Dynkin's π - λ Theorem:

If $\mathscr{P} \subseteq \mathscr{L}$ for a π -system \mathscr{P} and a λ -system \mathscr{L} , then

$$\sigma(\mathscr{P})\subseteq\mathscr{L}.$$

Proof:

Define \mathcal{L}_0 to be the smallest λ -system containing \mathscr{P} . Then, by definition

$$\mathscr{P}\subseteq\mathscr{L}_0\subseteq\mathscr{L}$$
.

If we can show that \mathcal{L}_0 is a σ -field, we are done since $\sigma(\mathscr{P})$ is the smallest σ -field containing \mathscr{P} so

$$\sigma(\mathscr{P}) \subseteq \mathscr{L}_0 \subseteq \mathscr{L}$$
.

By the previous Lemma, since \mathcal{L}_0 is a λ -system, if we can show that \mathcal{L}_0 is also a π -system, we have shown that it is a σ -field.

Take any $A, B \in \mathcal{L}_0$. We must show that $A \cap B \in \mathcal{L}_0$.

• For any set $C \subseteq \Omega$, define the class of sets

$$\mathscr{L}_C := \{ D \subseteq \Omega : D \cap C \in \mathscr{L}_0 \}.$$

It is routine to verify that, $C \in \mathcal{L}_0 \Rightarrow \mathcal{L}_C$ is a λ -system. Please take a moment to convince yourelf of this.

- Suppose $A \in \mathscr{P}$. Then for every $C \in \mathscr{P}$, $A \cap C \in \mathscr{P}$ (since \mathscr{P} is a π -system). Therefore, since $\mathscr{P} \subseteq \mathscr{L}_0$, $A \cap C \in \mathscr{L}_0$ which implies that $C \in \mathscr{L}_A$ and hence $\mathscr{P} \subseteq \mathscr{L}_A$ since this is true for every $C \in \mathscr{P}$.
- $A \in \mathscr{P} \subseteq \mathscr{L}_0 \Rightarrow \mathscr{L}_A$ is a λ -system. Since \mathscr{L}_0 is the smallest λ -system containing \mathscr{P} , we have that

$$\mathcal{L}_0 \subseteq \mathcal{L}_A$$
.

- By definition of \mathcal{L}_A , this gives us that $A \cap C \in \mathcal{L}_0$ for every $C \in \mathcal{L}_0$.
- Now consider our fixed $B \in \mathcal{L}_0$. We already know that \mathcal{L}_B is a λ -system. As above, we can show that $\mathscr{P} \subseteq \mathcal{L}_B$ and therefore $\mathcal{L}_0 \subseteq \mathcal{L}_B$ since \mathcal{L}_0 is the smallest λ -system containing \mathscr{P} .
- So, for $A \in \mathcal{L}_0$, $A \in \mathcal{L}_B$ which implies that

$$A \cap B \in \mathcal{L}_0$$
,

as desired. \Box