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EIGENSTUFF IN MATLAB

1. Introduction

Given a matrix A, we define the eigenvalues and eigenvectors of A by the following relation:

Av = λv

In words, we need A times the eigenvector to return the eigenvector multiplied by its associated
eigenvalue. Note that v is not unique. That is, we can multiply it by any constant and it is still an
eigenvector.

2. Finding Eigenvalues

To find the eigenvalues of A, consider

Av = λv ⇐⇒ (A− λI)v = 0

Recall that this homogeneous system has the unique solution if and only if |A − λI| 6= 0. In this
case, the only solution is v = 0. To get something interesting we seek

|A− λI| = 0

This gives a polynomial in terms of λ, which we call the characteristic polynomial. The roots of
this polynomial are the eigenvalues of A. Lets find the eigenvalues of

A =

 1 2 −1
1 0 1
4 −4 5


The characteristic equation for A is

p(λ) = λ3 − 6λ2 + 11λ− 6

and we would like to find its roots. The first step is to set up a function for this characteristic
polynomial. We can write it as an anonymous function:

char_eq = @(x) x^3 - 6*x^2 + 11*x - 6;

To find the roots of this equation, we use the fzero command. Type help fzero to see how to
use it. In our case, we can type:

eigval1=fzero(@(x) ch_eq(x),4)

where the @(x) tells fzero what variable our function is in terms of and 4 is our guess as to where
the root is. To get the other eigenvalues, use the following snippets:

eigval2=fzero(@(x) ch_eq(x),2.5)

eigval3=fzero(@(x) ch_eq(x),0.5)
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3. Finding Eigenvectors

Each one of our eigenvalues has an eigenvector associated with it. To find the eigenvector, we
solve the system |A− λI| = 0. Type

A=[1,2,-1;1,0,1;4,-4,5]

B=A-eigval1*eye(3);

rref(B)

We see from the rref of B that the eigenvector associated with eigenvalue, eigval1 is v1 =
c[−1 1 4]T , where c is an arbitrary constant. We can either choose a c that makes the length
of v1 be 1, or we can choose a c that makes the entries of v1 not have fractions.

4. Finding Eigenvalues Quickly

That was fun, and we recalled how to use the command, fzero. However, it took a while and
we had to find the characteristic equation by hand. A much easier way of finding the eigenvalues
of a matrix is the eig command. Try typing

eigenvalues = eig(A)

5. Finding Eigenvectors Quickly

To find the eigenvalues and eigenvectors all at once, type

[V D] = eig(A)

V is a matrix, the columns of which are the eigenvectors associated with D, the diagonal matrix
where each element of the diagonal is an eigenvalue of A. The eigenvector in column i of V is
associated with the eigenvalue in column i of D. The eigenvectors we see have been normalized to
have length 1, potentially making them ugly. To have Matlab not do this, try

[V D] = eig(A,’nobalance’)

6. Homework #8

If a matrix A has dimension n×n and has n linearly independent eigenvectors, it is diagonalizable.
This means there exists a matrix P such that P−1AP = D, where D is a diagonal matrix, and the
diagonal is made up of the eigenvalues of A. P is constructed by taking the eigenvectors of A and
using them as the columns of P . Your task is to write a program (function) that does the following

• Finds the eigenvectors of an input matrix A
• Checks if the eigenvectors are linearly independent (think determinant)

– if they are not linearly depended, exit the program & display error
• Displays P , P−1 and D (if possible)
• Shows that PDP−1 = A

Show that your program works with a 3×3 matrix A.

Interesting Fact: Even if a matrix is not diagonalizable, we can get pretty close. Every ma-
trix has something called a Jordan canonical form. For a diagonalizable matrix, this is just the
diagonal form, but if we have insufficient eigenvectors, there will be the number 1 in the upper di-
agonal above the deficient eigenvalues on the diagonal. We construct P with something called the
generalized eigenvectors. For more information, type help jordan. This is an extremely important
theorem of linear algebra!
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