∥x− xj∥∥ , ε) +

N∑
j=NB+1

λj ∆φ(
∥∥x− xj∥∥ , ε).

Collocation at boundary and interior points yields the equations

s(xi, ε) ≡
NB∑
j=1

λj φ(
∥∥xi − xj∥∥ , ε) +

∑N
j=NB+1 λj ∆φ(

∥∥xi − xj∥∥ , ε)
= g(xi), i = 1, . . . , NB,

∆s(xi, ε) ≡
NB∑
j=1

λj ∆φ(
∥∥xi − xj∥∥ , ε) +

∑N
j=NB+1 λj ∆2φ(

∥∥xi − xj∥∥ , ε)
= f(xi), i = NB + 1, . . . , N.
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The block structure of the system of equations becomes φ ∆φ

∆φ ∆2φ

 λ

 =

 g

f

 .
Method 3. Direct collocation, using the PDE also on the boundary

As for most interpolation methods, the errors in RBF approximations tend to be largest
near boundaries [15]. It therefore makes sense to impose more information there. Fedoseyev,
Friedman and Kansa (2000) [8] formulated a method that collocates both with the boundary
condition and the PDE at the boundary points.

In order to have a matching number of unknowns and equations, additional expansion
functions are added. The centers of these are placed outside the boundary. Let the center
points be denoted by zj , where

zj =
{
xj , j = 1, . . . , N,
a point outside Ω, j = N + 1, . . . , N +NB.

The RBF interpolant now takes the form

s(x, ε) =
N+NB∑
j=1

λj φ(
∥∥x− zj∥∥ , ε).

The collocation equations are very similar to those of Method 1. The difference lies in the
extra collocation at the boundary and the added centers.

s(xi, ε) ≡
N+NB∑
j=1

λj φ(
∥∥xi − zj∥∥ , ε) = g(xi), i = 1, . . . , NB,

∆s(xi, ε) ≡
N+NB∑
j=1

λj ∆φ(
∥∥xi − zj∥∥ , ε) = f(xi), i = 1, . . . , N.

The structure of the system of equations is the same as for Method 1, but the sizes of the
blocks in the matrix are different. φ

∆φ

 λ

 =

 g

f


Some notes on the three methods

1. In the original versions of Methods 1 and 3, the ε parameter is varied with the center
location. This can improve the condition number of the coefficient matrix and it also
allows for adaptivity in the method. We have chosen to use a fixed ε for all the methods
in order to simplify comparison.
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2. For pure interpolation, adding a polynomial term of a certain degree to the RBF
interpolant, and introducing corresponding constraints on the expansion coefficients
will in many cases lead to a guaranteed non-singular coefficient matrix [16]. However,
for the elliptic problem, the non-singularity cannot be guaranteed when unsymmetric
collocation is employed, even if the correct polynomial term is added [13]. We have
found that such polynomial terms make little or no difference in the resulting accuracy,
so we have not considered them further.

3. For Method 3, it is not necessary to put the extra centers outside Ω, but it does not
seem to be especially beneficial to put them inside.

4 A Cauchy integral technique for stable computation
at all values of the shape parameter ε

Computing the interpolant for large ε is usually not a problem, since the matrix then has a
reasonable condition number. However, for ε decreasing towards zero, the condition number
grows rapidly. Recently, Fornberg and Wright developed a method to compute the RBF
interpolant for small values of ε [9].

Very briefly, the main ideas are the following: First note that the interpolant s(x, ε), for
any fixed x, is an analytical function of ε with, in general, ε = 0 as a removable singularity.
We can compute s(x, ε) around a circle in the complex ε-plane, where the radius is chosen
large enough that the standard method is stable. Then we take the inverse Fourier transform
of the values around the circle. Assuming that the function s(x, ε) has no poles inside the
circle, this results in the Taylor coefficients in an expansion s(x, ε) = s0(x) + ε2s2(x) +
ε4s4(x) + . . .. Using this expansion, the interpolant can be computed for any given value of
ε inside the circle. If the function s(x, ε) has poles inside the circle, some extra steps are
called for in the algorithm. For the complete description, see [9].

5 Numerical results

For the numerical experiments, the computational domain Ω is the unit disk. The following
normalized test functions are chosen so that they have quite different optimal values of ε.

u1 =
65

65 + (x− 0.2)2 + (y + 0.1)2
,

u2 =
25

25 + (x− 0.2)2 + 2y2
,

u3 = exp
(
−
(

(x− 0.1)2 + 0.5y2
))

,

u4 =
exp

(
(x− 0.1)2 + 0.5y2

)
exp(1.21)

,

u5 = sin
(
π
(
x2 + y2

))
,

u6 =
arctan (2 (x+ 3y − 1))
arctan

(
2
(√

10 + 1
)) .
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The right hand side functions f and g are computed from the known solution u. All computa-
tions are performed using double precision (64 bit) arithmetic. When the Cauchy technique
is used, the interpolant is evaluated at 256 or 512 points around the circle. However, due to
the fourfold symmetry, we only need to perform the computation at 65 or 129 points.

5.1 A comparison of a straightforward and the new implementation

In our first experiment, we compare, for all three methods, the results from using a standard
implementation and from using the Cauchy integral method for small values of ε. Figure 1
shows the node distributions used. The distribution for Methods 1 and 2 has 50 node points
and centers. There are two distributions for Method 3. The first one makes the size of the
coefficient matrix the same as for the other two methods, and the second one has the same
number of collocation points (but a larger matrix size). It should be noted that the results
are not very sensitive to the choice of node distribution and that the ones we use are not
optimized in any way.

Figure 2 shows the results of the computations for the function u1 using the MQ radial
basis function. Considering only the standard implementation, Method 2 seems to be the
most accurate by almost two orders of magnitude. The reason for this is that the conditioning
of the system for Method 2 is better, so that we can accurately compute the solution for
smaller values of ε. The Cauchy version of the implementation suffers no numerical ill-
conditioning, and the results that are shown are accurate at all values of ε. A theoretical
study of the errors for small values of the shape parameter will be included in [17]. Some
results for approximations in the limit ε→ 0 are also given in [18]. We see a major change
in the trend of the error around ε = 0.1. It is by coincidence only that the change in error
trend in this example occurs around the same time as the standard implementation fails.
The Cauchy results show that the best accuracy is obtained for values of ε in the interval
0.11–0.15, where the standard implementation fails to produce reliable results. Furthermore
it shows, that around the optimum, there is very little difference between Methods 1 and 2.
Method 3 performs slightly better when the same number of collocation points are used,
but that is not a fair comparison since the amount of work is larger with the larger matrix
size. Method 3 with the same matrix size performs worse than the other two method in this
case.

5.2 A more thorough comparison of the three methods

Here we are going to use the Cauchy version of the implementation. We use the same node
distributions, the MQ RBF, and all the test functions. The optimal ε and errors are shown
in Table 2. Again, Methods 1 and 2 give very similar results, with Method 2 marginally
better. Method 3 is in most cases worse with the fair comparison, but slightly better with
the same number of collocation points.

5.3 A comparison between different basis functions

So far, all experiments have been performed with the infinitely smooth MQ RBF. Next, we
will try to see if the interrelationship between the methods change if we use piecewise smooth
(shape parameter free) basis functions, and we will also compare MQ with other infinitely
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Figure 1: The distribution of nodes (x) and centers (o) for Methods 1 and 2 (top left), and
Method 3 (top right), with a total of 50 centers. The distribution of nodes and centers for
Method 3 with a total of 50 nodes (bottom left). The points at which the error is evaluated
(bottom right).

smooth RBFs. This time we will only include results for Method 3 that corresponds to
equally sized matrices.

For piecewise polynomial (spline) interpolation, accuracy can be severely degraded close
to the boundary unless a suitable boundary condition is imposed. In [15] the counterpart
for RBFs of the Not–a–Knot (NaK) condition in spline interpolation is introduced. This
condition is applied by moving the centers that are closest to the boundary, but not on the
boundary, to the outside of the domain Ω. (Note that only the centers, not the node points,
are moved.) Since the piecewise smooth RBFs are infinitely smooth everywhere except at
the center point, this enforces smoothness of the interpolant in the region just inside the
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Figure 2: The errors with the standard implementation (left) and the Cauchy implementa-
tion (right) using the test function u1. Results for Method 1 (solid line), Method 2 (dashed
line), and Method 3 (dash-dot lines).

Table 2: Optimal ε and errors for the three methods for different test functions. The bullets
show the best result of the three with the same matrix size. The second column for Method 3
shows the result with the same number of collocation points for comparison.

Method 1 Method 2 Method 3
ε? E(ε?) ε? E(ε?) ε? E(ε?) ε? E(ε?)

u1 0.12 5.0e−12 0.12 •4.7e−12 0.15 1.0e−9 0.13 1.2e−12
u2 0.24 6.4e−9 0.23 •4.6e−9 0.25 5.3e−8 0.27 8.5e−9
u3 0.37 9.7e−6 0.36 •8.3e−6 0.40 2.2e−5 0.30 3.7e−7
u4 0 5.5e−4 0 •5.0e−4 0.31 1.7e−2 0 9.8e−5
u5 0 •2.8e−2 0 3.3e−2 0.79 2.2e−1 0.41 1.9e−2
u6 0.89 2.3e−1 0.79 2.3e−1 3.20 •1.7e−1 1.77 2.6e−1

boundary. Fornberg et al. [15] also went one step further to the “super NaK” condition,
where the centers on the boundary as well as the first layer of centers inside the boundary
are moved out of the domain. Here, we use an even more general version of the condition,
where any number of centers can be moved outside (for examples, see Figure 3).

For the numerical experiments, we first solve the problem using the distributions from
Figure 1. Then we modify the distributions by moving out centers and solve the problem
again. For each combination of method, RBF, and test function, we pick the distribution
that gives the best result. As a rule of thumb, the number of centers that are moved out
needs to increase with the power of |r| in the RBF. Table 3 shows the numerical results for
each method. The first column is for the standard version and the second column shows the
result when the generalized NaK boundary condition is used. Note that using the boundary
condition with Method 2 actually defeats the purpose of the method, which was to get a
symmetric matrix. Still, it improves the result, so we include the experiment anyway. Also
note that Method 2 uses higher derivatives of the basis function. Therefore, R3 and TPS4

cannot be used with it. Basis functions with even lower powers of |r|, such as TPS2 and R1,
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Table 3: For each method, the first column shows the error for the standard version and
the second column shows the error when the generalized Not–a–Knot boundary condition
is added. The bullets show the best result in each row. For the definition of the different
RBFs, see Table 1.

Method 1 Method 2 Method 3
φ u1

R3 1.8e−2 5.5e−4 − − 2.5e−3 • 1.4e−4
R5 2.1e−2 • 7.0e−5 4.0e−2 9.3e−5 1.4e−3 1.6e−4
R7 6.3e−2 1.6e−4 7.5e−2 • 5.0e−5 4.5e−3 1.6e−4
TPS4 6.7e−2 6.6e−5 − − 4.5e−3 • 5.7e−5
TPS6 1.8e−1 • 5.4e−5 4.5e−1 5.7e−5 1.0e−2 2.4e−4
φ u3

R3 2.8e−2 • 6.9e−3 − − 1.3e−2 1.3e−2
R5 2.6e−2 1.7e−3 4.8e−2 3.5e−3 3.0e−3 • 1.4e−3
R7 7.0e−2 • 5.2e−4 8.4e−2 1.1e−3 5.6e−3 1.6e−3
TPS4 7.0e−2 3.4e−3 − − 7.8e−3 • 2.7e−3
TPS6 1.8e−1 • 9.0e−4 4.8e−1 3.6e−3 1.1e−2 2.4e−3

can not be used with any of the methods.
The table clearly shows that Method 3 improves the accuracy for piecewise continuous

RBFs, when no boundary enhancement is used. Adding the generalized NaK condition to
any of the three methods gives a significant improvement. However, with the boundary
enhancement, none of the methods are significantly better than the others. Also, there are
no big differences between the different basis functions. With larger numbers of node points,
we would expect to see improvements as the degree of the RBF is increased to a certain
extent. When the degree gets too high, the beneficial effect is counteracted by increasing
boundary errors.

An example of what the node distributions looks like with the generalized NaK condition
is shown in Figure 3. For these problems, where the exact solutions are infinitely smooth,
the best distributions are when all or almost all centers are moved to the outside to increase
the smoothness of the interpolant. The optimal choice of distribution depends both on the
solution and the basis function.

This is in sharp contrast to the case of infinitely smooth RBFs, where extra boundary
conditions have little or no effect on the minimum value of the error, and there is little to
be gained by moving the centers around.

Figure 4 shows how MQ, IMQ, IQ, and GS RBFs perform compared with each other
using Method 2 and the node distribution from Figure 1. The best result for a piecewise
smooth RBF is also included.

For very smooth functions (like u1), the infinitely smooth RBFs very clearly outperform
piecewise smooth ones (as to be expected due to their spectral rather than algebraic accu-
racy). For functions with more local variations (like u3), this will again be the case as the
resolution is increased but, when the sampling is relatively coarse, all the methods become
more similar in accuracy. In all cases, the difference in accuracy between the four smooth
RBFs methods is seen to be rather minor.
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Figure 3: An optimized Not–a–Knot node distribution for Method 1 and φ = |r|5 for test
functions u1 (left) and u3 (right).
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Figure 4: The errors for u1 (left) and u3 (right) using MQ (solid line), IMQ (dotted line),
IQ (dashed line), and GS (dash-dot line). The best result for a piecewise smooth RBF is
included for comparison.

5.4 A comparison with standard methods

With the unit disk as the computational domain, many standard numerical methods can
be applied. We next show a comparison with a second-order finite difference method and
a Fourier–Chebyshev pseudospectral method. For the pseudospectral method we use the
procedure described in [19, Chapter 11]. For the comparison, we require this time that
all methods use the same number of boundary, as well as interior, node points (16 and 32
respectively). The node distributions are shown in Figure 5.

The computational costs for the methods are of course different, even though the num-
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Figure 5: The distributions for the second order finite difference, pseudospectral, and RBF
methods. All have 16 points on the boundary and 32 in the interior.

ber of nodes are the same. However, our main concern here is to find out what level of
accuracy we can expect to obtain with an RBF method. For a problem on the unit disk, the
pseudospectral approach would likely be the most efficient, but for an irregular geometry,
only the RBF method is a viable alternative. The computational efficiency issue, and ways
of dealing with large point sets have been investigated by other authors, see e.g., [20].

The results from the computations are shown in Figure 6. For both test functions, the
RBF method is superior to the standard methods with respect to accuracy, no matter which
smooth RBF is used. A great advantage with the RBF method is the fact that node points
can be placed anywhere. Accordingly, we can use a fairly uniform distribution of the points
over the domain, whereas for the standard methods, there has to be a certain amount of
clustering.

6 Concluding remarks

By using the new Cauchy integral method we were able to explore the whole range of the
shape parameter ε for infinitely smooth RBFs applied to elliptic PDEs. We have found that,
in many cases, the most accurate results are achieved for values of ε that are inaccessible
to the standard method of computing RBF approximations. We also note that the range
of ε that can be reached with the standard method decreases when the number of node
points increases (because this requires the solution of systems of equations with increasingly
ill-conditioned coefficient matrices).

In this study, we have compared three different RBF methods from the literature and used
them both with infinitely smooth and with piecewise smooth RBFs. For the infinitely smooth
RBFs, Method 2 (symmetric collocation) is marginally better than Method 1 (straight col-
location), whereas Method 3 (extra boundary collocation) usually is less effective.

The situation is the opposite for piecewise smooth RBFs. In that context, Method 3 is
clearly better than Methods 1 and 2. However, when introducing the generalized Not–a–
Knot boundary enhancement, all three methods are improved and perform very similarly.
Method 2 is the least effective of the three with the piecewise smooth RBFs, because it
requires more regularity from the RBFs, and the symmetry (which is the advantage of the



Radial Basis Functions for Elliptic PDEs 13

10
−3

10
−2

10
−1

10
0

10
1

10
−10

10
−5

10
0

ε

E
(ε

)

FD2    6.3⋅10−5

PS     6.3⋅10−7

RBF   2.3⋅10−12

10
−3

10
−2

10
−1

10
0

10
110

−6

10
−4

10
−2

10
0

ε

E
(ε

)

FD2    4.3⋅10−2

PS     1.3⋅10−2

RBF    4.7⋅10−6

Figure 6: The errors as a function of ε using Method 2 with MQ (solid line), IQ (dashed
line), and GS (dash-dot line) RBFs for test functions u1 (left) and u3 (right). The errors
for the standard second-order finite difference method (FD2) and the Fourier–Chebyshev
pseudospectral (PS) method are also included.

method) is destroyed when the Not–a–Knot condition is introduced.
For the type of PDE application that we have studied here, with smooth solutions, the

infinitely smooth RBFs are preferable to the piecewise smooth ones. This is not only because
they lead to significantly more accurate solutions, but also because they eliminate the need
to optimize the node distribution. Of course there is the question of which ε to choose, but
that is more of a possibility for improvement than an obstacle. While some specific value
gives the best performance, a wide range of low ε-values give excellent accuracy.

When comparing the RBF method with standard methods (FD2 and PS) for a case
where the geometry is simple enough to allow the latter to be implemented effectively, the
RBF method still performed significantly better. This can be ascribed to the flexibility of
the RBF methods, which all allow nodes to be distributed for a fairly uniform coverage, (in
any geometry) and, of course, to their spectral accuracy.
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