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INTRODUCTION

The study of dynamical processes in networked systems is one
of the central problems in complexity science.1,2 Even simple dynam-
ical systems, when connected with each other, can produce complex
collective behavior. Examples include synchronization in coupled
oscillator networks and spreading of opinions, information, and
disease in social networks. Most studies of dynamical systems on
networks assume that the interactions between these systems can
be described as a collection of pairwise interactions, described by
a network made of nodes and links.3 This framework has been very
fruitful, yielding important insights into the effect of the network
structure on epidemic spreading,4,5 synchronization,5 percolation,3

and many other dynamical phenomena.
While the assumption that interactions between dynami-

cal systems occur in pairs is often valid, there are many situa-
tions where interactions between more than two systems occur
simultaneously in a way that cannot be reduced to multiple pair
interactions. Examples include social dynamics,6,7 interactions in
ecological systems,8–10 neuroscience,11 and coupled oscillators.12,13

Accordingly, there has been a focused effort by the complex sys-
tems community to ascertain how these types of interactions,
called “higher-order interactions,” modify the collective behavior
of networked dynamical systems. For example, when higher-order
interactions are included in the prototypical susceptible-infected-
susceptible (SIS) model of epidemic spreading, the dynamics are
fundamentally modified, admitting bistable solutions, explosive
transitions, and hysteresis.14,15 Similarly, with higher-order inter-
actions, the Kuramoto model of phase oscillator synchronization
shows a much richer dynamical landscape than without them.16,17

The effects of higher-order interactions on other coupled dynamical
systems are summarized, for example, in Refs. 18–21. We empha-
size, however, that while the role of higher-order interactions has
been fully embraced by the community only recently, there have
been various pioneering works extending back many years (e.g.,
Refs. 22–26).

As this research direction has matured, different thrusts have
emerged. One thrust is to find how the presence of higher-order
interactions can modify the dynamics of systems that have been
well-studied in the context of pairwise interactions, such as the
Kuramoto model of synchronization, epidemic models, or diffu-
sion models. Another direction is to study novel dynamical sys-
tems defined in terms of higher-order interactions (e.g., Refs. 27
and 28). A third thrust is to formalize the theoretical bases of
dynamics with higher-order interactions and to develop generative
models and quantitative descriptions of the structure of higher-
order interactions. The “Dynamics on Networks with Higher-Order
Interactions” Focus Issue in Chaos presents key developments in
all these areas and gives an overview of this rapidly evolving
field.

THE “DYNAMICS ON NETWORKS WITH
HIGHER-ORDER INTERACTIONS” FOCUS ISSUE

Below we summarize the contributions of the papers in the
“Dynamics on Networks with Higher-Order Interactions” Focus
Issue in Chaos. For convenience, we have tried to organize the papers
in distinct categories, even though some papers do not fall neatly
into only one.
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Synchronization

Complex networks are one of the fundamental topics in cur-
rent research to describe many real phenomena in biology, physics,
and engineering sciences. When studying complex dynamical net-
works where the nodes represent dynamical systems, one of the most
significant phenomena is the emergence of collective states like syn-
chronization. Synchronization is the coherent dynamics that emerge
in coupled systems. Previously, different types of synchronization
states were observed using different kinds of network topologies
that can be static29 or time-varying30 in nature. In recent stud-
ies, it has been shown that including higher-order interactions is
necessary to model many real-world phenomena.18–20 In the last
few decades, many studies on synchronization of identical sys-
tems have been implemented using pairwise interaction networks
and analytically studied using the master stability function (MSF)
approach.31 Thus, one approach to analytically study synchroniza-
tion in systems with higher-order interactions involves developing
an extended version of the MSF.32 Moreover, the study of synchro-
nization in time-varying higher-order networks33 is also at an early
stage and can be tackled similarly. We refer the reader to review
articles,19,20 where many different properties of higher-order inter-
actions are discussed together with collective phenomena, including
synchronization, chimera states,34 contagion dynamics, etc.

The emergence of synchronization of coupled phase oscillators
on hypergraphs is an interesting topic. In this connection, Adhikari
et al.35 have developed a general formalism to study synchronization
of phase oscillators on hypergraphs. To illustrate it, they gener-
ated hypergraphs through two different mechanisms: the former
generates a random hypergraph where both pairwise and higher-
order interactions are constructed randomly, while the other one
generates a hypergraph with correlated links and triangles, and the
number of pairwise and triadic interactions is correlated to each
other. The authors show that for both types of hypergraphs, an
abrupt transition to synchrony with associated hysteresis emerges
under sufficiently strong triadic coupling. For the correlated hyper-
graph, the onset of abrupt synchronization and bistability depends
on the moments of the degree distribution. Furthermore, the tri-
adic coupling only affects the emergence of bistability but not the
commencement of synchrony. By reducing the system of differential
equations in terms of the structural characteristics of the hyper-
graph, they derive analytically the prerequisites for the onset of
abrupt synchronization and bistability.

The construction and emerging synchronization phenomena
in multiplex hypergraphs is another interesting topic. In mul-
tiplex networks, two types of interactions are present, namely,
intralayer interaction within network layers and interlayer inter-
actions between layers. In Ref. 36 the authors construct multiplex
hypergraph networks in which intralayer interactions are considered
to be higher-order, constructed by hypergraphs, and the interlayer
connections are pairwise interaction between nodes of different lay-
ers. As in previous studies of synchronization in multiplex network
structures, only pairwise interactions between the units in the lay-
ers are considered. In this network, two types of synchronization
phenomena in the multiplex hypergraph emerge: intralayer and
interlayer synchronization. Compared to the pairwise multiplex net-
works, where the intralayer connections are described by graphs,

Anwar and Ghosh36 unveil a significant improvement in intralayer
synchrony for multiplex hypergraphs. Nevertheless, the underlying
behavior of interlayer synchronization remains almost the same in
both scenarios. Furthermore, the enhancement in intralayer syn-
chrony is analytically supported by calculating the spectral gap of
Laplacian matrices corresponding to the multiplex hypergraph and
pairwise multiplex network. They also illustrated that the inter-
layer synchrony in multiplex hypergraphs is more robust to random
removal of interlayer links when compared with pairwise multiplex
networks.

In another study, Parastesh et al.37 investigate the effect of
higher-order interactions, particularly triadic interactions, on the
emergence of complete synchronization in globally coupled Hind-
marsh–Rose neurons. Assuming dyadic interactions to be medi-
ated through electrical synapses, the occurrence of synchrony is
also explored for two different instances of three-body interactions
mediated through linear diffusive and nonlinear chemical synaptic
couplings. Their results show a sufficient enhancement in synchrony
for both cases as compared to the solely pairwise scenario. Fur-
thermore, to quantify the enhancement in synchrony due to the
inclusion of three-body interactions, the authors introduced a syn-
chronization cost measure based on coupling strengths and inter-
actions. It shows that in both scenarios, the cost of synchronization
is decreased when compared with the pairwise situation. However,
the cost of synchronization is higher for nonlinear synaptic coupling
than for linear diffusive coupling.

In another work, Skardal et al.38 have investigated the com-
bined effect of higher-order interactions and community structure
in ensembles of phase oscillators. The combination of these two
induces several novel states that are unsupported by either of them
alone. In addition to finding expected states such as when both
communities are synchronized, both are desynchronized, and one
is synchronized while the other is in a desynchronized state, the
authors also find two new states: an antiphase synchronized state
where both communities are in the synchronized state but with
opposite phases; and a skew-phase synchronized state where both
communities are synchronized but oscillate with a nonzero phase
difference that depends on the strength of intercommunity cou-
pling. The authors support their observations by deriving the low
dimensional dynamics and analyzing the bifurcation of the system
using perturbation theory and stability analysis.

In Ref. 39, the authors investigate a higher-order interaction
model on the sphere. Specifically, a system with N interaction parti-
cles is considered on the unit sphere in d-dimensional space. Then
the Kuramoto model is written as a gradient flow of a suitably
defined potential. In this system, the synchronization state is also
controlled by higher-order interactions. Multistability is a general
phenomenon in higher-order interaction networks, but in the pro-
posed model on the sphere, the multistability can be controlled by
deleting the signature factor in the connectivity coefficient.

Finally, Ziegler et al.40 develop and study a model for consen-
sus over simplicial complexes based on the Hodge Laplacian matrix
(which generalizes the graph Laplacian). Linear models for consen-
sus dynamics are popular models for synchronization in the context
of collective decision making and decentralized machine learning
and also arise for nonlinear systems if one examines linearized,
perturbative states near a synchronization manifold. Their work
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introduces a balanced Hodge Laplacian in which the strength of
higher- and lower-order interactions can be tuned and optimized
to maximize the convergence rate. Their work also reveals that the
harmonic subspace of a Hodge Laplacian, which is determined by
the homology of a simplicial complex, acts as a low-dimensional
attractor for the collective dynamics.

Contagion, spreading, and diffusion processes

Understanding how things spread across networks is
paramount to numerous endeavors including the study of epi-
demics, social contagions, cascading failures and blackouts, neu-
ronal avalanches, and much more.41,42 As such, there has been
considerable work to investigate spreading processes in generalized
settings including multilayer and temporal networks. Developing
models and theory for spreading processes over hypergraphs and
simplicial complexes is also a rapidly growing pursuit, with recent
extensions including the theory for epidemics43 and random walks.44

Notably, the study of (conservative) random walks and diffusion
over hypergraphs and simplicial complexes has for some time been a
topic of interest in mathematics and computer science;45–48 however,
until recently, there has been comparatively little work on higher-
order models for spreading processes that are non-conservative.
Below, we survey several recent works that study such dynamics over
hypergraphs and simplicial complexes.

In Ref. 49, Higham and De Kergorlay extend the susceptible-
infected-susceptible (SIS) epidemic model to the setting of time-
varying hypergraphs. First, they study a discrete-time network
model defined as a sequence of graphs that are i.i.d. random sam-
ples from a Gilbert random-graph model. Next, they propose an
extension of the Gilbert model to hypergraphs using it to simi-
larly define time-varying hypergraphs. For both models, the authors
develop a mean-field theory to describe SIS epidemic spreading
over time-varying graphs/hypergraphs and investigate the epidemic
threshold that can determine the long-time extinction of a spread-
ing process. Their main finding is that the spectral-based criterion
for determining epidemic extinction can be expressed in terms of a
static, expected affinity matrix (or expected clique expansion in the
hypergraph case).

It is also important to study spreading dynamics in the con-
text of competing contagions, which can model, e.g., the competi-
tion between vaccination, misinformation, and epidemic spreading.
In Ref. 50, Li et al. extend the study of the susceptible-infected-
recovered (SIR) epidemic model to the context of competing epi-
demics over simplicial complexes. They develop theory using the
microscopic Markov chain approach and study various dynamical
properties that arise including an epidemic-free state, co-existing
epidemics, and one epidemic dominating over the other. The
authors study the impact of competition and higher-order interac-
tions on these phenomena as well as the epidemics’ growth rates.

Complex contagions complement the study of epidemics by
considering when transmission events require multiple exposures
and are often modeled using a threshold mechanism. In Ref. 51,
Xu et al. extend the study of threshold-based contagion models to
the setting of hypergraphs. They develop generating functions and
mean-field theory to characterize cascades over synthetic and empir-
ical hypergraphs and they conduct experiments to study the effects

of heterogeneity for both the thresholds and that of the degrees and
hyper-degrees. Motivated by applications in which cascades have a
negative connotation (e.g., cascade failures), the authors study how
higher-order interactions and heterogeneity can influence a systems
robustness against large-scale cascades.

Ghasemi and Kantz52 also study cascades over hypergraphs
but focus on the context of cascading transmission-line failures
for power grids. Complementing the development of bifurca-
tion theory for cascade models, the authors instead focus on the
“inverse” problem in which one seeks to develop data-driven mod-
els for line failures based on time series data summarizing historic
line failures. They identify pairwise and higher-order (indirect)
dependencies among transmission lines by combining a weighted
l1-regularization approach with pairwise maximum entropy. The
approach involves predicting dependencies by maximizing the log-
likelihood of a line’s state given the states of its neighbors. Informed
by their data-reconstructed model, they investigate cascades using a
Glauber model and use simulations to predict the cascade size dis-
tribution, infer co-susceptible line groups, and compare the results
against the data.

In Ref. 53, Klimm also adopts a data-driven perspective for
studying cascade dynamics by applying topological data analysis to
time series data encoded in cascade maps. This approach involves
identifying and studying dynamical bifurcations by examining topo-
logical changes in related data, and, in particular, changes for
topological features that can be identified and examined using the
toolbox of persistent homology. Extending prior work in this area,
this work explores how this approach can be improved by truncat-
ing time-series data, which is supported with experiments for both
synthetic and empirical network datasets. As a concrete application,
Klimm highlights the utility of the cascade-based, manifold-learning
technique to uncover a differentiation trajectory for single-cell tran-
scriptomics data of mouse oocytes.

Hypergraph games and competition dynamics

The study of multiplayer games and competition dynamics
on networks is relevant in fields such as economics, social sci-
ence, and evolutionary biology. In the “Dynamics on Networks with
Higher-Order Interactions” Focus Issue, various papers consider the
effect of multiplayer interactions on various aspects of game and
competition dynamics.

The mean-field analysis of a large network and hypergraph
dynamical systems is often carried out without a solid theoretical
foundation. Addressing this, the paper by Cui et al.54 provides a
rigorous framework for the study of multiplayer games on large,
dense hypergraphs by combining the tools of mean-field games with
hypergraphons, a limiting description of large hypergraphs. The
authors are able to rigorously describe and analyze the resulting
large systems of non-linear, weakly interacting dynamical agents.
The authors illustrate their techniques with a rumor spreading
example and an epidemics control problem.

In many cases, the number of players interacting in a game
is not always the same. Kontorovsky et al.55 study this situation by
considering a game where the number of players participating in
each interaction is randomly chosen. Generalizing the concept of
an evolutionary stable strategy (ESS) to this case, the authors show
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that the existence of such a strategy depends on the probability that
the interactions are pairwise. Furthermore, the authors propose and
study an agent-based model where agents interact in pairs (“duels”)
or triples (“truels”) and find good agreement with their mean-field
predictions.

The persistence of biodiversity in the presence of competitive
species interactions is an important problem in ecology. The possi-
bility that higher-order interactions contribute to preserve biodiver-
sity is explored in the paper by Chatterjee et al.56 In this paper, the
authors study a simple model for the dynamics of species densities
that includes higher-order interactions. They find that their model
leads to species co-existence and diversity. In addition, the authors
study how perturbations to the interaction strengths between species
can eventually lead to various effects in the density of all the species
in the system. Interestingly, the authors find that small perturbations
can lead to the formation of synchronized clusters.

Finally, the article by Schlager et al.57 studies how the stability
of equilibrium points in evolutionary games is affected by multi-
player interactions and network adaptation. Using the Snowdrift
game with rational adaptation rules as an example, the authors show
by means of direct simulations and analytical calculations that the
stable equilibrium of the game is remarkably robust. In particular,
the stability of these fixed points is not affected by the introduction
of higher-order interactions. The results of this paper suggest that
despite the existence of some prominent and interesting examples,
higher-order interactions do not always fundamentally change the
dynamics of networked systems.

Effects of hypergraph structure on dynamical systems

One of the central goals of modern network science has been
to determine how the structure of the interaction network affects
the collective dynamics of networked systems. Two articles in the
“Dynamics on Networks with Higher-Order Interactions” Focus
Issue make contributions to this task for networks with higher-order
interactions.

The article by Nijholt et al.58 considers a general model for
nonlinear dynamical systems defined on a simplicial complex. The
authors show that the importance of algebraic structures defined on
simplicial complexes survives when considering nonlinear dynam-
ical systems. They then identify the symmetries of the dynamics
induced by the simplicial complex structure, study the effect of the
simplicial complex orientation on the dynamics, and relate the sym-
metries to invariant subspaces of the dynamics. The authors, thus,
provide a comprehensive study of how the structure of a simplicial
complex affects dynamical processes occurring on it.

For pairwise networks, the dominant eigenvalue of the network
adjacency matrix is determinant in many network dynamical pro-
cesses. The paper by Landry et al.59 studies the analogous version
of this eigenvalue, which they call the “expansion eigenvalue,” for
hypergraphs. First, the authors give an approximation to the expan-
sion eigenvalue for random hypergraphs in terms of the hyperdegree
distribution, and then they use a perturbative expansion to give an
approximation for correlated hypergraphs. The authors then show
how their approximation can be used to modify the connections of
the hypergraph to alter the behavior of dynamical processes.

CONCLUSIONS

The articles in the “Dynamics on Networks with Higher-Order
Interactions” Focus Issue highlight different important directions in
the study of dynamics in networks with higher-order interactions,
an active and rapidly developing field. We hope that this collection
stimulates additional research in the area. Finally, we would like to
thank all the authors and referees who contributed to this Focus
Issue.
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