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Various functions of a network of excitable units can be enhanced if the network is in the “critical regime,”
where excitations are, on average, neither damped nor amplified. An important question is how can such networks
self-organize to operate in the critical regime. Previously, it was shown that regulation via resource transport on
a secondary network can robustly maintain the primary network dynamics in a balanced state where activity
doesn’t grow or decay. Here we show that this internetwork regulation process robustly produces a power-law
distribution of activity avalanches, as observed in experiments, over ranges of model parameters spanning orders
of magnitude. We also show that the resource transport over the secondary network protects the system against
the destabilizing effect of local variations in parameters and heterogeneity in network structure. For homoge-
neous networks, we derive a reduced three-dimensional map which reproduces the behavior of the full system.
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I. INTRODUCTION

Networks of excitable units are found in varied disciplines
such as social science [1], neuroscience [2], epidemiology [3],
genetics [3], etc. Various aspects of network function can
be optimized when the network operates in the “critical
regime,”, between low and high firing rates, as in neural
networks [4], or at the “edge of chaos,” between order and
disorder, as in gene networks [5]. In particular, for neural
networks, criticality results in potential information-handling
benefits [4]. A natural question receiving much interest [6–9]
is what mechanisms can lead such complex and distributed
systems to operate in the critical regime, which typically
occurs in a very small region of parameter space. In Ref. [8],
we proposed a general mechanism based on the regulation of
the excitable network dynamics by a resource which enables
the interactions between the excitable elements and that is
transported across a secondary network. However, it was not
clear if resource-transport regulation is enough to produce ex-
perimental signatures of critical dynamics such as power-law
distributions of avalanche sizes. In addition, the robustness
of the model to parameter choices was not understood. Here
we show that resource-transport regulation leads to power-law
distributed avalanche-size distributions over model parameter
ranges spanning orders of magnitude, and we validate our
observations with a theoretical analysis which could serve as
a basis to study more refined models of resource-transport
regulation. As a concrete case, we focus on the case of
neural networks, where metabolic resources that facilitate the
transmission of neural excitations are transported across a
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secondary glial network [10–12]. We emphasize, however,
that our results could be applicable to other systems that
operate at or near a critical point [5,13,14].

II. MODEL

Following Ref. [8], we consider a network model with
two interdependent networks: A weighted directed neural
network and an unweighted undirected glial network which
transports and regulates the supply of resources needed for
the functioning of the neural network (see Fig. 1).

A. Neural network dynamics

The neural network consists of N excitable nodes that
represent neurons, labeled n = 1, 2, . . . , N , and M directed
edges (each corresponding to a synapse) and labeled η =
1, 2, . . . , M. We also indicate a synapse pointing from node m
to node n by η(n,m). At each discrete time step, t , neuron n is in
either the quiescent state (st

n = 0) or the active state (st
n = 1).

We define W t as the N × N adjacency matrix whose entry W t
nm

denotes the weight of the synapse on the edge from neuron m
to neuron n at time t . The state of neuron n, st

n, is updated
probabilistically based on the sum of its synaptic input from
active presynaptic neurons in the previous time step,

st+1
n =

{
1 with probability σ

(∑N
m=1 W t

nmst
m + μ

)
0 otherwise .

(1)

As in Refs. [8,15], the model transfer function probability σ is
piecewise linear; σ (x) = 0 for x � 0, σ (x) = x for 0 < x < 1,
and σ (x) = 1 for x � 1, and μ = 1/15000 is a small external
input that allows the system to avoid getting trapped in the
absorbing state sn = 0 for all n.

At time t , each synapse η is assumed to have a supply Rt
η

of a metabolic resource, some of which is consumed every
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FIG. 1. Our model consists of interacting neural and glial net-
works. The neural network is directed and weighted while the glial
network is undirected and unweighted.

time the presynaptic neuron, m(η), fires. While in this paper
we do not focus on a particular resource, we note that R could
represent various metabolites that are transported diffusively
among the glial cells, such as glucose and lactate [16]. Re-
flecting the increasing synaptic firing ability with increasing
resources, we assume that the weight W t

nm in synapse η(n,m)

from neuron m to neuron n is proportional to the amount of
resources in the synapse, W t

nm = wnmRt
η(n,m) [8]. Finally, for

simplicity, we consider only excitatory neurons and assume
that there is no learning (these were considered in Ref. [8]).
Thus, synaptic weight changes are caused only by the dynam-
ics of resource transport.

The second network of our model, the unweighted and
undirected glial network, consists of T glial cells labeled
i = 1, 2, . . . , T . Each glial cell i holds an amount of resources
Rt

i at time step t . Resources diffuse between the glial cells that
are connected to each other. We define a T × T symmetric
glial adjacency matrix U such that entry Ui j = 1 if glial cell
j is connected to glial cell i and Ui j = 0 otherwise. Each glial
cell serves a set of synapses by supplying resources to them.
Hence we define a T × M matrix G with entries Giη = 1 if
glial cell i serves synapse η and Giη = 0 otherwise.

B. Resource-transport dynamics

Resources diffuse between glia through their connection
network (characterized by the adjacency matrix U ) and be-
tween glia and the synapses they serve (via the glial-neural
connection network characterized by the adjacency matrix G).
Our model for the evolution of the amount of resources Rt

i at
glial cell i and the amount of resources Rt

η at synapse η is

Rt+1
i = Rt

i + C1 + DG

T∑
j=1

Ui j
(
Rt

j − Rt
i

)

+ DS

M∑
η=1

Giη
(
Rt

η − Rt
i

)
, (2)

Rt+1
η = Rt

η + DS
(
Rt

i(η) − Rt
η

) − C2st
m(η), (3)

where DG is the rate of diffusion between glial cells and DS

is the rate of diffusion between glia and synapses. Moreover,

we enforce Rη � 0, i.e., if Eq. (3) yields Rt+1
η < 0, then we

replace it by 0. The model parameter C1 on the right-hand
side of Eq. (2) denotes the amount of resources added to each
glial cell at each time step (e.g., supplied by capillary blood
vessels). For simplicity, we assume first that each glial cell
has the same C1 (the effect of heterogeneous values of C1

will be discussed later). The last two terms in Eq. (2) are the
amount of resources transported to glial cell i, respectively,
from its neighboring glial cells and from the synapses that it
serves.

The term proportional to DS in Eq. (3) denotes the amount
of resources gained (if Rt

i(η) > Rt
η) or lost (if Rt

i(η) < Rt
η) from

glial cell i(η) that serves synapse η. If the presynaptic neuron
m(η) fires at time step t (st

m(η) = 1), then synapse η consumes
an amount of resource C2, thus decreasing the resources at
synapse η by this amount.

III. NUMERICAL EXPERIMENTS

We now describe and present the results of numerical
experiments on our model, Eqs. (1)–(3). Our main goal is to
show that resource-transport dynamics robustly regulates the
operation of the neural network in the critical regime. In the
neural model used here, the critical regime is characterized
by the largest eigenvalue of the neural synapse matrix W t , λt ,
being one [8,15]. Therefore, we will consider λt ≈ 1 as one
criterion for criticality. However, a more practical definition of
criticality, applicable more generally [4], is a power-law distri-
bution of the sizes of activity bursts, or neuronal avalanches.
We will also verify that the model robustly produces power-
law distributed neuronal avalanches.

In our numerical experiments, we consider an Erdös-Rényi
network structure for both the neural and glial networks. The
neural network is described using an N × N adjacency matrix,
W , such that with probability p we have an entry wnm �= 0 that
represents a link from node m to node n. At time t = 0, we set
the resource at each synapse η, R0

η = 1, and draw wnm from
a uniform distribution over [0, w̄]. By choosing the value of
w̄, we can set the initial largest eigenvalue of W t , i.e., λ0, to
a desired value, and test whether the subsequent evolution of
the model results in λt → 1.

The glial network is undirected and unweighted and its
adjacency matrix is given by a T × T matrix, U , such that
with probability q we have an entry Ui j = Uji = 1 that repre-
sents an undirected link between nodes i and j. Motivated by
experiments [17] showing T ∼ N , for specificity, we take the
number of glia and neurons to be equal, T = N . Consistent
with this, and the additional experimental finding that all
incoming synapses of a given neuron are served by the same
glial cell [18], we further assume that each glial cell serves a
unique neuron. We set the initial resource for each glial cell
to be equal to an uniform value, R0

i = r (note that R0
η may be

different from R0
i ). For all numerical experiments, we use the

values T = N = 1000, p = q = 0.05, and assume, for sim-
plicity, that the entries of matrices U and W are independent
of each other. Unless mentioned otherwise, the parameters for
resource-transport dynamics are set as DG = DS = 5 × 10−5,
C1 = 6 × 10−8, and C2 = 10−8.

In the first experiment, we show that starting with different
initial conditions λ0 = 1, 0.98, 1.02, the resource-transport
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FIG. 2. (a) Largest eigenvalue, λt , of the neural network adja-
cency matrix for three initial conditions λ0 = 1, 0.98, 1.02 (black
circles, red triangles, and blue squares, respectively) as a function of
time. (b) Average glial resource Rt = ∑

i Rt
i/N as a function of time

for the same initial conditions. In both panels, the dotted (subcritical
case) and the dashed (supercritical case) lines show the predictions
from the 3-D map with noise [Eqs. (9), (11), (13)].

dynamics causes the system to self-organize to the critical
state corresponding to λt = 1 after a transient period. In
Fig. 2(a), we show λt for the three different initial con-
ditions λ0 = 1, 0.98, 1.02 (black circles, red triangles, and
blue squares, respectively). In the three cases, λt approaches
and subsequently remains close to 1 (this will be quantified
in Fig. 4). In Fig. 2(b), we show that the average glial
resource, Rt = ∑

i Rt
i/N , reaches a steady state in all three

cases.
As discussed above, we are interested in whether the

dynamics of the neuronal network reproduces experimental
signatures of critical behavior, in particular, power-law dis-
tributed avalanches of activity. To do this, following Ref. [15],
we define a measure of activity, S(t ) = ∑

m st
m/N , and de-

fine an avalanche as the excursion of activity St above a
threshold S∗, i.e., St < S∗ for t < t1, t > t2 and St � S∗ for
t1 � t � t2). We define the size L of the avalanche as L =

FIG. 3. Size distributions P(L) for various values of C1. Blue
(dashed) curves indicate plausible power-law fits (under 10% level of
significance) with P(L) ∝ Lγ such that γ ≈ −3/2 and the red (solid)
curves indicate rejected power-law fits.

N
∑t2

t=t1
St , the number of spikes (excitations) over a single

excursion.
To investigate the robustness of our model to changes in

parameters, we fix D = DG = DS = 5 × 10−5 and vary C1

and C2 logarithmically roughly from 10−8 to 10−2 keeping
the ratio C2/C1 = 1/6 constant. Using the threshold S∗ =
0.15, we calculate avalanche size distributions, P(L), for
each parameter setting. We then fit a power-law model using
standard techniques [19] based on maximum-likelihood esti-
mation and a hypothesis test that generates a p value using
the Kolmogorov-Smirnov statistic. Since we have finite-size
effects, in addition to the lower size Lmin cutoff used in
Ref. [19], we introduce an upper cutoff Lmax, i.e., we test
the plausibility of a power-law model where we condition on
avalanche sizes in a range [Lmin, Lmax] [20,21]. We accept as
plausible power laws only those distributions for which this
range spans at least three decades. Empirically, we find our
results to be insensitive for values of S∗ in the range (0.1, 0.4).

In Fig. 3, we show size distributions P(L) for various
values of C1. The blue (dashed) curves indicate a plausible
power-law fit (under 10% level of significance) with P(L) ∝
Lγ such that γ ≈ −3/2 (exponents range from −1.42 to
−1.49), and the red (solid) curves a rejected power-law fit.
We find that there is a large range of values of the parameters
(small values of C1 and C2 for which the system results in
power-law distributed avalanches, but that for some param-
eter choices (larger values of C1 and C2), the distribution of
avalanche sizes no longer satisfies our Kolmogorov-Smirnov
power-law test.

IV. THREE-DIMENSIONAL MAP

To gain an understanding of the mechanisms that lead to
the critical regime and to determine conditions on the model
parameters that result in critical behavior, we make the follow-
ing assumptions: (i) the neural network is large, uncorrelated,
and homogeneous so the Perron-Frobenius eigenvalue of the
matrix with entries Wnm = wnmRη(n,m) is well approximated by
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its average row sum; (ii) the intrinsic synapse weights wnm are
uncorrelated with Rnm or have a narrow distribution around
their average 〈w〉 so

∑
n,m wnmRt

η(n,m) ≈ 〈w〉∑
n,m Rt

η(n,m);
and (iii) the glial cells all serve the same number of synapses
k (or the distribution of the number of synapses served is
narrow). While some of these assumptions could be relaxed
and the theory generalized, we leave these considerations for
future work.

First, we define the average amount of resources per glial
cell at time t :

Rt = 1

T

∑
i

Rt
i . (4)

Averaging Eq. (2) over glial cells, we obtain

Rt+1 = Rt + C1 + DS

T

M∑
η=1

Rt
η

T∑
i=1

Giη − DS

T

T∑
i=1

Rt
i

M∑
η=1

Giη.

(5)

From the assumption that each glial cell serves k synapses,
we have

∑M
η=1 Giη = k. Furthermore, since each synapse is

served by a unique glial cell,
∑T

i=1 Giη = 1, and we obtain

Rt+1 = Rt + C1 + DS

T

M∑
η=1

Rt
η − kDSRt . (6)

The term
∑M

η=1 Rη is the total amount of resources in the
synapses. From the assumption that the fixed synapse weights
wnm are uncorrelated with Rnm (or that their distribution is
sufficiently narrow), the total resources in the synapses can be
related to the sum of all entries W t

nm = wnmRt
nm of the synapse

weight matrix:

M∑
η=1

Rt
η = 1

〈w〉
∑
n,m

W t
nm. (7)

For large homogeneous, uncorrelated networks, the aver-
age row sum is an excellent approximation to the Perron-
Frobenius eigenvalue, and so

M∑
η=1

Rt
η ≈ N

〈w〉λ
t , (8)

and Eq. (6) becomes, using N = T as discussed before,

Rt+1 = Rt + C1 + DS

〈w〉λ
t − kDSRt . (9)

Summing Eq. (3) over η and multiplying by 〈w〉/N , we get

λt+1 = λt + DS〈w〉
N

M∑
η=1

Rt
i(η) − DSλ

t − C2〈w〉
N

M∑
η=1

sm(η).

(10)

Since there is a single glial cell serving each synapse and
each synapse serves k glial cells,

∑M
η=1 Rt

i(η) = ∑T
i=1 kRt

i =
T kRt = NkRt . In addition, since each glial cell serves all the k
synapses of a single neuron,

∑M
η=1 sm(η) = k

∑
m=1 st

m = kNSt .

So we obtain

λt+1 = λt + DS〈w〉kRt − DSλ
t − C2〈w〉kSt . (11)

The mean-field Eqs. (9) and (11) need to be closed with an
equation for the evolution of the average activity, St , which
is a stochastic variable determined by Eq. (1). To obtain a
tractable map, we model St in two different ways: In the first
one, we neglect stochastic effects and use the deterministic
approximation:

St+1 = λt St . (12)

This approximation is based on the fact that, except for values
of S close to 0 or 1, the expectation of St+1 calculated from
Eq. (1) is λt St . This approximation neglects the nonlinear
effects that keep St below 1, and thus should be interpreted
only as a guide to determine the fixed points and their stability
in the limit of vanishing stochastic effects [i.e., when the
expected number of terms in the sum in Eq. (1) is large]. We
refer to Eqs. (9), (11), and (12) as the 3D map without noise.
A more realistic model for St includes a stochastic noise term
and a mechanism to enforce 0 � St � 1:

St+1 = max (0, min(1, λt St + rt + μt )). (13)

Here, rt is a Gaussian noise term with zero mean and standard
deviation

√
St (1 − St )/N , as estimated in Ref. [15], while

μt represents an external stimulus taken to be 1/N with
probability ζ and 0 otherwise, introduced to prevent St from
decaying to zero. Effectively, this stimulus excites one neuron
every time step with probability ζ . We refer to Eqs. (9), (11),
and (13) as the 3D map with noise. This variant of the map
is useful to predict the evolution of the macroscopic variable
Rt of the full model. As an example, in Fig. 2 we show with
dotted and dashed lines the predictions of the evolution of
λt and the average glial resource Rt obtained from the 3D
map with noise. The predictions agree very well with direct
simulations of the full model.

The simplicity of the 3D map without noise allows us to
derive parameter constraints that must be satisfied for a stable
critical state. In particular, the system of Eqs. (9), (11), (12)
has the fixed point

λ̄ = 1, S̄ = C1

kC2
, R̄ = C1

kD
+ 1

k〈w〉 . (14)

The critical state λ = 1 is a fixed point of the deterministic
map. Its stability is determined by whether the eigenvalues
of the Jacobian of the map Eqs. (9), (11), (12) evaluated at
the fixed point Eqs. (14) are inside the complex unit circle.
Applying the Routh-Hurwitz criterion, we find that the fixed
point is stable (which we interpret as robustness of the critical
state) if

Dk − 2
3 < 0, (15)

1

kD
− 1 + k

C1k〈w〉 − 3

4
< 0, (16)

C1kD〈w〉
8

− C1〈w〉
4

+ Dk

2
+ D

2
− 1 < 0, (17)

C2
1 D2k2〈w〉 − 2C2

1 Dk〈w〉 + C2
1 〈w〉

+ C1D2k2 + C1D2k − C1D < 0. (18)
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FIG. 4. Root mean squared deviation of λt from 1, σλ =√
〈(λt − 1)2〉t as a function of C1. The shaded grey region indicates

parameter values for which λ̄ = 1 is linearly unstable. Values of C1

to the left of the arrow yield avalanche size distributions that have
plausible power-law fits with exponents close to −3/2.

In addition, since 0 � S̄ � 1, we have the additional in-
equality C1/(kC2) < 1, which represents the constraint that
the amount of resources supplied to glial cells per time
step cannot exceed the amount that can be consumed at the
synapses.

To demonstrate the usefulness of these inequalities, we
verify which of the curves in Fig. 3 correspond to parameters
which satisfy these inequalities. Parameters that satisfy (don’t
satisfy) the inequalities approximately correspond to distribu-
tions which follow (don’t follow) a power law. To illustrate
this, we plot in Fig. 4 the quantity σλ =

√
〈(λt − 1)2〉t , which

measures the deviation of the system from λ = 1, as a function
of C1 (we take C2 = C1/6, D = 5 × 10−5, and k = N p). The
red triangles correspond to simulations of the full model, the
blue circles to the 3D map with noise, and the dashed line to
the 3D map without noise. The shaded grey region indicates
parameter values for which the linear stability analysis pre-
dicts the fixed point λ̄ = 1 to be unstable. We observe that
the 3D map with noise captures the deviations from λ = 1
very well until these become large slightly past the onset
of instability, i.e., approximately when σλ ≈ 0.025. The 3D
map without noise, neglecting fluctuations, fails to capture
the small deviations from λ = 1 that occur before the onset
of instability. To relate these findings with the distribution of
avalanche sizes, we indicate with an arrow the value of C∗

1
such that values C1 < C∗

1 yield avalanche-size distributions
that have plausible power-law fits with exponents close to
−3/2 (the same information that was used to color the curves
in Fig. 3). The map without noise thus predicts roughly the
onset of instability and, correspondingly, of avalanche-size
distributions that are not power-law distributed.

So far, our results have been independent of resource trans-
port in the glial network. The resource supply and consump-
tion could be understood as a local homeostatic mechanism
analogous to those discussed in Refs. [22,23] and references
therein. However, in the next numerical experiment, we show

FIG. 5. Using heterogeneous source rates, λ remains close to 1
when there is diffusion amongst glia, i.e., DG = D (blue circles), and
grows when resource transport amongst the glial cells is absent, i.e.,
DG = 0. The dashed line shows λ = 1 for reference.

that, when there are heterogeneities (in the network structure,
in the supply and consumption rates C1 and C2, etc.), the
diffusion of resources between glial cells can compensate
for these effects and prevent destabilization of the critical
state. We consider the particular case of heterogeneous source
rates, where now each glial cell i has its own Ci

1. As an
example, we draw the Ci

1 from a Gaussian distribution with
mean C1 and standard deviation 2.6 × 10−7, so approximately
5% of them do not satisfy the inequality Ci

1 < kC2. In the
absence of resource transport, resources accumulate in these
glial cells and the associated synapses, bringing the network
to the supercritical state, λt > 1. However, when a resource is
allowed to diffuse, the critical state λt ≈ 1 is maintained. This
is shown in Fig. 5, where we plot λt as a function of time with
DG = 0 (red triangles) and DG = DS > 0 (blue circles). We
also note that in addition to stabilizing the critical state against
parameter heterogeneities, network diffusion can stabilize the
critical state in the presence of learning [8].

V. DISCUSSION

To summarize, we have found that resource-transport dy-
namics can stabilize the dynamics of excitable units so they
operate at a critical state characterized by experimentally
observable power-law distributed avalanche sizes. Using a
reduced three-dimensional map, we showed that for a large
range of parameters, the system self-organizes to a critical
state that is characterized by power-law-distributed avalanche
sizes with an exponent value near the characteristic −3/2
exponent found in various experimental studies. We found
that resource-transport dynamics protects the system against
the destabilizing effects of parameter heterogeneity. While
our theoretical analysis is based on the assumption of a
homogeneous network, it could potentially be generalized
to account for heterogeneous or spatial network structures.
Although we presented our model in the context of neuronal
networks, our results could be applicable to other networks of
excitable elements whose interaction efficacy depends on the
availability of a shared resource.
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