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SHOCK WAVES IN DISPERSIVE HYDRODYNAMICS
WITH NONCONVEX DISPERSION∗

P. SPRENGER† AND M. A. HOEFER†

Abstract. Dissipationless hydrodynamics regularized by dispersion describe a number of physi-
cal media including water waves, nonlinear optics, and Bose–Einstein condensates. As in the classical
theory of hyperbolic equations where a nonconvex flux leads to nonclassical solution structures, a
nonconvex linear dispersion relation provides an intriguing dispersive hydrodynamic analogue. Here,
the fifth order Korteweg–de Vries (KdV) equation, also known as the Kawahara equation, a classical
model for shallow water waves, is shown to be a universal model of Eulerian hydrodynamics with
higher order dispersive effects. Utilizing asymptotic methods and numerical computations, this work
classifies the long-time behavior of solutions for step-like initial data. For convex dispersion, the
result is a dispersive shock wave (DSW), qualitatively and quantitatively bearing close resemblance
to the KdV DSW. For nonconvex dispersion, three distinct dynamic regimes are observed. For small
amplitude jumps, a perturbed KdV DSW with positive polarity and orientation is generated, ac-
companied by small amplitude radiation from an embedded solitary wave leading edge, termed a
radiating DSW. For moderate jumps, a crossover regime is observed with waves propagating forward
and backward from the sharp transition region. For jumps exceeding a critical threshold, a new type
of DSW is observed that we term a traveling DSW (TDSW). The TDSW consists of a traveling
wave that connects a partial, nonmonotonic, negative solitary wave at the trailing edge to an interior
nonlinear periodic wave. Its speed, a generalized Rankine–Hugoniot jump condition, is determined
by the far-field structure of the traveling wave. The TDSW is resolved at the leading edge by a har-
monic wavepacket moving with the linear group velocity. The nonclassical TDSW exhibits features
common to both dissipative and dispersive shock waves.
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1. Introduction. Dispersive hydrodynamics encompass hyperbolic systems of
equations regularized by dispersion rather than dissipation, modeling many physical
media [14]. One of the most prominent features of these systems is a dispersive
shock wave (DSW), in which gradient catastrophe at the purely hyperbolic level is
resolved into an expanding, oscillatory wavetrain due to dispersive regularization. The
standard or classical DSW can be modeled by the Korteweg–de Vries (KdV) equation

(1) ut + uux + σuxxx = 0,

where σ = ±1. A KdV DSW can be described by a slowly modulated, periodic
traveling wave solution of (1) via Whitham theory [32], exhibiting two distinguished
edges corresponding to a vanishing amplitude harmonic wavepacket and a vanishing
wavenumber solitary wave (see schematic DSWs in Figure 1). The canonical problem
of interest is the Gurevich–Pitaevskii (GP) Riemann problem, whereby the long-time
dynamics for (1) with step initial data are considered [17]. The trailing (s−) and
leading (s+) edge DSW velocities from the GP problem are distinct (s− < s+) and
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differ from the single, classical shock velocity derived from the Rankine–Hugoniot
jump conditions for the dispersionless Hopf equation

(2) ut + uux = 0.

Due to its dynamically expanding, distinct edge behavior, a DSW exhibits an orienta-
tion d and polarity p, identifying the location and polarity of the solitary wave edge.
The DSW has d = +1 (d = −1) if the solitary wave edge is rightmost (leftmost) and
p = +1 (p = −1) if the solitary wave edge is a wave of elevation (depression) with
respect to its adjacent, slowly varying background (cf. Figure 1). The linear disper-
sion relation on a background u for (1) is ω(k, u) = ku− σk3. As shown in Figure 1,
the KdV DSW for (1) has d = p = −sgnωkk = sgnσ. We see that two fundamental
KdV DSW properties, its orientation and polarity, are uniquely determined by the
dispersion curvature, also referred to as the sign of dispersion. We refer to DSWs that
resemble those in Figure 1 as KdV-like or classical DSWs.

In this manuscript, we study DSWs in the presence of higher order dispersive
effects via the fifth order KdV or Kawahara equation [23]

(3) ut + uux + σuxxx + uxxxxx = 0,

where σ = ±1. The dispersion relation on background ū

(4) ω(k, u) = ku− σk3 + k5

is convex when σ = −1 as depicted in Figure 2(a).
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Fig. 1. Expanding KdV-like DSWs (s− < s+) for (a) σ = −1 and (b) σ = +1, exhibiting
dispersion curvature dependent orientation and polarity.
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Fig. 2. Dispersion relation (4) for the Kawahara equation (3) for ū = 0, (a) σ = −1 and (b)
σ = +1.
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Purely positive dispersion curvature suggests that Kawahara DSWs occurring in
(3) with σ = −1 will be KdV-like and qualitatively similar to those in Figure 1(a),
which we indeed find to be the case (see subsection 4.4). However, when σ = +1, the
curvature of (4)

(5) ωkk = −6k + 20k3

changes sign at the inflection point ki =
√

3/10 as depicted in Figure 2(b). Because
DSWs are composed of modulated nonlinear waves with a range of wavenumbers
from zero at the solitary wave edge to a characteristic, nonzero value at the harmonic
edge [14], we expect fundamental differences in the DSW structure for (3) when
σ = +1. For example, the “classical” KdV DSWs described earlier feature very
different structure (orientation, polarity) depending on the dispersion curvature. In
this work, we aim to resolve the ways in which a single equation exhibiting both signs
of dispersion curvature rectifies these differences.

Note that there is another source of nonconvexity in dispersive hydrodynamic
systems: a nonconvex, hyperbolic flux. Such a flux is known to give rise to undercom-
pressive shock waves and shock-rarefactions in hyperbolic systems theory and their
analogues in dispersive hydrodynamics [13]. In contrast, the problem of nonconvex
dispersion has no hyperbolic correlate.

In the remainder of this introductory section, we review some relevant work on
DSWs and solitary waves, then provide an overview of this work.

1.1. Related work: Dispersive shock waves. Most DSW studies to date
have focused upon dispersive hydrodynamic systems that exhibit either a purely con-
vex or a concave linear dispersion relation [14], with some recent exceptions [2, 6, 7, 8,
9, 11, 15, 27]. The monograph [2] and paper [11] present numerical simulation results
for the Kawahara equation (3) for both short-time [11] and long time [2] dynamics.
These simulation results resemble the types of shock waves we characterize in long
time in this work.

In [26], a scalar dispersive hydrodynamic model is shown to exhibit KdV-like
DSWs until a critical jump height is reached corresponding to zero curvature at the
harmonic wave edge. A further increase of the jump height results in the internal
self-interaction of the DSW or, as it was termed, DSW implosion. Zero curvature
results in a local extremum of the group velocity that causes the harmonic edge waves
within the DSW to interact with interior DSW waves of smaller wavenumber. This
behavior for dispersive hydrodynamic systems with nonconvex dispersion is different
from the dynamics investigated here.

Qualitatively different dispersive hydrodynamics near zero dispersion were ob-
served in nonlinear Schrödinger (NLS) type models of intense light propagation through
fibers [7, 6, 27, 8, 9] and nematic liquid crystals [15]. In both cases, numerical simula-
tions reveal that an essentially linear wavetrain’s phase speed is in resonance with the
DSW’s solitary wave edge phase speed, leading to radiation. As the strength of higher
order dispersion is increased, the DSW structure changes. Empirical observations sug-
gest that in long time, the solitary wave edge exhibits a constant speed moving with
the classical shock speed from the Rankine–Hugoniot conditions. This behavior is in
stark contrast with KdV-like DSWs, whose speeds are determined through Whitham
averaging [14] and are different from the Rankine–Hugoniot relations.

1.2. Related work: Solitary waves. Because DSWs can be considered spa-
tially extended generalizations of solitary waves, it is helpful to briefly review the
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properties of solitary wave solutions of (3), first computed by Kawahara [23]. Dis-
tinct structures emerge depending on the choice of the parameter σ. For σ = −1,
the solitary waves are monotonically decaying from the peak. For σ = +1, there are
nonmonotonically decaying, depression solitary waves for velocities less than − 1

4 that
are stable [5]. These oscillatory solitary waves bifurcate from the linear dispersion
curve (4) when the phase and group velocities coincide [16]. The equality of phase
and group velocities occurs only for nonconvex dispersion ω. For σ = +1 and positive
velocities, elevation solitary waves exist but are unstable due to a linear resonance
[3, 30]. It is the Kawahara equation’s nonconvex dispersion that leads to solitary
waves embedded in the linear spectrum [31]. As we will demonstrate, nonconvex
dispersion yields similarly impactful effects on DSW dynamics.

1.3. Overview of this work. In section 2, we derive the Kawahara equation
(3) from a general dispersive Eulerian system via multiple scales perturbation theory
as a universal approximate model for weakly nonlinear dispersive waves when the
coefficient of third order dispersion is small. The requisite conditions for higher order
dispersive effects to be important are identified and the single free parameter σ in
(3) is related to the dispersive parameters of the original Eulerian system. We then
consider water waves and nonlinear fiber optics as example dispersive hydrodynamic
systems where this multiple scales method can be applied.

Section 3 reviews the numerical and asymptotic computation of Kawahara soli-
tary wave solutions and their corresponding amplitude-speed relations for (3). These
solutions are then utilized to help describe the DSWs studied in section 4.

In subsection 4.1, we show that nonconvex dispersion (σ = +1) and sufficiently
large jumps lead to a new coherent structure, a traveling DSW (TDSW). The TDSW
is characterized by a nonmonotonic, depression solitary wave trailing edge. Rather
than complete a full oscillation, the solitary wave is partial and connects to a periodic
nonlinear wavetrain. This portion of the TDSW is found to rapidly approach a genuine
traveling wave solution of the Kawahara equation (3), connecting a constant to a
periodic orbit. Approximate and numerical periodic solutions are obtained that yield
the TDSW trailing edge speed as a function of jump height. The speed is found to
be a generalization of the Rankine–Hugoniot jump condition of classical shock theory.
The TDSW leading edge is found to move with the linear group velocity.

Small jumps for nonconvex dispersion, examined in subsection 4.2, involve long
waves and weak fifth order dispersive effects. The resulting DSWs are perturbations of
KdV-like DSWs with a leading edge elevation solitary wave that is in resonance with
short, forward-propagating linear waves. These are referred to as radiating dispersive
shock waves (RDSWs). RDSW properties are determined by DSW fitting theory.

Moderate jumps for nonconvex dispersion are examined in subsection 4.3, where
more complex dynamics are observed. This is the regime that straddles the linear
dispersion inflection point ki, corresponding to unsteady, crossover behavior where we
observe strong forward and backward propagation of waves. We equate this regime
with wave speeds in the solitary wave “band gap” where Kawahara solitary waves do
not exist but nonlinear periodic traveling waves do.

Convex dispersion (σ = −1) is considered in subsection 4.4, where we observe
a classical KdV-like DSW. We apply DSW fitting theory in order to determine the
amplitude and speed of the trailing solitary wave and the wavenumber at the leading
edge as a function of the initial jump height.

Finally, we conclude the manuscript in section 5 with some discussion and broader
perspectives on our findings.
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2. Universality of the Kawahara equation. We consider a general dispersive
Eulerian system of equations given in nondimensional form by

ρt + (ρu)x = D1[ρ, u]x,(6)

(ρu)t +
(
ρu2 + P (ρ)

)
x

= D2[ρ, u]x,(7)

where ρ = ρ(x, t) corresponds to the fluid density and u = u(x, t) the fluid velocity,
and the pressure law is given by P (ρ). We assume strict hyperbolicity P ′(ρ) > 0
and genuine nonlinearity [ρ2P ′(ρ)]′ > 0 of the dispersionless system ((6), (7) with
D1,2 = 0) so that weakly nonlinear dynamics exhibit quadratic, convex flux [13]. The
differential operators D1, D2 acting on ρ, u in (6) and (7) are assumed to be of the
second order or higher, yielding a real valued dispersion relation. The dispersion is
calculated by assuming a small amplitude linear wave oscillating about the background
state (ρ0, u0): ρ = ρ0 +Aeiθ, u = u0 +Beiθ, where θ = kx− ωt and |A|, |B| � 1 are
of the same order. Substitution of this ansatz into (6) and (7) yields a homogeneous
system of linear equations for A and B that are only solvable for two distinct frequency
branches ω±(k), the dispersion relation. The dispersion relation is assumed to exhibit
the long wave (0 < k � 1) behavior

(8) ω±(k) = u0k ±
(
c0k + µk3 + γk5 + o(k5)

)
,

where c0 =
√
P ′(ρ0) is the long wave speed of sound and µ, γ are the third and fifth

order dispersion coefficients, respectively. In general, these coefficients will depend on
ρ0, u0 and possibly other parameters. We are interested in the asymptotic balance of
third and fifth order dispersion, which can result when the coefficient of third order
dispersion µ is sufficiently small. Since k is inversely proportional to the characteristic
length scale L, called the coherence length [14], then fifth order dispersion is important
when µ ∼ 1/L2. The presence of both third and fifth order dispersion with comparable
magnitudes can result in a change in the dispersion sign.

We now seek approximate unidirectional solutions to the system (6) and (7) via
multiple scales in the form

τ = ε5/4t, η = ε1/4 (x− (u0 + c0)t) ,

ρ = ρ0 + ερ1(η, τ) + ε3/2ρ2(η, τ) + ε2ρ3(η, τ) + o(ε2),

u = u0 + εu1(η, τ) + ε3/2u2(η, τ) + ε2u3(η, τ) + o(ε2).

Note the noninteger powers of ε, chosen so that quadratic nonlinearity will balance
the third and fifth order dispersion terms. In other words, we assume the maximal
balance scaling

(9) µ = ε1/2µ̃, µ̃ = O(1).

We also assume the boundary conditions (BCs)

(10) ρ(x, t)→ ρ0, u(x, t)→ u0, x→∞.

Substituting this expansion into (6), (7) and using (10), and applying a standard
multiple scales approach as in [32], we have ρ1 = ρ0

c0
u1, where u1 satisfies the Kawahara

equation

(11) u1,τ + αu1u1,η − µ̃u1,ηηη + γu1,ηηηηη = 0.
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Equation (11) can be put in the normalized form (3) by use of the scaled variables

x′ =

∣∣∣∣ µ̃γ
∣∣∣∣1/2 η, t′ = γ

∣∣∣∣ µ̃γ
∣∣∣∣5/2 τ, u′ =

αγ

µ̃2
u,(12)

and then dropping primes. The key parameter in the Kawahara equation (3) that
encapsulates the competition between third and fifth order dispersion is

(13) σ = −sgn(µ̃γ).

We now apply these results to specific model equations from water waves and
fiber optics.

2.1. Water waves. In order to accurately capture the competing effects of third
and fifth order dispersion in water waves, we use the recently derived extended Green–
Naghdi or Serre equations [29] with surface tension effects incorporated as in the
generalized Serre (gSerre) equations [10], yielding the extended, generalized Serre or
egSerre equations. The corresponding dispersive operators and general pressure law
in (6) and (7) for egSerre are

D1(ρ, u) = 0,

D2(ρ, u) =
ρ3

3

(
uxt + uuxx − u2

x

)
−B

[
1

2
ρ2
x − ρρxx

]
+

[
ρ5

45
(uxxt + uuxxx − 5uxuxx)

]
x

− 3ρ5u2
xx,

P (ρ) =
ρ2

2
,

(14)

where the dependent variables ρ(x, t) and u(x, t) are the nondimensional water surface
height and vertically averaged horizontal velocity component, respectively. The bond
number, B, is a dimensionless parameter that quantifies the strength of surface tension
relative to gravity. The dispersion relation for (6), (7) with (14) on the background
ρ0 = 1 and u0 = 0 has the long wave expansion

(15) ω(k) = k +
1

6
(3B − 1)k3 +

1

360
(19− 30B − 45B2)k5 + o(k5),

which agrees with the long wave expansion of the full water wave dispersion relation
[22]

(16) ω = [(1 +Bk2)k tanh(k)]1/2.

The coefficients for the Kawahara equation (11) are then

µ =
1

6
(1− 3B), γ =

1

360
(19− 30B − 45B2), α =

3

2
.

As noted in our derivation, the Kawahara equation is valid when µ is small; therefore
we are considering B close to 1/3. Note that we have also assumed that γ = O(1).
Since γ is zero when B = (2

√
30−5)/15 ≈ 0.40, we require B < 0.4 for the asymptotic

validity of the scaled Kawahara equation (3) with parameter

(17) σ = −sgn(µγ) = sgn (1− 3B) .
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When B < 1/3, gravity effects dominate surface tension effects and we have σ = +1.
Neglecting the fifth order term, the KdV equation (1) therefore exhibits negative
dispersion with positive polarity and orientation DSWs as in Figure 1(b).

If we had neglected the higher order terms from the egSerre equations and just
used the gSerre equations, the dispersion would not agree with the long wave expan-
sion for the full water waves dispersion relation (16) to fifth order. As such, it is
necessary for one to include both the effects that result in small third order disper-
sion as well as higher order terms to maintain the required asymptotic balance. This
suggests that one should consider with some caution the applicability of the gSerre
model to physical water wave problems when B is near 1

3 .
In [20], the authors derived the Kawahara equation directly from the Euler equa-

tions as a model for shallow water waves for Bond number near 1
3 . We have now

demonstrated an alternative derivation based on the egSerre equations via their in-
terpretation as dispersive Eulerian hydrodynamic equations.

2.2. Nonlinear fiber optics. The effect of higher order dispersive terms in
the NLS equation and associated experiments were studied in the series of papers
[7, 6, 27, 8, 9] within the context of light propagation in optical fibers. See also [2] for
applications in continuum mechanics. The equation of interest is a higher order NLS
equation

(18) iψt +
1

2
ψxx + i

β3

6
ψxxx − |ψ|2ψ = 0,

where ψ is the complex envelope of a weakly nonlinear carrier wave and β3 is a
parameter modeling higher order dispersive effects in the fiber. The variables x, t
are used here to maintain consistency with (6) and (7) but physically correspond
to nondimensionalized time and negative distance along the fiber, respectively. The
Madelung transformation ψ =

√
ρeiφ, u = φx can be utilized to write (18) as a

generalized dispersive Eulerian system

ρt +

(
ρu− 1

2
β3ρu

2

)
x

= D1[ρ, u]x,

(ρu)t +

(
ρu2 − 1

2
β3ρu

3 +
1

2
ρ2

)
x

= D2[ρ, u]x,

where

D1[ρ, u] = β3

(
1

6
ρxx −

1

8

ρ2
x

ρ

)
,

D2[ρ, u] =
1

4
ρ (log(ρ))xx +

β3

12

(
9ρ2
xu

2ρ
− 5ρxxu− ρxux − 2ρuxx

)
.

Utilizing the same method as our general derivation of the Kawahara equation for
dispersive Eulerian equations, we obtain (11) with coefficients

α =
3− β3

(
6u0 − 3u2

0β3 +
√
ρ0 − ρ0u0β3

)
2 (1− u0β3)

,

µ =
(7u0β3 − 3)

√
ρ0 − ρ0u0β3

24ρ0
,

γ =

√
ρ0 − ρ0u0β3

(
−9 + 51u0β3 + 16ρ0β

2
3 − 91u2

0β
2
3 + 49u3

0β
3
3

)
1152ρ2

0 (u0β3 − 1)
.
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Interestingly, a nonzero background velocity u0 is required in order to achieve a bal-
ance between third and fifth order dispersion. We note that the numerical simulations
in [6] consider the cases ρ0 = 0.5, u0 ∈ (−0.586,−0.543), and β3 ∈ (−1,−0.35), cor-
responding to σ = −sgnµγ = +1, the nonconvex dispersion case.

2.3. Other systems. The Kawahara equation (3) was derived in the case of
intense light propagation through nematic liquid crystals [15]. The governing equation
is a nonlocal NLS-type equation. The authors numerically observed the generation of
the crossover regime (see subsection 4.3) and related its qualitative features to those
of the full model equations, where a more detailed numerical and asymptotic analysis
were carried out.

We also note that, with the development of spin-orbit coupled Bose–Einstein
condensates (BECs) [24, 25], it is possible to “engineer” the dispersion experienced
by the wave functions of two nonlinearly coupled spin states. In a cigar-shaped trap
where the BEC is approximately one-dimensional, the mean-field dynamics may be
modeled by two coupled NLS equations (see, e.g., [1] and references therein), which
exhibit nonconvex dispersion.

Another novel application of the Kawahara equation is in the description of shal-
low water waves under ice cover when the Young modulus of ice is sufficiently large
[21, 28].

3. Solitary wave solutions. The structure of solitary wave solutions to the
Kawahara equation (3) is well known [3, 16, 23]. In what follows, we outline rele-
vant properties of these solutions. When σ = +1, solitary waves are unstable when
embedded in the continuous spectrum, i.e., when they exhibit a linear resonance for
velocities c > 0 [31]. However, there are stable, nonmonotonic solitary waves outside
the continuous spectrum when c < − 1

4 [5]. Our investigation of solitary wave solutions
focuses upon their numerical and asymptotic calculation. A key quantity of interest
is the amplitude-speed relation for these solitary waves, which will prove useful in the
study of DSWs.

We seek solutions of (3) in the form u(x, t) = f(ξ; c), ξ = x−ct. Upon integrating
once, we obtain

(19) − cf +
1

2
f2 + σf ′′ + f (4) = 0,

where decay of f(ξ; c) and its first four derivatives eliminates the integration constant.
The nonlinear equation (19) is solved via the Newton conjugate gradient method [33]
or with the MATLAB boundary value solver bvp5c for the solitary wave profile f
corresponding to the speed c. For comparative purposes, we recall the well-known
soliton solution of the KdV equation (1)

(20) f(ξ; c) = aσsech2

(√
|a|
12
ξ

)
, c(a) =

aσ

3
.

The monotonic Kawahara solitary waves are well-approximated by the KdV solution
(20) in the small amplitude regime [3]. Here, monotonic refers to the decay profile
on either side of the solitary wave peak—a convention presented in [23]. Higher order
dispersion acts as a small perturbation to the KdV solitary wave. This effect can be
understood by integrating (19) again to obtain

(21) − c

2
f2 +

1

6
f3 +

σ

2
(f ′)

2
+ f ′f ′′′ − 1

2
(f ′′)

2
= 0.
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Fig. 3. Solitary wave profiles and speed-amplitude relation for the Kawahara equation with

σ = −1 (solid) and KdV equation (dashed).

Evaluating at the solitary wave extremum ξ = 0 yields the correction to the KdV
speed-amplitude relation (20)

c(a) =
aσ

3
−
(
f ′′(0; c)

a

)2

=
aσ

3
− a2

36
+O(a3).(22)

The approximate expression is obtained by inserting the KdV soliton solution (20).
The speed correction in (22) is strictly negative, independent of σ.

The Kawahara solitary wave amplitude-speed relation and sample solitary waves
for the case of convex dispersion σ = −1 are shown in Figure 3.

In the regime of nonconvex dispersion, σ = +1, there are two distinct branches of
solitary wave solutions depicted in Figure 4. The case c > 0 corresponds to KdV-like
elevation waves. We note that the Kawahara speed-amplitude relation for σ = +1
more rapidly departs from the KdV relation in Figure 4 than in Figure 3 for σ = −1.
These solutions are embedded in the continuous wave spectrum, consisting of all
possible linear phase velocities ω/k = −k2 + k4 > − 1

4 and depicted on the vertical
axis in Figure 4. It was observed in [3] that a resonance between the solitary wave and
small amplitude waves with the same phase speed occurs. This radiation decreases
the amplitude of the solitary wave core as the solution propagates. This is indicative
of a general property of embedded solitary waves [31].

When c < − 1
4 , the solitary waves are depression waves with nonmonotonic pro-

files. In [5], it was shown that this solution branch is stable. The linearization of
the solitary wave equation (19) about zero results in a linear, constant coefficient
differential equation with characteristic roots

r2
± =

−1±
√

1 + 4c

2
,

that are complex with nonzero real part for c < − 1
4 and purely imaginary for − 1

4 <
c < 0. Consequently, solitary waves with negative velocity can only exist for c < − 1

4 .
A more detailed, asymptotic analysis of weakly nonlinear, modulated waves for 0 <
− 1

4 − c� 1 demonstrates a bifurcation of oscillatory, envelope solitary waves, hence
the nonmonotonic profiles in Figure 4 for c < − 1

4 [16, 5]. Our numerical computations
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Fig. 4. Solitary wave profiles and speed-amplitude relation for the Kawahara equation with
σ = +1 (solid) and KdV equation (dashed). The linear wave spectrum is denoted on the vertical
axis by the thick black curve. The “band gap” where no solitary waves exist is the shaded region.

yield only nonlinear periodic traveling waves for velocities − 1
4 < c < 0 so we call this

region the solitary wave band gap.

4. Dispersive shock waves. In this section, we study DSWs in the Kawahara
equation (3), fundamental coherent structures in dispersive hydrodynamics. Gener-
ically, DSWs arise in the long-time evolution of initial data that leads to gradient
catastrophe or wavebreaking in the dispersionless limit. The canonical GP problem
of dispersive hydrodynamics is to consider the evolution of step initial data

(23) u(x, 0) =

{
0, x < 0,

−∆, x ≥ 0,
∆ ∈ R.

More general, two-parameter initial conditions can be obtained by utilizing the
Galilean invariance of the Kawahara equation. First, we recall the behavior of so-
lutions to the dispersionless Hopf equation (2) with initial data (23). When ∆ < 0,
a rarefaction weak solution exists and approximates the dispersive hydrodynamics of
(3) subject to small dispersive corrections. However, when ∆ > 0, the Hopf equation
(2) admits a weak discontinuous shock wave solution with shock speed

(24) s = −1

2
∆

deduced from the Rankine–Hugoniot jump conditions. The additional dispersive
terms in the Kawahara equation act as a singular perturbation and a different ap-
proach must be explored.

In what follows, we use careful numerical computations of the GP problem for the
Kawahara equation (3) with initial data (23) as one of our analysis tools. Motivated
by the results of these simulations, we also implement traveling wave computations
and asymptotic analyses that favorably compare with the numerical results.
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We utilize an integrating factor pseudospectral discretization in space with fourth
order Runge–Kutta (RK4) temporal evolution. The method is a generalization of the
method applied to the modified KdV equation in [13] where ux is assumed to be
localized within the truncated spatial domain so that a Fourier series expansion is
possible. We temporally evolve ux using RK4 and the nonlinear term is computed
using a pseudospectral approach. The numerical simulations were performed on a
spatial domain of length L = 105 and the location of the initial, tanh smoothed
discontinuity appropriately chosen to minimize wave-boundary interactions. It is the
fast propagation of small amplitude dispersive waves due to fifth order dispersion that
necessitates such a large domain. Various aspects of the approximate solutions were
tested in order to ensure robustness of the numerical method as well as accuracy of
the solution. In particular, all solutions reported exhibit boundary deviations less
than 10−3. The Fourier coefficients of ux all decay to 10−10 or less in normalized
amplitude and the mass satisfies the conservation property∫ L

0

u(x, t)dx−
∫ L

0

u(x, 0)dx = − t∆
2

2
,

maintained below a relative error of 10−3, which was only approached for long times
t = O(100) as a result of the small amplitude oscillations at the boundaries. Typ-
ical simulations presented in this section maintained a relative error on the order
of 10−4.

We begin our investigation of Kawahara DSWs with the nonconvex dispersion
case σ = +1. The dynamics can be grouped into three qualitatively distinct regimes,
loosely characterized by the dispersion relation and soliton solutions. These regimes
are identified in Figure 5 along with representative numerical solutions. Small to large
jump heights generate predominantly small to large wavenumbers, respectively. The
regime of negative dispersion curvature can be associated with elevation solitary waves
embedded in the linear spectrum, hence naturally appear as a constituent part of
RDSWs. Oscillatory, depression solitary waves result from nonconvex dispersion and
are associated with TDSWs. The crossover regime straddles the dispersion inflection
point and the solitary wave band gap.

We now undertake a more thorough analysis of the large amplitude regime and
the generation of nonclassical TDSWs.

4.1. Nonconvex dispersion with large jumps: TDSWs. We now assume
that ∆ is sufficiently large in order to give rise to a nonclassical TDSW. The crossover
to this large jump regime will be made more precise in subsection 4.3. Figure 6 is
a simulation with initial jump ∆ = 1. We observe a sharp, nonmonotonic transition
from a constant to a nearly periodic wavetrain. The wavetrain exhibits some envelope
modulations that eventually terminate at the leading edge with small amplitude os-
cillations. This coherent wavetrain is the TDSW. We begin our analysis by verifying
two DSW-like properties of the dynamics: (1) a near solitary wave trailing edge and
(2) a harmonic wave leading edge.

First, we plot the amplitude-speed relations for both the trailing edge of TDSWs
with varying ∆, extracted from numerical simulations, and Kawahara solitary waves in
Figure 7(a), exhibiting excellent agreement. Furthermore, in Figure 7(b), we overlay
a Kawahara depression solitary wave with the same speed as the TDSW trailing edge.
A portion of the solitary wave correctly captures the nonmonotonic structure of the
rapid transition. Therefore, we can identify TDSWs with the nonmonotonic solitary
wave branch of solutions (cf. Figure 4).
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Fig. 8. Comparison of TDSW harmonic leading edge speed extracted from numerical simula-
tions with the linear group velocity. Leading edge velocities (shifted by the background −∆) versus
the wavenumber k̄ near the trailing edge extracted from numerical simulations (pluses). The linear
group velocity ωk(k̄,−∆) + ∆ is also depicted (solid).

Next, we numerically extract the wavenumber k̄ of the TDSW wavetrain just to
the right of the solitary wave trailing edge for varying ∆ by averaging the wavenumber
of 10 oscillations immediately to the right of the partial solitary wave after the TDSW
is developed. The leading edge velocity is also numerically extracted and compared
with the Kawahara group velocity evaluated at k̄ in Figure 8. We observe excellent
agreement. Based on these two numerical observations, we see that the TDSW ex-
hibits solitary and harmonic wave edges, typical of classical DSWs [14]. But that is
where the analogy ends. As we will now show, the TDSW exhibits unique, nonclassical
features.

4.1.1. TDSW trailing edge traveling wave. Further scrutiny of the trailing
edge shows what appears to be the development of a nonlinear, periodic wavetrain
co-moving with the partial solitary wave. The approximately periodic wavetrain os-
cillates about the mean value −∆. This suggests seeking a one-parameter family of
Kawahara traveling waves u(x, t) = f(ξ), ξ = x− ct subject to the BCs

equilibrium BCs:

{
lim

ξ→−∞
f(ξ) = f ′(ξ) = f ′′(ξ) = f ′′′(ξ) = f ′′′′(ξ) = 0,(25)

periodic orbit BC:


lim
ξ→∞

f(ξ) = F (ξ), F (ξ + P ) = F (ξ), ξ ∈ R,

1

P

∫ P

0

F (ξ)dξ = −∆,
(26)

where P is the wavetrain’s period. Inserting the traveling wave ansatz into the Kawa-
hara equation (3), we can integrate once and apply the BCs at ξ → −∞ to obtain the
same fourth order ODE (19) we obtained for solitary waves. The traveling wave has
two free parameters c and P that should be uniquely determined by the jump ∆. One
relation is the mean requirement in (26). Another relation is obtained by integrating
(19) again and applying the BCs (25) to obtain the zero energy integral (21).

To determine the periodic orbit F (ξ), we begin with an approximate, weakly
nonlinear calculation. We consider a small amplitude 0 < ā� 1 expansion of F and
c as in the classical Stokes expansion [32]

F (ξ) = F0(θ) + āF1(θ) + ā2F2(θ) + · · · , θ = k̄ξ,

c = c0 + ā2c2 + · · · ,

where k̄ = 2π/P is the wavenumber of the periodic orbit. Inserting the expansion
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into (19) and carrying out a standard perturbation calculation, we find

F = F0 + ā cos θ + ā2

(
2c2 −

1

2F0
− 1

2− 16k̄2 + 64k̄4
cos(2kξ)

)
+ o(ā2),(27)

c =
F0

2
+ ā2c2 + o(ā2),(28)

k̄2 =
1 +
√

1− 2F0

2
,(29)

where

(30) c2 =
3F0 − 16k̄2 + 64k̄2

4F 2
0 − 64k̄2 + 128k̄4

,

and F0 is a constant to be determined.
The mean requirement (26) applied to (27) yields

(31) F0 + a2

(
2c2 −

1

2F0

)
= −∆.

To account for the O(ā2) terms in the mean, the background F0 is expanded in the
parameter ā in the form F0 = F0,0 + ā2F0,2 + o(ā2). Substitution of the asymptotic
expansion yields

(32) F0 = −∆− ā2

2

(
29∆ + 24

√
2∆ + 1 + 24

∆2 + 16∆ + 8
√

2∆ + 1 + 8
+

1

∆

)
,

effectively canceling the O(ā2) mean terms in (27). The only remaining free parameter
is the wave amplitude ā, which can be determined by inserting the expansion (27)
into the zero energy estimate (21) and evaluating at the wave maximum θ = 0, which
yields

(33) ā =
∆3/2√

3 + 9∆
2 + 3

√
2∆ + 1

.

Combining (32), (30), (29). and (28), we obtain an amplitude correction to the speed
of the traveling wave

(34) c = −∆

2
+
ā2

4∆
,

and the square wavenumber of the wavetrain at leading order is given by

(35) k̄2 =
1 +
√

1 + 2∆

2
.

We verify the accuracy of these approximate solutions by directly computing
mean −∆, zero energy periodic orbits satisfying (19) and (21) using the MATLAB
boundary value solver bvp5c. Figure 9 shows the estimated and computed parameters
c, ā, and k̄ for mean −∆ periodic solutions. Excellent agreement is obtained for all
values of ∆ for which the traveling wave solutions were calculated.

What we have shown is that if a Kawahara traveling wave satisfying the BCs
(25) and (26) exists, its speed c is determined by the BCs and, in particular, the
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Fig. 10. (a) Superimposed traveling wave solution to the dynamical system (19) with BCs (36)
(solid) on a TDSW computed from the GP problem with ∆ = 1 (dashed) at t = 150. (b) Absolute
error between the two solutions.

jump height ∆. The first term in the velocity expansion c0 = −∆/2 is the Rankine–
Hugoniot jump condition (24) for classical shock waves. Therefore, we identify the
traveling wave velocity c as a generalized Rankine–Hugoniot condition (gRH) given in
(34).

We now directly compute traveling waves satisfying the BCs (25), (26) and the
zero energy integral (21). Given a jump height ∆ and an associated zero energy far-
field periodic solution F (ξ), we compute solutions of the fourth order equation (19)
with the four BCs

(36) f(0) = f ′(0) = 0, f(L) = F (0), f ′′(L)2 = −cf(L)2 +
1

3
f(L)3,

where L is sufficiently large so that the periodic orbit BC F (ξ) has been reached. The
third condition in (36) evaluates the periodic orbit at a maximum. The fourth con-
dition evaluates the zero energy integral (32) at a maximum. We use the MATLAB
collocation method bvp5c with an initial guess extracted from the numerical simula-
tion depicted in Figure 6 that is then used to perform continuation to other values
of ∆.

The computed traveling wave solution for ∆ = 1 is superimposed on the TDSW
determined by long-time integration of the GP problem, also for ∆ = 1, in
Figure 10(a). Sufficiently near the TDSW trailing edge, the two solutions are indis-
tinguishable. Figure 10(b) shows an absolute difference of at most 10−3 between these
two solutions. This demonstrates that the TDSW trailing edge rapidly approaches a
traveling wave, hence the terminology traveling DSW.
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We further examine properties of the TDSW by comparing the numerically ex-
tracted trailing edge velocity, s−, of the TDSW and the speed of the computed
traveling wave, c, in Figure 9(a). We also compare the amplitude of the TDSW
trailing edge wavetrain to the amplitude of the computed nonlinear wavetrain in the
traveling wave ā in Figure 9(b). Both properties agree over a wide range of ∆.

Our traveling wave computations suggest that the solution is a heteroclinic con-
nection between the equilibrium f = 0 and the mean −∆ periodic orbit f = F (ξ).
We are able to accurately compute such solutions for ∆ > ∆cr ≈ 0.58, suggesting a
threshold for their existence. Such a threshold is consistent with the speed require-
ment c < − 1

4 for nonmonotonic Kawahara solitary waves (cf. Figure 4), of which the
TDSW trailing edge is approximately composed. We will examine the relationship
between ∆cr and the crossover to the TDSW regime in subsection 4.3.

4.2. Nonconvex dispersion with small jumps: RDSWs. We now consider
the nonconvex case of (3) (σ = +1) in the small jump regime, 0 < ∆� 1. Introducing
the scaling

(37) u = ∆U, X = ∆1/2x, T = ∆3/2t,

into (3) results in a perturbed KdV equation

(38) UT + UUX + UXXX = −∆UXXXXX .

In the scaled variables (37), the initial conditions (23) become

(39) U(X, 0) =

{
0, X < 0,

−1, X > 0.

Numerically, we evolve the scaled equation (38) subject to (39) but report the re-
sults for the unscaled field u(x, t) through (37). Numerical results are shown in Fig-
ure 11. Sufficiently small jumps lead to KdV-like, classical DSWs as Figure 11(a) with
∆ = 0.06 attests. In this long-wave regime, the Kawahara linear dispersion relation
(4) is essentially concave (cf. Figure 2) so that the resulting DSWs exhibit positive
polarity and orientation. The DSW leading edge is well-approximated by an elevation
Kawahara solitary wave as shown in Figure 11(c). However, due to the embedding
of the elevation solitary waves in the continuous spectrum, the solitary wave emits
small amplitude radiation ahead of the shock, a phenomenon demonstrated in Fig-
ure 11(b). This DSW resonant radiation has also been observed in NLS-type models
[6, 15], so we introduce the nomenclature radiating DSW (RDSW) to describe this
phenomenon.

For the analysis of RDSWs, one could consider Whitham theory [32] for the full
Kawahara equation. We directly apply El’s DSW fitting method [12] (see also [14]),
which assumes the applicability of Whitham theory. Under appropriate conditions,
the method yields the leading and trailing edge speeds as functions of the jump ∆.
Additional macroscopic DSW properties that can be obtained are the solitary wave
edge amplitude and the harmonic wave edge characteristic wavenumber. The fitting
method can be carried out with knowledge of only the linear dispersion relation and
the solitary wave amplitude-speed relation, both of which we know exactly or approx-
imately. We note that the underlying assumptions for the validity of the DSW fitting
method require additional considerations, which we do not fully explore here. Rather,
we apply the method and compare the results with our numerical simulations.
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The RDSW trailing edge wavenumber k− is characterized by a simple wave so-
lution of the Whitham modulation equations. This wavenumber can be determined
from the solution of the ODE

(40)
dk

dū
=

ωū
ū− ωk

=
1

3k − 5k3
, k(−∆) = 0,

where ω is the Kawahara linear dispersion relation (4). The modulation variable ū
corresponds to the period-mean of the modulated periodic traveling wave and the
BC k(−∆) = 0 is due to the vanishing of the modulation wavenumber at the RDSW
solitary wave edge where ū = −∆. The ODE (40) can be directly integrated, yielding

(41) k(ū)2 =
3−

√
9− 20(ū+ ∆)

5
.

The RDSW trailing edge wavenumber is determined by evaluating (41) at the RDSW
trailing edge where ū = 0

k− = k(0) =

(
3−
√

9− 20∆

5

)1/2

=

(
2∆

3

)1/2

+
5∆3/2

9
√

6
+O(∆5/2).(42)

Reflecting the harmonic wave nature of the trailing edge, its velocity s− is then
determined by evaluating the Kawahara linear group velocity at the trailing edge

s− =
∂ω

∂k
(k−, 0) = −2∆ +

(3−
√

9− 20∆)2

10
= −2∆ +

10

9
∆2 +O(∆3).(43)
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There are several “barriers” to the DSW fitting analysis [14]. The first barrier
occurs at an extremum of the trailing edge speed as a function of jump height. The
minimum of s−(∆) occurs when ∆ = ∆i = 27/80 ≈ 0.34. At this value of ∆, the
trailing edge wavenumber k− =

√
3/10 is precisely the zero dispersion point ki. We

cannot expect the DSW fitting method to accurately describe RDSWs for ∆ > ∆i.
In another model equation with nonconvex dispersion, crossing this barrier led to
DSW implosion [26]. Note that the jump height ∆ = 9/20, above which k− becomes
complex-valued, exceeds the barrier ∆i.

The second barrier occurs when the hyperbolic Whitham modulation system loses
genuine nonlinearity at a linearly degenerate point. This barrier can be identified at
the RDSW harmonic wave edge by finding the zero of ωkū(ū−ωk)+ωkkωū [14], which
occurs at the jump height ∆ = ∆l = 1/4. This second barrier occurs at a smaller
jump height than the first.

The speed at the DSW leading edge is calculated in a similar manner by first
introducing conjugate variables k̃, and ω̃(k̃, ū) = −iω(ik̃, ū), where k̃ acts as an am-
plitude parameter and ω̃ is a “solitary wave dispersion relation.” One now solves the
ODE

(44)
dk̃

dū
=

ω̃ū
ū− ω̃k̃

= − 1

3k̃ + 5k̃3
, k̃(0) = 0.

Integrating and evaluating the conjugate wavenumber at the solitary wave leading

edge yields k̃2
+ = k̃(−∆)2 = −3+

√
9+20∆
5 . The DSW leading edge speed s+ is the

conjugate phase velocity evaluated at the leading edge

s+ =
ω̃(k̃+,−∆)

k̃−
=

3

25
− 1

5
∆− 1

25

√
9 + 20∆

= −1

3
∆ +

2

27
∆2 +O(∆3).

(45)

Utilizing the approximate Kawahara solitary wave amplitude-speed relation (22), we
can obtain an estimate for the solitary wave edge amplitude a+ by equating s+ =
c(a+), yielding

(46) a+ = 2∆ +
5

9
∆2 +O(∆3).

We note that all of the small ∆ asymptotics in (42), (43), (45), and (46) of
the RDSW agree with the results for KdV at leading order in ∆ [17]. However,
the RDSW exhibits an additional, radiative component. Using the RDSW analysis,
we can estimate some of the properties of the forward, short-wave radiation. The
resonance condition

(47) s+ =
ω(kr,−∆)

kr
= −∆− k2

r + k4
r

equates the RDSW leading edge solitary wave speed (47) with the phase speed of
linear waves, thus determining the resonant wavenumber kr

k2
r =

1

2
+

1

10

(
37 + 80∆− 4

√
9 + 20∆

)1/2

= 1 +
2

3
∆ +O(∆2).

(48)
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Fig. 12. Comparison of amplitude of the radiation in the small amplitude RDSW with analytical
prediction from (49) (solid) and extracted values from numerical simulations (plusses).

Because kr exceeds the linear dispersion inflection point ki =
√

3/10, resonant ra-
diation corresponds to the positive dispersion regime. We note that this resonant
radiation wavenumber agrees with the wavenumber k̄ associated with the TDSW in
(35) only at leading order (k̄ ∼ 1 + 1

4∆, 0 < ∆� 1).
References [30, 3] provide an asymptotic estimate for the amplitude ar of the

radiation from an unstable Kawahara solitary wave. Because a lone solitary wave
decays due to this linear resonance, the amplitude ar was found to be a time-dependent
quantity. However, the RDSW leading edge approximate solitary wave is sustained
so, using the results of [30, 3], we estimate the constant radiation amplitude

(49) ar ∼ K exp

(
− 3π

2
√

∆

)
,

where K ≈ 752.85 is a numerical constant. Figure 12 compares the numerically ex-
tracted RDSW radiation wavenumber kr and amplitude ar with the predictions of
(48) and (49). We note that due to fast dispersive propagation to the boundary, it
becomes exceedingly difficult to numerically resolve the exponentially small radiation
amplitude ar for small ∆, likely the cause of the discrepancy in Figure 12(b). This
shows, and has been noted previously [15], that a RDSW provides a means to effec-
tively sustain a Kawahara solitary wave—which would otherwise decay due to linear
resonance [3]—as part of a DSW. As Figure 11(d) reveals, the RDSW leading edge
amplitude closely follows the prediction in (46) until the jump exceeds about 0.2. One
possible explanation for this could be the apparent loss of genuine nonlinearity in the
Whitham equations when ∆ > ∆l = 1/4. At larger jumps, the RDSW solitary wave
edge no longer resembles a Kawahara solitary elevation wave solution but begins to
share qualities with TDSWs. The dynamics begin to lose the rank ordered structure
that is characteristic of classical DSWs. We now analyze the intermediate, crossover
regime where the DSW structure gradually transitions from RDSWs to TDSWs.

4.3. Nonconvex dispersion with intermediate jumps: The crossover
regime. As the magnitude of the jump initial data increases, the RDSW begins
to lose KdV-like characteristics while gaining features of a TDSW. This transition
between the RDSW with positive polarity and orientation (small jumps) and the
TDSW with negative polarity and orientation (large jumps) occurs gradually as ∆
is increased in magnitude. The evolution of the GP problem in Figure 13 is repre-
sentative of the evolution of step initial data with ∆ = 0.3 and displays significant
backward radiation adjacent to a recessed, large amplitude, oscillatory region. The
structure of the oscillatory region exhibits slower amplitude decay and more of an
amplitude separation from the leading edge than that of the smaller jump depicted in



SHOCK WAVES IN NONCONVEX DISPERSIVE HYDRODYNAMICS 45

-0.3

0
t = 100

-0.3

0

u

t = 200

-200 -100 0 100 200 300 400

x

-0.3

0
t = 300
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Figure 11(a). The DSWs for values of ∆ in this region are qualitatively characterized
by this remnant of a small amplitude RDSW with positive polarity and orientation
with superimposed small amplitude waves that suggest incoherence. Such incoher-
ence results in wave mixing that eliminates the rank ordered structure of the RDSWs
that occur at smaller jumps. The largest amplitude, elevation wave does not appear
to resemble any of the Kawahara solitary waves we have computed in Figure 4 and
waves propagate both ahead of and behind the peak. Just as we identify the leading
edge of RDSWs resulting from small jumps with elevation solitary waves in Figure 4
(c > 0) and the TDSW trailing edge for large jumps with nonmonotonic elevation
solitary waves (c < −1/4), we interpret the intermediate jump transition region as
corresponding to the solitary wave “band gap” for −1/4 < c < 0 in Figure 4. For
velocities in the band gap, solitary waves do not exist. However, we can compute pe-
riodic traveling waves in this region so a modulation description may be possible, but
we do not pursue this further here. Rather, we seek to identify when the backward
radiation on u = 0 emanating from the transition to u = −∆ ceases, signifying the
onset of the steady TDSW.

If these backward radiating waves were, in fact, linear, then they could persist
whenever the linear phase velocity on zero background coincides with the edge speed;
otherwise we expect a TDSW. The linear phase velocity vph = ω(k, 0)/k = −k2 +
k4 attains a minimum value of −1/4 precisely when the phase and group velocities
coincide k = 1/

√
2 and when the nonmonotonic Kawahara solitary waves appear

(cf. Figure 4). Equating the minimum of vph to the TDSW leading order gRH (34),
c = −∆/2 gives the critical jump height ∆cr ∼ 1

2 , above which linear waves cannot
propagate behind the TDSW. However, the numerical simulations show that waves
continue to propagate backward even when ∆ = 1/2. Our numerical simulations have
shown that this phenomenon persists up to jumps of ∆ ≈ 0.6. Although close to the
theoretical prediction, we argue that the true threshold criterion is the existence of the
TDSW traveling wave. We found in subsection 4.1.1 that we could no longer compute
TDSWs for ∆ below 0.58, very close to the observed transition to TDSWs at ∆ = 0.6.
Therefore, the TDSW is a threshold phenomenon, only existing for ∆ > ∆cr. For
∆ < ∆cr, either perturbed, classical DSWs are generated as in subsection 4.2 (when
∆ . 0.2 from Figure 11(d)) or a crossover, oscillatory state lacking a well-defined
solitary wave edge.
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Fig. 14. Development of a classical Kawahara DSW with initial jump ∆ = 1 and convex
dispersion σ = −1. Approximate initial data is shown in the top figure with the dashed curve.
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Fig. 15. Comparison of DSW leading edge properties to Kawahara solitary waves. (a) Speed-
amplitude relation of Kawahara solitary wave (solid) and DSW trailing edge (pluses) for σ = +1.
(b) Overlay of numerically computed solitary wave with coincident velocity with the DSW trailing
edge for ∆ = 1.

4.4. Convex dispersion. In the case where the sign of the third order term is
negative (σ = −1), the Kawahara dispersion relation (4) is a purely convex function
of k. These are “convex dispersive hydrodynamics” so we expect KdV-like DSWs.
For completeness, we briefly analyze this case.

The numerical simulation in Figure 14 depicts the temporal evolution of step
initial data (23) for (3). This figure portrays the temporal development of a DSW
that is qualitatively similar to the classical KdV DSW. The addition of the fifth order
term in (3) serves as a perturbation to the KdV equation that, in contrast to the
nonconvex case σ = +1, does not qualitatively change the dynamics. The DSW
trailing edge behaves like a solitary wave solution of the Kawahara equation as shown
by Figure 15(a), where the DSW trailing edge speed-amplitude relation, extracted
from multiple simulations, is compared to the solitary wave amplitude-speed relation
from Figure 3. A Kawahara solitary wave of velocity given by the trailing edge is
superimposed on the DSW trailing edge in Figure 15(b).

We now implement the DSW fitting method [12] (see also [14]). The implemen-
tation is essentially the same as that of subsection 4.2 but we now use the disper-
sion relation (4) and approximate solitary wave amplitude-speed relation (22), both
with σ = −1. We omit the details. The macroscopic DSW harmonic leading edge
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Fig. 16. Kawahara DSW trailing edge wavenumber (a) and DSW leading edge speed (b) for
varying jump height. Comparison between Whitham theory predictions for the Kawahara equation
(solid), Whitham theory for the KdV equation (dashed), and numerical simulation (plusses).

properties are the characteristic wavenumber
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s+ =
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5
+ 3∆− 3
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√
9 + 20∆ = ∆ +
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9
∆2 +O(∆3).(51)

Figure 16(a) shows the DSW harmonic edge wavenumber k+ versus jump height.
DSW fitting theory provides an excellent approximation of the leading edge wavenum-
ber, extracted from our numerical simulations. In particular, DSW fitting correctly
captures the reduction of the trailing edge wavenumber relative to the leading or-
der KdV result k+ =

√
2∆/3. We see that higher order dispersion has a significant

quantitative effect on the properties of the harmonic wave edge.
The macroscopic properties of the DSW solitary wave trailing edge include the

velocity

s− =
3

25
− 4

5
∆− 1

25

√
9− 20∆ = −2

3
∆ +

2

27
∆2 +O(∆3)(52)

and the amplitude

(53) a− = 2∆− 5

9
∆2 +O(∆3),

approximated by using (22) and equating s− = c(a−). Although the trailing edge
velocity is only defined for 0 < ∆ < 9/20, the small ∆ asymptotics agree with the KdV
velocity (and amplitude a+) to leading order [17]. The next order correction shows
that the Kawahara DSW solitary wave edge velocity is above the corresponding KdV
DSW velocity, which agrees with the numerical simulations shown in Figure 16(b) for
∆ below the critical value 9/20. The DSW fitting method fails for ∆ > 9/20, even
though numerical computations show a clear trend.

5. Discussion and conclusion. The Kawahara equation is a universal asymp-
totic model of weakly nonlinear, dispersive hydrodynamics with higher order dis-
persion. The classification of the GP initial step problem carried out here reveals
classical, KdV-like DSWs when the dispersion is convex and three distinct regimes
for nonconvex dispersion. These three regimes represent an intrinsic mechanism for
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the transition from convex to nonconvex dispersive hydrodynamics. An example from
shallow water waves (recall subsection 2.1) illuminates this transition.

When gravity dominates surface tension effects, the Bond number B is small so
that higher order dispersive effects continue to yield negative dispersion curvature
for all but very short wavelengths (recall (16)). DSWs in this regime are therefore
KdV-like, satisfying (1) with σ = +1, with positive orientation and polarity as in
Figure 1(b). For B less than but close to 1/3, where surface tension and gravity start
to balance, the nonconvexity of the dispersion relation manifests in the Kawahara
equation (3) with σ = +1. Small jumps still yield KdV-like DSWs with positive
orientation and polarity but now they are accompanied by a resonance and small am-
plitude forward radiation. These are RDSWs. As the jump height is further increased,
the forward radiation gets stronger at the expense of backward wave propagation un-
til a critical jump height is reached. Above this threshold, a TDSW with negative
orientation and polarity is generated, exhibiting a steady traveling wave structure at
the trailing edge. Thus, the crossover from positive to negative DSW polarity and
orientation manifests as an intrinsic feature of the Kawahara equation as the jump
height is increased. For B > 1/3, σ = −1 and the DSWs are all KdV-like with neg-
ative polarity and orientation. Because the Bond number is inversely proportional
to fluid depth, we expect to see these nonconvex features for sufficiently shallow
flows. In fact, recent numerical simulations of the full Euler equations in this regime
reveal what appear to be RDSWs and TDSWs in transcritical flow over topography
[19].

Higher order dispersive effects can play an important role in nonlinear fiber optics
as demonstrated in [6, 7, 8, 9, 27]. The Kawahara equation is a simpler, scalar, unidi-
rectional model in which to interpret the dynamics of these works (cf. subsection 2.2).
In particular, the authors in [6] observed coherent structures consistent with RDSWs
and TDSWs described in detail here. Solitary wave and DSW resonances modeled
by a third order NLS equation were observed experimentally in [9]. This motivates
further analysis of higher order NLS models. Can TDSW traveling wave solutions of
the bidirectional NLS equation with third order dispersion be obtained? Also, the
implications of these coherent structures for physical applications warrants further
exploration.

The TDSW is a nonclassical DSW in the sense that it is not KdV-like; rather it
satisfies a generalized Rankine–Hugoniot relation resulting from the far-field behavior
of a constant in one direction and a periodic traveling wave in the other. The TDSW
rapidly approaches a traveling wave solution of the Kawahara equation satisfying
these far-field conditions, consisting of a coherent combination of a uniform wavetrain
connected to the constant value through a partial, nonmonotonic solitary wave. The
fact that the Kawahara traveling wave ODE is fourth order enables this solution. It is
natural to conjecture that the TDSW consists of a periodic orbit solution to the trav-
eling wave ODE that is heteroclinic to an equilibrium, generalizing homoclinic and
heteroclinic solutions studied previously [18]. An open question is the rigorous exis-
tence of a traveling wave solution of the Kawahara equation exhibiting this structure.
Nonuniformity in the leading edge of the TDSW corresponds to a forward propagating
wavepacket moving with the group velocity for a distinct wavenumber, approximately
that of the periodic orbit. The uniform wavetrain acts as a channel for the effective
dissipation of energy. Interestingly, the TDSW only exists for sufficiently large jumps
∆ & 0.60, below which waves radiate forward and backward from the sharp transition
region due to the Kawahara solitary wave band gap.
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The generalized Rankine–Hugoniot condition is a kind of nonlinear resonance
condition in the sense that the trailing edge solitary wave velocity coincides with
the adjacent periodic traveling wave velocity. Such a condition has been assumed
previously [6, 15] but here we show that it is inherent in the generation of a traveling
wave structure within the TDSW.

Although a nonconvex dispersion can give rise to TDSWs above threshold, it is
not necessary. Another model equation, the conduit equation, also with nonconvex
dispersion, does not exhibit such solutions [26]. But that model, a Benjamin–Bona–
Mahony type equation [4] does display nonclassical DSW dynamics at the DSW har-
monic wave edge. Likely, the principle reason that TDSWs do not occur is the lack
of a linear resonance at the DSW solitary wave edge.

A unique feature of the TDSW is its triple personality. On the one hand, it is
similar to a dissipative shock wave in that it satisfies a generalized Rankine–Hugoniot
condition and exhibits a steady character when viewed near the shock front. On the
other hand, the TDSW is similar to a classical DSW, exhibiting two distinct limits: a
small amplitude, harmonic edge moving with the group velocity and a large amplitude
solitary wave edge moving with the phase velocity. But the TDSW is distinct in that
the transition from a periodic wave to a solitary wave occurs almost instantaneously,
setting it apart from DSWs in convex dispersive hydrodynamics and shock waves in
dissipative hydrodynamics.
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