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A distinct type of solitary wave is predicted to form in spin torque oscillators when the free layer has a
sufficiently large perpendicular anisotropy. In this structure, which is a dissipative version of the conservative
droplet soliton originally studied in 1977 by Ivanov and Kosevich, spin torque counteracts the damping that
would otherwise destroy the mode. Asymptotic methods are used to derive conditions on perpendicular aniso-
tropy strength and applied current under which a dissipative droplet can be nucleated and sustained. Numerical
methods are used to confirm the stability of the droplet against various perturbations that are likely in experi-
ments, including tilting of the applied field, nonzero spin torque asymmetry, and nontrivial Oersted fields.
Under certain conditions, the droplet experiences a drift instability in which it propagates away from the
nanocontact and is then destroyed by damping.
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I. INTRODUCTION

The concept of a soliton as a localized particlelike exci-
tation that preserves its shape can be extended to systems
that are far from thermodynamic equilibrium through the
concept of a “dissipative soliton.”1 This enables the analysis
of a broad range of physical, chemical, and biological non-
linear systems in which localized excitations are observed.
Driven magnetic systems, especially those of technological
interest, exhibit strongly nonlinear dynamics and are an ideal
experimental domain for exploring the dissipative soliton
model.

In this paper, we provide an analytical theory for a novel,
localized oscillation mode in a spin torque oscillator with a
free layer having perpendicular magnetic anisotropy. The sa-
lient features of this mode include a frequency well below
that of uniform ferromagnetic resonance, a weak dependence
of frequency on bias current and a precession angle at the
maximal value of 90°. Combining numerical micromagnetic
simulations with an asymptotic analysis of the equations of
motion, we identify this mode as a dynamic, dissipative mag-
netic soliton that is closely related to the “magnon droplet”
predicted by Ivanov and Kosevich in 1977.2,3 The mode cen-
tral region exhibits magnetization pointing nearly opposite to
its equilibrium direction with a perimeter manifesting 90°
precession. From our asymptotic analysis, we derive condi-
tions on perpendicular anisotropy and bias current for the
nucleation and existence of the dissipative droplet. Using our
numerical simulations, we analyze the stability of the dissi-
pative droplet soliton as a function of applied magnetic field,
bias current, and spin torque asymmetry.

Solitons in conservative systems occur when nonlinear
terms in the equation of motion balance the effects of
dispersion.4 A classic example is a light pulse moving in a
lossless optical fiber: the change of refractive index with fre-
quency �dispersion� tends to make the pulse spread out, but
for a certain pulse shape, the change in refractive index with
light intensity due to the optical Kerr effect �nonlinearity�
exactly balances the dispersion. Pulses having this shape can
propagate without spreading and are called solitary waves or

solitons. The balance between nonlinearity and dispersion
typically allows for the existence of a continuous family of
solitons that can be excited in the system, rather than a single
solution. In the optical fiber example, the family can be pa-
rametrized, for example, by pulse amplitude, and there is a
continuous range of amplitudes that satisfy the soliton bal-
ancing condition.

Dissipative solitons1 are characterized by an additional
balancing condition between gain and loss that typically al-
lows for only a single solution for a given set of parameters.
Although conservative soliton models can explain weakly
nonlinear behavior seen in magnetic systems of exception-
ally low damping,5 damping is not a small effect for many
magnetic systems of both fundamental and technological in-
terest. By combining classical soliton theory with bifurcation
theory of nonlinear dynamics and concepts of self-
organization the dissipative soliton concept provides a
framework for describing a broad range of solitonlike behav-
iors. Here, we apply this concept to a nanoscale ferromag-
netic system in which both damping and a driving force �spin
torque� are important.

Spin torque6–8 occurs when a current is driven through a
structure with alternating magnetic and nonmagnetic layers
in which spin-dependent conductance at the interfaces results
in a spin-polarized electron flow. When the polarized elec-
trons enter a ferromagnetic layer whose magnetization M is
not collinear with the electron spins, the transmitted spins are
rotated toward M and the angular momentum absorbed by
the ferromagnetic layer is known as the spin torque. Typical
devices have two ferromagnetic layers through which current
is driven: a thick “fixed” layer that determines the direction
of electron polarization, and a thin “free” layer whose orien-
tation can be readily changed by spin torque. For current of
the appropriate polarity, spin torque opposes the intrinsic
damping torque in the system, and currents above a threshold
produce dynamic states in which M of the free layer can be
manipulated without applying a magnetic field. This effect
has been used to control switching of nanoscale magnetic
elements9 with potential applications in computer memory
and data storage. The effect has also been used to produce
coherent, frequency-tunable microwave oscillations10 in a
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nanoscale device known as a spin torque oscillator �STO�
with potential applications in integrated microwave circuits
for mixing and active phase control. Recent reviews cover
the physics of spin torque11 and its possible applications.12

The equations of motion for M in the presence of spin
torque �presented below� are inherently nonlinear and their
full solution for a general case is often studied by use of
numerical methods. Analytical methods can sometimes be
applied by invoking restrictions such as high-symmetry, spa-
tially uniform M �the “macrospin” model�, and small preces-
sion amplitude �small angle between M and its equilibrium
direction�. These restricted cases have been used to explain
experimental results with mixed success. The local nature of
spin torque allows it to drive large amplitude excitations in
which M varies on the scale of the magnetic exchange length
�typically a few nanometers�, something that applied mag-
netic fields cannot do. As we show here, this regime of
strongly nonlinear, strongly nonuniform, sustained magneto-
dynamics is amenable to theoretical examination using nu-
merical and analytical approaches. This regime is also ex-
perimentally accessible in STOs.

We note that a different type of magnetic soliton gener-
ated by spin torque, called a spin wave “bullet,” was pre-
dicted by Slavin and Tiberkevich in 2005 to occur in the
point-contact geometry with magnetic films exhibiting in-
plane oriented anisotropy and in-plane applied magnetic
field.13 For this case, the precession frequency decreases with
increasing current, which can result in localization if the fre-
quency falls below the bottom of the spin wave band at the
ferromagnetic resonance �FMR� frequency. The weakly non-
linear bullet soliton is a solution to a Nonlinear Schrödinger-
type equation with third-order nonlinearity in the excitation
amplitude. As such, its predicted experimental signature con-
sists of subtle shifts in microwave output frequency and
threshold current relative to that expected for a nonlocalized
mode. In contrast, the droplet soliton studied here exhibits
dramatic differences in behavior from that of a nonlocalized
mode. This is due to the fact that it is a strongly nonlinear
solution of the full equations of motion rather than simply a
third order expansion.

Domain walls,14 magnetic bubbles,15 and vortices16 are
examples of well-studied, strongly nonlinear, localized struc-
tures that occur in magnetic materials. The droplet differs
from these static structures in that it is inherently dynamic;
the frequency of spin precession within the droplet is always
greater than zero. In this work, we focus on the two-
dimensional �2D�, nontopological droplet, but we note that
droplets in two and three dimensions come in topological
flavors as well.3

We begin in the next section by presenting an asymptotic
analysis of the model equations for the dissipative droplet in
a high-symmetry case. We will also derive the droplet’s fre-
quency vs current relation in this section. Section III is de-
voted to the study of droplets in physically realistic situations
incorporating the current-induced Oersted field as well as
canting of the applied field and fixed layer. Section IV details
experimentally accessible nucleation conditions for a droplet
that take advantage of a small amplitude instability. In Sec.
V, we discuss possible extensions of the theory and we relate
the droplet to other excitations in thin magnetic films. We
conclude in Sec. VI with a summary of the droplet’s unique
properties. Appendices A and B provide details of our stabil-
ity calculation and numerical method, respectively.

II. DROPLET IN A NANOCONTACT

We consider the Landau-Lifshitz-Slonczewski equation in
nondimensional form6,11 describing the free layer magnetiza-
tion in polar coordinates �m=m�� ,� , t�; bold symbols repre-
sent vectors in R3 or R2, contextually dependent; e.g., m
= �mx ,my ,mz��

�m

�t
= − m � heff

precession

− �m � �m � heff�

damping

+
�V���

1 + �m · mf
m � �m � mf�

spin torque

, m:R2 → S2,

heff = �2m + h0 + hoe + �hk − 1�mzz, �m� � 1.
�1�

Figure 1 is a schematic of the nanocontact geometry and
coordinate systems considered in this work. The magnetiza-
tion m=M /Ms and fields �e.g., h0=H0 /Ms� are normalized
by the saturation magnetization Ms, time is normalized by
2� / ����0Ms �� is the gyromagnetic ratio and �0 is the per-
meability of free space�, and space is normalized by the ex-
change length lex=�D / ����0Ms� �D is the exchange param-
eter and � is the reduced Planck’s constant�. We consider a
free layer whose thickness � is much smaller than the mag-
netic excitation wavelengths so that a 2D model with local
dipolar fields is justified.17 The precessional term is driven
by the effective field heff incorporating exchange �2m, a uni-
form applied field h0=h0�sin 	0 ,0 ,cos 	0� �h0
0�, the
current-induced Oersted field hoe=−foe���� �the definition of
foe is given in Ref. 18 and summarized in Sec. III A�, the
perpendicular field hkmzz due to crystal anisotropy �hk�1�,
and the demagnetizing field for a thin film −mzz. The
Landau-Lifshitz damping coefficient is �. The spin torque

FIG. 1. �Color online� Schematic of nanocontact �yellow central
disk of radius ���, the domain of m �R2 in polar coordinates with
radius �, azimuthal angle ��, the range of m �unit sphere S2 with
polar angle , azimuthal angle ��, orientations of the applied field
h0 and fixed layer mf.
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term involves �= I / Ic, where I is the current,
Ic= ��2+1�2Ms

2e�0�r�
2� / ��P�2� �P and �
1 are the polar-

ization and spin torque asymmetry parameters, respectively,6

e is the electron charge, r� is the nanocontact radius�,
�= ��2−1� / ��2+1� �0���1�, and V���=H���−��, where
H is the Heaviside step function, ��=r� / lex is the nondimen-
sional contact radius, and mf= �sin 	f ,0 ,cos 	f� is the uni-
form fixed layer magnetization.

Numerical computations of Eq. �1� will be presented in
Sec. III by means of a method discussed in Appendix B. For
the rest of this section, we will focus on a high-symmetry
case where

high symmetry case: 	0 = 0, hoe � 0. �2�

For the analysis of this case, it is helpful to consider Eq. �1�
in spherical coordinates

m = �cos � sin ,sin � sin ,cos �

�see Fig. 1�

�

�t
= F�,�� − �G�,�� + �V���P�,�� , �3�

sin 
��

�t
= G�,�� + �F�,�� + �V���P��,�� , �4�

where

F�,�� = sin �2� + 2 cos  � � · � ,

G�,�� = − �2 +
1

2
sin 2�����2 + hk − 1� + h0 sin  ,

P�,�� =
− cos  cos � sin 	f + sin  cos 	f

1 + ��cos � sin  sin 	f + cos  cos 	f�
,

P��,�� =
sin � sin 	f

1 + ��cos � sin  sin 	f + cos  cos 	f�
.

The polar angle  satisfies 0��� while the azimuthal
angle � is interpreted modulo 2�.

In the symmetric case of Eq. �2�, we can remove the ex-
plicit dependence on hk from Eqs. �3� and �4� by introducing
the following rescaling:

� = ��/�hk − 1, t = t�/�hk − 1� ,

� = �hk − 1���, h0 = �hk − 1�h0�, �� = ��/�hk − 1. �5�

Recall that we are assuming hk�1. Then, with the scalings
in Eq. �5� and dividing Eqs. �3� and �4� by hk−1, we can,
without loss of generality, take hk−1=1. For the rest of this
Sec. II, we will use the scalings in Eq. �5� so that hk→2.

In this section, we consider localized magnetization con-
figurations that satisfy

lim
��→�

���,�,t�� = 0

with sufficiently rapid decay. As such, we define the mag-
netic energy in terms of exchange and anisotropy energy via

E��,�� =
1

2
�

R2
�����2 + sin2 �����2

exchange

+ sin2 �

anisotropy

�dr�.

Note that the damping and spin torque terms break energy
conservation

dE
dt

�,�� = �
R2

	����G�,�� − h0� sin �P�,��

− F�,��P��,��� − ���G�,�� − h0� sin �2

+ F�,��2�
dr�. �6�

A. Conservative droplet soliton

In the absence of damping and spin torque ��=0, ��=0�,
Eqs. �3� and �4� admit a continuous family of exponentially
localized, nontopological solutions known as magnon droplet
solitons.2,3 These solutions can be parametrized by the fre-
quency �0 and written as

 � 0��;�0� ,

� � ��0 + h0��t�, = ��0�hk − 1� + h0�t . �7�

They satisfy a balance between exchange �dispersion� and
anisotropy �nonlinearity� through the nonlinear eigenvalue
problem

F�0,��0 + h0��t�� = 0,

G�0,��0 + h0��t�� = ��0 + h0��sin 0,

or

� d2

d��2 +
1

��

d

d��
�0 −

1

2
sin 20 + �0 sin 0 = 0 �8�

with the boundary conditions

d0

d��
�0;�0� = 0, lim

��→�

0���;�0� = 0. �9�

0 5 10 15 20
−1

−0.5

0

0.5

1

ρ ′

m z

ω = 0 .94
ω = 0 .77
ω = 0 .52
ω = 0 .15

FIG. 2. �Color online� Conservative droplet profiles with mz

=cos 0.
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The conservative droplet solutions in Eqs. �7�–�9� have
the following properties. The polar angle 0 varies with ra-
dial distance and is independent of time; thus the spatial
distribution of mz=cos 0 is static and azimuthally symmet-
ric. The azimuthal angle � is independent of position and
varies linearly in time; thus all points precess at a common
frequency and in phase. It has been shown that2,3 �0 satisfies

0 � �0 � 1. �10�

Therefore, the total precessional frequency �0+h0� varies be-
tween the Zeeman frequency h0� and the frequency of spa-
tially uniform precession about =0, 1+h0� �the FMR
frequency�.

While the conservative droplet does not have a closed-
form analytical expression, we calculate it by numerically
solving Eq. �8� subject to the boundary conditions in Eq. �9�
with the function BVP4C in Matlab®. A plot of several con-
servative droplet profiles is shown in Fig. 2. We see that the
amplitude at the origin 1−mz�0;�0�=1−cos 0�0;�0� de-
creases as the frequency is increased. While it may appear in
Fig. 2 that mz�0;�0=0.15�=0, in fact all conservative drop-
lets with 0��0�1 satisfy mz�0;�0��−1 owing to their
nontopological structure.

The energy for the droplet E0�E�0 , ��0+h0��t��
satisfies2,3

dE0

d�0
� 0. �11�

The fact that the energy is a decreasing function of frequency
has been used to argue that the conservative droplet is stable
in a 2D material.3 The 2D conservative droplet embedded in
an infinite, three-dimensional magnet is known to be un-
stable. However, preliminary studies suggest that, for suffi-
ciently thin films, the 2D conservative droplet is stabilized.
This work is beyond the scope of this paper and will appear
elsewhere.

As we now show, the conservative droplet soliton can be
generalized to damped/driven systems such as a nanocontact.
Whenever we refer to “droplet,” we mean the dissipative
droplet studied in the future sections. We will always use
“conservative droplet” to describe the solution of Eq. �8� that
is monotonically decaying to zero as �→�.

B. Dissipative droplet soliton

We now extend the analysis of Kosevich, Ivanov, and
Kovalev2,3 to the case of the dissipative droplet solution,
where damping is no longer assumed to be negligible, and
spin torque is included in the analysis. In addition to the
balance between exchange and anisotropy that was required
in the conservative droplet case, a further balance between
uniform damping �loss� and spatially localized spin torque
�gain� will be derived for the droplet to be sustained. We will
assume that the spin torque and damping, while small, are
not zero and are of the same magnitude so that

� = O���, 0 � � � 1.

We look for an asymptotic solution in the following form:

�r�,t�� = 0���;�� + �1�r�,t�� + ¯ ,

��r�,t�� = �� + h0��t� + �
�1�r�,t��

sin 0���;��
+ ¯ . �12�

We have set �0→� to distinguish the frequency of the drop-
let � from that of the conservative droplet �0. We will con-
clude that there is no frequency shift due to damping and
spin torque so that �=�0 here. However, other perturbations
beyond those considered here could lead to a frequency shift.
Inserting the expansions in Eq. �12� into Eqs. �3� and �4�, and
equating like orders in � gives the following equations for
the perturbations 1 and �1:

�1

�t�
+ L��1 = − �� + h0��sin 0

+
��

�
V����P�0,�� + h0��t�� , �13�

��1

�t�
+ L1 = −

��

�
V����P��0,�� + h0��t�� , �14�

where the self-adjoint, Schrödinger operators L� and L are

L� � −
�F

��
�0,�� + h0��t��

1

sin 0

= − ��2 − �d0

d��
�2

+ cos2 0 − � cos 0,

L �
�G

�
�0,�� + h0��t�� − �� + h0��sin 0

= − ��2 + cos 20 − � cos 0.

Note the following important property:

L� sin 0 = 0. �15�

The rest of this section is concerned with the solution of
the perturbative Eqs. �13� and �14� in two separate cases. We
use standard solvability arguments for forced, linear differ-
ential equations to remove secular terms �see e.g., Ref. 19� in
order to derive an expression for the current �� at which the
balancing condition for the droplet is achieved.

1. Case �f=0

We first consider the case where the fixed layer is oriented
perfectly normal to the film plane so that 	f=0. In this re-
gime, we can study the effect of variable spin torque asym-
metry �.

In addition to the scalings in Eq. �5�, we can also scale out
the dependence on the applied field h0� when 	f=0 with the
substitution

� = �� + h0�t�. �16�

Then,  and �� satisfy Eqs. �3� and �4�, as before, but with
h0�=0. This transformation shows that the vertical applied
field simply shifts the precessional frequency by h0�.
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We seek a solution to Eqs. �13� and �14� in the form 	f
=0, h0�=0, 1�0, and �1��r� , t��=�1����� �i.e., linear phase
evolution with time� which results in the following nonho-
mogeneous equation for �1�:

L��1� = − � sin 0 +
��V����sin 0

��1 + � cos 0�
,

�1��0� = 0,
d�1�

d��
�0� = 0. �17�

This equation is solvable if and only if the nonhomogeneous
terms are orthogonal to the kernel of L�. By use of Eq. �15�,
multiplying the right-hand side of Eq. �17� by � sin 0 and
integrating from 0 to infinity we obtain the existence condi-
tion for a dissipative droplet, ��=�sus���, where

�sus��� = ��

�
0

�

sin2 0���;����d��

�
0

� V����sin2 0���;��
1 + � cos 0���;��

��d��

. �18�

The choice ��=�sus��� singles out a specific value for the
current as a function of the droplet frequency 0���1. This
value of the current provides the necessary balance between
damping and spin torque, in addition to the balance between
exchange and anisotropy, in order to sustain the droplet.
Therefore, we call �sus��� the sustaining current.

We can also understand the choice for the sustaining cur-
rent in Eq. �18� by computing the rate of change in the en-
ergy for the droplet from Eq. �6�

dE
dt�

�0,�t� + ��1�/sin 0�

= ��
R2
�sus���V����

sin2 0

1 + � cos 0
− �� sin2 0�dr�

+ O��2� = O��2� . �19�

Therefore, the energy of the droplet is approximately con-
served for the choice ��=�sus. Figure 3 shows a snapshot in
time of a dissipative droplet.

Figure 4 represents the numerical evaluation of Eq. �18�
and shows the dependence of �sus on �. The droplet fre-
quency has two branches as the sustaining current is varied
but only one branch is stable. For a given droplet frequency
�, consider increasing the current slightly above the sustain-
ing value, ��=�sus���+���. From Eq. �19�, the droplet en-
ergy will increase, and from Eq. �11�, this increase in energy
corresponds to a decrease in droplet frequency for a stable
droplet.2,3 Thus, the upper branch in Fig. 4, for which in-
creasing current causes an increase in frequency, is unstable.

Figure 4 shows that there is a minimum sustaining current
�sus

min, maximum frequency �max, and maximum mz in the
center of the droplet mz

max where

�sus
min � min

���0,1�
�sus��� � �sus��max� ,

mz
max � cos 0�0;�max� .

While the specific choice of spin torque cut-off function
V���� �e.g., we could have used a smooth cutoff, as opposed
to a sharp, Heaviside cutoff� may be important in numerical
applications,20 it has only a slight effect on the droplet sus-
taining current. For the Heaviside cutoff considered here, Eq.
�18� simplifies to

�sus��� = ��

�
0

�

sin2 0���;����d��

�
0

��� sin2 0���;��
1 + � cos 0���;��

��d��

. �20�

Equation �20� reveals the explicit dependence of the sustain-
ing current on two key spin torque parameters: the contact
radius ����0 and the spin torque asymmetry 0���1. We
now investigate properties of the dissipative droplet as a
function of these two parameters. Figures 5�a�–5�d� show the
dependence of �sus

min, mz
max, �max, and the droplet radius �drop�

on the contact radius for various choices of the spin torque
asymmetry. The droplet radius is defined to be the radius at
half maximum

−15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

15

x ′

y ′
m z

−1

0

1

FIG. 3. �Color online� Dissipative droplet soliton for the high-
symmetry case with 	f=0. The color scale corresponds to mz while
the vector field corresponds to the in-plane components �mx ,my�.
The circle here and in future plots represents the boundary of the
nanocontact. Parameters are �sus /�=0.94, �=0.17, ���=5.24, and
�=0.

0 1 2 3
0

0.25

0.5

0.75

1

1.25

σ /α

ω

(σ m i n
s u s /α , ω m ax)

FMR
unstable
stable

FIG. 4. �Color online� Dissipative droplet frequency �dashed
and solid curves� as a function of sustaining current from Eq. �18�.
Parameters are ���=5.24 and �=0. The dashed-dotted line is the
FMR frequency.
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mz��drop� � =
1

2
�1 − mz

max� . �21�

Figure 5�a� shows that droplets excited by smaller contacts
require larger sustaining currents. The dependence of �sus /�
on ��� and � for small contact radii can be made explicit by an
asymptotic evaluation of the denominator in Eq. �20� giving

�sus���
�

=

2��1 + � cos 0�0;����
0

�

sin2 0��;���d�

���
2 sin2 0�0;��

+ O�1�, 0 � ��� � 1. �22�

Therefore, �sus
min /� grows like 1 /���

2 for small contact radii in
agreement with Fig. 5�a�. Interestingly, we find that the drop-
let is constrained to have a frequency 0���0.75 �Fig.
5�b��, significantly below the FMR frequency of 1. Also,
since mz

max�0 �Fig. 5�c��, the droplet always has some re-

gion near its center that is partially inverted with respect to
the surrounding magnetization. As shown in Fig. 5�d�, the
droplet is well localized within the nanocontact; e.g., �drop�
����, when ����3. There is a minimum droplet radius of
about 2�hk−1lex in dimensional units. Finally, spin torque
asymmetry has only a small, perturbative effect and does not
substantially alter the droplet solution.

2. Case �=0

We consider now the case without spin torque asymmetry
�i.e., �=0� in which case we can study the effect of varying
the angle of the fixed layer 	f on the droplet dynamics. In
this section, we use the rescalings in Eq. �5� but do not use
the transformation in Eq. �16�.

We solve Eqs. �13� and �14� with �=0, 1�r� , t��
�s�r��sin �t�, and �1�r� , t����̃�r��+�c�r��cos �t�,
leading to the following system of nonhomogeneous equa-
tions:

L��c + �s = −
��

�
sin 	fV����cos 0, �23�

Ls − ��c = −
��

�
sin 	fV���� , �24�

L��̃ = − �� + h0��sin 0 +
��

�
cos 	fV����sin 0. �25�

Note that, in contrast to the case 	f=0, the overall phase �
no longer evolves linearly in time. Applying L to Eq. �23�
and L� to Eq. �24� gives the decoupled system

�LL� + �2��c =
��

�
sin 	f��V����

− L	V� · �cos 0� · �
����� ,

�L�L + �2�s =
��

�
sin 	f�L�	V� · �
����

− �V����cos 0����� .

These equations are always solvable if LL�+�2 and
L�L+�2 are strictly positive operators. One can show that
L�
0, so that L�L+�2�0. One can also show that L


−�
2 , where −�

2 is the smallest eigenvalue of L and is
strictly negative. Then, LL�
−�

2 . We have verified by
numerical computation of � that �2��

2 so that LL�

+�2�0 as required, and Eqs. �23� and �24� are solvable.

We are interested in the solvability condition for �̃ in Eq.
�25�, which is
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FIG. 5. �Color online� Dissipative droplet properties for varying
contact radius ��� and spin torque asymmetry �: �a� minimum sus-
taining current, �b� maximum frequency, �c� maximum mz at origin,
and �d� droplet radius �dotted line is �drop� =���, plotted for
comparison�.
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�sus��� = ��� + h0��sec 	f

�
0

�

sin 0���;����d��

�
0

�

V����sin2 0���;����d��

.

�26�

Note that the applied field appears only as a shift in the
droplet frequency, as in the case 	f=0 studied in the previous
section. The expression �26� for the sustaining current agrees
with the previously derived sustaining current in Eq. �18�
when �=0 and 	f=0, as required. Thus, the dominant effect
of rotating the fixed layer is to increase the sustaining current
in proportion to sec 	f.

III. PHYSICAL PERTURBATIONS OF
A DISSIPATIVE DROPLET

So far, we have considered the dissipative droplet solution
only for a simplified geometry where asymptotic methods
can be applied. In these cases, the external field is both uni-
form and oriented perfectly perpendicular to the film plane.
By making this geometrical simplification, we were able to
factor out the contribution of the external field from the
droplet solution. However, in a real point-contact system, the
external field is neither uniform nor perfectly perpendicular.
In particular, the current flowing through the contact is an
additional source of spatially inhomogeneous magnetic field,
the Oersted field, and the applied uniform magnetic field in
actual experiments is usually tilted away from the perpen-
dicular axis. We employ micromagnetic simulations to inves-
tigate how these physically important perturbations to the
external field alter the ideal droplet solution. The numerical
details used for our simulations are presented in Appendix B

We find that the combination of external field tilt and the
Oersted field breaks the symmetry of the solution such that
the droplet is no longer centered in the middle of the contact.
As a result, the solution takes on a nontrivial inhomogeneous
phase structure where the phase of the spin precession closer
to the center of the contact precedes the phase further from
the center of the contact. In addition, the spatial structure of
the droplet is no longer perfectly circular. For some particu-
lar combinations of simulation parameters, the droplet breaks
away from the contact altogether and dissipates, a behavior
we call a drift instability. When this occurs, the droplet may
maintain its form for many precession cycles, but it eventu-
ally decays, since outside the contact there is no spin torque
excitation to balance damping.

A. Oersted field

First, we consider the effect of the current-induced Oer-
sted field while keeping the applied field and fixed layer
oriented almost normal to the film plane �canted by 0.00001°
and 0.40°, respectively�. The reason for this slightly asym-
metric configuration is to test whether high-symmetry solu-
tions are structurally stable to small changes in the system
parameters. Such a configuration is experimentally possible,

in principle. Our model for the Oersted field was presented in
Ref. 18 and takes the form

hoe = − foe���� ,

where

foe��� = goe��� +
I

2�Msr�
��/�� 0 � � � ��

��/� �� � � .
� �27�

The function g��� given in Ref. 18 involves integrals of
Bessel functions and depends on the geometry of the current-
density distribution. The parameters defining g in Ref. 18 are
d=1.67, z�=−0.925, and a=2.92. The other, more dominant,
term in Eq. �27� is the field generated by an infinitely long
conducting wire. As an example, for the simulation in Fig. 6,
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FIG. 7. �Color online� Dots: perturbed droplet frequency as a
function of current with the Oersted field computed from micro-
magnetic simulations. Crosses: perturbed droplets that undergo a
drift instability; the frequency is calculated before the instability
manifests. Solid curve: droplet frequency as a function of the sus-
taining current from Eq. �20�. Dashed-dotted: the Zeeman �h0� and
FMR �h0+hk−1� frequencies. Triangle: the Slonczewski critical
current and onset frequency for high-symmetry �Ref. 8� �see Ap-
pendix A�. Solid vertical line: numerically computed threshold cur-
rent in the presence of the Oersted field and the canted fixed layer.
Parameter values are the same as in Fig. 6.
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FIG. 6. �Color online� Dissipative droplet in the presence of the
Oersted field and with the applied field and fixed layer nearly per-
pendicular to the plane. Parameter values are hk=1.25, �=0.03,
��=5.24, h0=1.8, 	0=0.00001°, 	f=0.40°, �=0.257, and �=0.196.
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we have max���0,���goe����=0.0081, while I /2�Msr�=0.086,
an order of magnitude difference.

Figure 6 illustrates how the Oersted field changes the
structure of the droplet. In contrast with the symmetric case
in Fig. 3, the azimuthal angle � shows significant spatial
variations. The droplet is also slightly shifted off-center. The
strong phase variations are indicative of a tendency for the
droplet to propagate.21 In some cases, although not for the
simulation in Fig. 6, the droplet breaks free from the nano-
contact. This drift instability is discussed further in Sec.
III B.

In Fig. 7 we compare the numerically computed perturbed
droplet frequency as a function of current with the sustaining
current from Eq. �20�. We find that the droplet frequency is
approximately shifted down by an overall amount of 0.012
but otherwise follows the same trend as the symmetric result.
This behavior demonstrates that the analysis of the previous
section, despite the necessary high-symmetry restrictions,
yields relevant, qualitative information about localized struc-
tures excited in a physically realizable nanocontact.

As will be shown in Sec. IV, when the current exceeds a
threshold value; e.g., the Slonczewski critical current,8 a
droplet can nucleate for sufficiently large anisotropy. The
vertical line in Fig. 7 is the numerically computed threshold
current. It differs from Slonczewski’s result because hoe�0,
	0�0, and 	f�0. This threshold for droplet nucleation sug-
gests a hysteretic effect that will be discussed in Sec. IV C.

Our micromagnetic simulations also show that the per-
turbed droplet, for certain parameter choices �e.g., the
crosses in Fig. 7�, undergoes a drift instability. This behavior
will now be investigated further.

B. Canted applied field, fixed layer, and Oersted field

In this section, we investigate the combined effects of the
Oersted field as well as canting of the applied field and fixed

layer. Figure 8 is a time sequence showing the evolution of a
strongly perturbed droplet over one precessional period. In
contrast to the nearly symmetric configuration of Fig. 6,
where the droplet was slightly shifted to the left, the droplet
is slightly shifted down, toward the region of lower in-plane
field.

As the system parameters are changed, the shifting of the
droplet center can be large enough to actually dislodge the
droplet from the nanocontact. An example of this drift insta-
bility is shown in the panels of Fig. 9. The current was taken
to be less than the current for Fig. 8, which did not experi-
ence a drift instability. A number of precessional periods pass
before the droplet breaks free. Once free, it propagates, but
because it no longer satisfies the required balancing condi-
tion between damping and spin torque, it loses amplitude and
decays. Once the droplet has drifted outside of the nanocon-
tact, a new one is formed if the nucleation conditions are
satisfied �see Sec. IV�. We have also observed droplets that
drift several nanocontact diameters before decaying, i.e., the
central magnetization lifts up so that minr�R2 mz�r , t��0.
The manifold in parameter space in which the droplet mani-
fests a drift instability appears to be complicated. Neverthe-
less, we readily find parameter regimes where the droplet
apparently does not experience the drift instability, as in
Figs. 6–8.

Notice that the drifting droplet of Fig. 9 propagates down,
in the −y direction. Recall that the canting direction of the
applied field is along x. Due to the symmetry of the Oersted
field, the direction of propagation of the drifting droplet ap-
pears to track the azimuthal angle of the applied field minus
90°, if 	0 is sufficiently large. For example, if the applied
field is canted along y, then the droplet will drift along x if
unstable. This can be understood as a consequence of mag-
netostatic interactions between the effective dipole moment
of the droplet and the field gradient associated with the Oer-
sted field. Given the canting of the applied field, the effective
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FIG. 8. �Color online� Time sequence of a strongly perturbed droplet over one period of precession in the presence of a canted applied
field, canted fixed layer, and Oersted field. Parameter values are hk=1.25, �=0.03, ��=5.24, h0=1.8, 	0=5°, 	f=31.4°, �=0.257, and �
=0.189. The time of the initial panel here and in Fig. 9 is set to 0 for comparison. The simulation actually began earlier.
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FIG. 9. �Color online� Time sequence showing the droplet drift instability for the same parameter values as in Fig. 8 but with smaller
current �=0.121. To facilitate visualization, the length of the in-plane magnetization vectors is normalized to the largest value in each frame.
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dipole moment of the droplet acquires an in-plane compo-
nent that is drawn to the edge of the contact where the Oer-
sted field is also in the −x direction such that the Oersted
field gradient acts to trap the droplet. In the case of Fig. 6,
where the applied field is canted only 0.00001°, the droplet is
observed to drift to the left rather than down. Therefore, the
strength of the Oersted field and the in-plane component of
the applied field have a strong effect on the existence and
dynamics of a drift instability.

IV. NUCLEATION OF A DISSIPATIVE DROPLET

Figure 10 shows the birth of the droplet pictured in Fig. 8
starting from a state pointing uniformly in the z direction.
For sufficiently large perpendicular anisotropy hk and cur-
rent, the magnetization inside the nanocontact reverses and
nucleates a droplet. In this section we show that the reversal
mechanism is caused by an instability of small amplitude
waves. We will study Eq. �1� in the weakly nonlinear regime
and find that the small amplitude Slonczewski mode that
exists near the threshold for the onset of dynamics is stable/
unstable depending on whether hk is less than/greater than a
critical value hk

cr. We find that hk
cr�1 due to exchange effects

and converges to 1 as the contact size is increased. The value
of hk

cr is important for the possible experimental observation
of a dissipative droplet.

A. Stability analysis of a macrospin

Before studying the partial differential equation �PDE� in
Eq. �1�, we consider the macrospin model where spatial
variation is neglected. The stability analysis for this model is
suggestive and mathematically simpler. However, we find
that the critical anisotropy field in the macrospin case hk

cr,m

satisfies hk
cr,m�1 and depends strongly on the applied field,

which differs from the result obtained by analyzing the full
PDE model, where we find hk

cr�1 with weak applied field
dependence.

We consider Eqs. �3� and �4� neglecting all spatial varia-
tion and interlayer dipole coupling in the symmetric regime
	0=0 and 	f=0; i.e., we are assuming that the initial condi-
tion for the system is in the parallel state. In this case, the
equation for  is decoupled from �, so we can just study the
scalar, first-order ordinary differential equation

̇ = − � sin �cos �hk − 1� + h0� +
� sin 

1 + � cos 
. �28�

By linearizing Eq. �28� about the equilibrium �0, we find
that it becomes unstable when

� � �0 � ��1 + ���h0 + hk − 1� ,

in agreement with previous numerical and mathematical
analyses of this system contained in Ref. 22. We seek a pe-
riodic equilibrium solution �t�=e just above threshold by
taking

� = �0 + �, 0 � � � �0.

Then, from Eq. �28�

e � � 2��

1 − hk + ��2�1 − hk� − h0��1/2

.

This solution exists �is real valued� as long as

hk � hk
cr,m � 1 −

�h0

1 + 2�
� 1. �29�

Furthermore, one can show that this equilibrium is stable.
Therefore, when hk�hk

cr,m, the equilibrium �0 undergoes
a supercritical Hopf bifurcation as the current � is increased
beyond �0. When hk�hk

cr,m, there is no periodic solution,
and the system switches from �0 to the fully reversed
state e=� when � exceeds �0.

B. Stability analysis of the micromagnetic system

We consider Eq. �1� in the symmetric regime with 	0=0,
hoe�0, 	f=0, and the substitutions

u = mx + imy, mz = �1 − �u�2 � 1 −
1

2
�u�2,

where �u��1. Then u approximately satisfies a complex non-
linear Schrödinger-type equation

i
�u

�t
= �1 + i���2u − �h0 + hk − 1�u − i��h0 + hk − 1�u

+ i
�V���
1 + �

u +
1

2
�hk − 1��u�2u +

1

2
�u�2�u�2 − �u�2�2u�

+ i���u�2u +
i

2
��h0 + 2hk − 2� −

�V���
�1 + ��2��u�2u .

�30�

Similar to the macrospin case, when � is increased past a
threshold value, the zero solution becomes unstable. The
threshold, critical current and onset frequency were found by
Slonczewski as a solution to a linear eigenvalue problem9
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FIG. 10. �Color online� Birth of a dissipative droplet soliton for the current �=0.186, above the Slonczewski critical current �s

=0.160. Parameter values are the same as those in Fig. 8.
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�see Eq. �A1��. Incorporating weak nonlinear effects, Ref. 23
showed that a small amplitude periodic solution exists as a
modulation of the Slonczewski mode for hk=0 and �=0.
This time-periodic, weakly nonlinear mode was found to be
numerically stable. In this section and Appendix A, we ex-
tend these results to 0�hk�hk

cr and 0���1, where hk
cr is

defined through Im���hk
cr��=0 and � is given by Eq. �A4�.

This behavior is analogous to the supercritical Hopf bifurca-
tion for the macrospin, studied in the previous section.

In this section, we show that weakly nonlinear modula-
tions of the Slonczewski mode are no longer stable when
hk�hk

cr�1. This behavior is analogous to the switching ex-
hibited by the macrospin for hk�hk

cr,m and � above thresh-
old. While we are unable to analytically follow the dynamics
of the instability, numerical simulations such as the droplet
birth sequence shown in Fig. 10 demonstrate that the mag-
netization reverses inside the nanocontact and develops into
a dissipative droplet.

For the stability analysis, we seek a multiple scales solu-
tion representing a modulation of the Slonczewski mode in
the form

u�r,t� = ei�h0+hk−1�tei�st��A�T�f��� + �3u1�r,T� + ¯� ,

� = �s + �2�1, �31�

where 0���1 is the amplitude of the mode at the origin,
which is modulated by A�T� with T=�2t the “slow” time, �s
is the frequency of the Slonczewski mode f��� with thresh-
old current �s, and �1 represents a deviation from �s. The
explicit form for f and the implicit equations for �s and �s
are given in Appendix A.

Invoking a solvability condition at O��3�, Eq. �A3� gives
the nonlinear amplitude equation

i
dA

dT
= i

�1

1 + �
�A + ��A�2A �32�

with complex linear and nonlinear coefficients � and �. There
is a time-periodic solution of Eq. �32� for a specific choice of
�1�R

A�T� = ei�s,1T, �1 = − �1 + ��
Im���
Re���

,

�s,1 = − Re��� −
Im���Im���

Re���
. �33�

This solution represents the nonlinear frequency shift �2�s,1
to the Slonczewski frequency �s. The stability analysis in A
shows that the solution �33� is unstable when Im����0. An
explicit formula for � is given in Eq. �A4�. We evaluate the
integrals numerically and plot Im��� as a function of hk for
specific parameter values in Fig. 11.

There is a critical value of the anisotropy field hk
cr satisfy-

ing

Im���hk
cr�� = 0 �34�

above which the weakly nonlinear Slonczewski mode is
modulationally unstable. In other words, weak modulations
of the Slonczewski mode will grow exponentially in time

when hk�hk
cr. Figure 12 shows the dependence of hk

cr

=hk
cr��� ,� ,h0�, computed numerically by solving Eq. �34�

with Eq. �A4�, as the contact radius and spin torque asym-
metry are varied and h0=1.8. We see that hk

cr is strictly
greater than one and that larger perpendicular anisotropy is
required to enable the nucleation of a droplet in smaller
nanocontact devices. For a given contact size, larger spin
torque asymmetry permits nucleation of a droplet at smaller
values of hk.

We have also investigated the dependence of hk
cr on the

applied field magnitude h0. Since h0 appears in � only mul-
tiplied by �, we have �

�h0
hk

cr��� ,� ,h0�=O���, which is small.
This is confirmed by numerical calculations of the hk

cr depen-
dence on h0
0 for the values of �� and � plotted in Fig. 12.
We find that hk

cr varies by at most 3% for h0� �0,1.8� with
�

�h0
hk

cr��� ,� ,h0��0. Importantly, the lower bound for hk
cr is

preserved: hk
cr��� ,� ,h0��1 when h0
0. This behavior

stands in stark contrast to the macrospin result for hk
cr,m�1 in

Eq. �29� that strongly depends on the applied field.
From Eq. �33�, we see that �1 is negative when

Im��� /Re����0. Numerically, we find that Re����0, so that
�1�0 when hk�hk

cr, which corresponds precisely to the in-
stability criterion. Furthermore, when �1�0, any finite-
amplitude excitation will tend to grow, thus the time-periodic
solution is unstable. This behavior is similar to the macrospin
model discussed in the previous section where, for hk�hk

cr, a
small amplitude periodic solution did not exist.

Numerical simulations of Eq. �1� confirm the foregoing
analysis, even in the nonsymmetric cases with 	0�0, 	f
�0, and hoe�0. There is a critical value of the current above
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FIG. 11. Modulation parameter Im��� as a function of hk. When
Im����0, the weakly nonlinear Slonczewski mode is modulation-
ally unstable. Parameter values are �=0.03, ��=5.24, h0=1.8, and
�=0.26.
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FIG. 12. �Color online� The critical anisotropy field hk
cr as a

function of contact radius �� for various spin torque asymmetries �.
Other parameters are �=0.03 and h0=1.8.
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which large amplitude dynamics ensue. When hk is above
hk

cr, we find that the magnetization inside the nanocontact
reverses to form a localized, coherently precessing, fully
nonlinear magnetic solitary wave. We identify this solitary
wave with the dissipative droplet soliton found in the
asymptotic analysis of Sec. II.

Due to the numerically robust formation of the droplet for
a variety of initial data and across a large parameter regime,
we view it as a global attractor. As long as the current is
above threshold, a droplet is observed to nucleate.

C. Hysteresis

We have shown in this section that a dissipative droplet
will form when the current exceeds the threshold for insta-
bility of small amplitude waves inside the contact. In the
high-symmetry case of Eq. �2� and 	f=0, the threshold is the
Slonczewski critical current �s, which is plotted in Fig. 7
�triangle� along with the numerically calculated threshold
current from micromagnetic simulations that incorporate the
Oersted field and a canted fixed layer ��=0.156, vertical
line�. We observe that the minimum droplet sustaining cur-
rent is below the threshold for droplet nucleation. This sug-
gests a hysteretic effect, whereby a droplet can be nucleated
at a current above threshold and remains stable when fol-
lowed by an adiabatic decrease in the current below thresh-
old. We have performed this experiment numerically for the
perturbed droplets of Fig. 7. We use an already nucleated
droplet �at �=0.211� as the initial condition for a new simu-
lation with �=0.151, below threshold. We find that suffi-
ciently close to, but below, threshold, the droplet’s frequency
slightly increases but remains stable. For further decrease of
the current to �=0.136, however, the droplet undergoes a
drift instability similar to behavior shown in Fig. 9. Since the
current is below threshold a new droplet does not form.

V. DISCUSSION

The Slonczewski form for the spin torque term we are
considering here, Eq. �1�, was derived strictly for the case of
spatially uniform magnetization distributions.6 Nonlocal gen-
eralizations of the spin torque term to nonuniform magneti-
zation distributions have been derived in the small amplitude
regime24 and applied to single layer nanocontact
simulations.18 Because the spin torque and damping terms
are treated as perturbations giving rise to a dissipative drop-
let solution, we expect that the specific form for the spin
torque term, and the damping term for that matter, will not
yield qualitative changes in the structure of the droplet. The
asymptotic analysis presented here is applicable to an arbi-
trary spin torque term as long as its net effect is to oppose the
inherent damping in the system.

Due to the symmetries in the problem when 	0=	f�0,
one might expect the Oersted field to prefer the excitation of
a localized vortex structure; e.g., a topological soliton.3 We
observe no such excitations in our simulations.

Two-dimensional, conservative topological solitons are
stable but they have higher energy than the conservative non-
topological soliton,3 providing one possible explanation for
this behavior. Another possible explanation lies in the form
of the spin torque term. In contrast to the local form for the
spin torque considered here, single-layer nanocontact simu-
lations that incorporate a nonlocal spin torque have demon-
strated the formation and numerical stability of a preces-
sional vortex in high-symmetry configurations without
perpendicular anisotropy.18 A more realistic model of the
spin torque may favor a topological soliton in certain cases.

Unfortunately, we as yet have no detailed physical under-
standing of either the dissipative droplet asymmetry or the
drift instability in the presence of the combined effects of an
Oersted field and a tilted applied field. In part, our lack of
understanding stems from the limited theory for the spatial
propagation of the droplet.21,25 Extension of the theory pre-
sented here to cases where the droplet is accelerated by field
gradients and other such forces may provide more physical
insight to aid in understanding why the droplet is subjected
to displacing forces.

The physical appearance of the droplet is reminiscent of
the magnetic bubble that was once the subject of intense
investigation as a possible alternative to ferrite-corecomputer
memory.15 Indeed, we can identify the zero-frequency drop-
let as a topologically trivial magnetic bubble26 with a wind-
ing number of zero, though in the theory presented here, the
droplet frequency approaches zero only in the limit of infi-
nitely large diameter. However, we expect that the droplet
will converge to the bubble structure at a finite diameter,
contingent on the inclusion of nonlocal magnetostatic energy
in the calculation; even when considering free layer films as
thin as 3 nm, such a term will eventually overcome the posi-
tive contribution of exchange energy to the oscillator fre-
quency, stabilizing the droplet as a static structure. In this
sense, then, we can think of the conservative droplet soliton,
a delicate balance between exchange and perpendicular an-
isotropy, as a dynamically collapsing bubble, and the dissi-
pative droplet soliton as an imminently collapsing bubble
that is critically stabilized by the localized injection of spin
torque.

VI. CONCLUSION

We have derived equations for a dissipative droplet soli-
ton through an asymptotic analysis of the Landau-Lifshitz-
Slonczewski equation for a point-contact spin torque oscilla-
tor with perpendicular anisotropy in the free layer. The
droplet soliton is a localized, dynamic, solitary wave solution
consisting of partially reversed magnetization directly under
the contact and a zone of large amplitude precession in a
region bounding the reversed magnetization. The diameter of
the precessing boundary is approximately the contact diam-
eter. The droplet frequency is always strictly less than the
ferromagnetic resonance frequency for the film and is also a
monotonically decreasing function of droplet diameter. The
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balance between spin torque and damping required to sustain
the droplet determines the relation between bias current and
frequency. The instability of small amplitude solutions that
leads to formation of the reversed domain in the droplet re-
quires a minimum perpendicular anisotropy that is a function
of the contact radius and spin torque asymmetry.

Some of the unique, identifying properties of the dissipa-
tive droplet that could be observed experimentally include
�a� the droplet’s frequency is well below the ferromagnetic
resonance frequency. �b� Sufficiently far from the minimum
sustaining current, the droplet’s frequency has a weak depen-
dence on current. �c� The droplet may manifest a drift insta-
bility, which would reveal itself as a transitory cessation in
ac oscillations until the droplet again forms. �d� Hysteresis in
current is expected, unless a drift instability results in a finite
droplet lifetime.

We have investigated the nucleation and stability of the
dissipative droplet soliton through numerical simulations. We
find that droplet formation begins once the current in the
point contact is sufficient to instigate the small amplitude
Slonczewski mode, characterized by spin waves that radiate
away from the point contact. For sufficiently strong perpen-
dicular anisotropy, this mode is subject to a modulational
instability and rapidly evolves into the reversed magnetiza-
tion profile of the droplet soliton. We find that the droplet is
stable in certain parameter regimes with regard to the inho-
mogeneous Oersted field and to variations in spin torque
asymmetry and applied field angle. Finally, the droplet is
subject to a drift instability that is a complicated function of
the parameters employed in this theory.

APPENDIX A: MODULATIONAL INSTABILITY
OF SLONCZEWSKI MODE

Here we provide the details of our stability analysis for
small amplitude, modulated waves excited in a nanocontact.
Inserting the ansatz in Eq. �31� into Eq. �30� and considering
the leading order behavior in � gives the linear Slonczewski
eigenmode f��� satisfying8

L0f � �1 + i��� f� +
1

�
f�� − i��h0 + hk − 1�f + i

�sV���
1 + �

f + �sf

= 0. �A1�

Slonczewski considered both �s and �s as eigenvalues for
this equation and found the C1�0,�� solution

f��� = � J0�ki�� 0 � � � ��

cH0
�1��ko�� �� � �

�, c =
J0�ki���

H0
�1��ko���

,

where J0 is a Bessel function and H0
�1� is a Hankel function.

The inner and outer wave numbers ki and ko are

ki =��s − i���h0 + hk − 1� − �s/�1 + ���
1 + i�

,

ko = −��s − i��h0 + hk − 1�
1 + i�

.

Since �f�����Ce−Im�ko�� /�� for ����, the sign of ko has been
chosen so that Im�ko��0, and f experiences exponential de-
cay due to material damping ��0. The decay length is weak
compared to the contact radius. The two real eigenvalues �s
and �s are determined by solving the complex valued tran-
scendental equation

kiH0
�1��ko���J1�ki��� = koH1

�1��ko���J0�ki��� ,

which results from continuity of the first derivative of f .
Continuing the asymptotic analysis to the next order gives

the following nonhomogeneous equation:

L0u1 = R1 � − i
dA

dT
f + i

�1V���
1 + �

Af +
1

2
�A�2A�hk − 1 + i��h0

+ hk − 1� − i
�sV���
�1 + ��2��f �2f + f d2

d�2 +
1

�

d

d�
��f �2

− �f �2 f� +
1

�
f�� + 2i��f��2f� . �A2�

Since the kernel of the adjoint of L0 is spanned by f� � �

denotes complex conjugation�, we invoke the solvability
condition of Eq. �A2�

�
0

�

f���R1����d� = 0 �A3�

to determine the dynamical equation for A�T� in Eq. �32�.
The complex valued linear and nonlinear coefficients � and �
are

� =
1 + �J0�ki���/J1�ki����2

1 − �ki/ko�2

and

� =

�hk − 1 + i��h0 + hk − 1���
0

�

�f �2f2�d� − i
�s

�1 + ��2�
0

��

�f �2f2�d� − �1 – 2i���
0

�

�f��2f2�d�

��
2J1�ki���2�1 − �ki/ko�2�

. �A4�
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We now perform a linear stability analysis of the time-
periodic solution A�T�=ei�s,1T in Eq. �33� by inserting

A�T� = ei�s,1T�1 + v + iw�, v,w � R, �v�, �w� � 1

into Eq. �32�. Keeping only the terms linear in v and w gives
the simple, decoupled dynamical system

dv
dT

= 2 Im���v,
dw

dT
= − 2 Re���v ,

which experiences exponential growth when Im����0.

APPENDIX B: MICROMAGNETIC COMPUTATIONAL
MODELING

The numerical method we have used to solve Eq. �1� is
similar to the method tersely presented in Ref. 18 but
adapted to a trilayer nanocontact. In this appendix, we de-
scribe our method in detail. In brief, we use a polar coordi-
nate grid and cylindrical magnetization basis. Angular de-
rivatives are computed by use of a pseudospectral, Fourier
method while radial derivatives on a nonuniform grid are
computed by use of finite differences. For time stepping, we
use an explicit, hybrid second-order Runge-Kutta time step-
per with error control, ODE23 from Matlab®.

The polar coordinate system is a particularly efficient and
accurate choice for nanocontact simulations. The discretiza-
tion we use is nonuniform in radius �“inner” and “outer”
grids�

�n = q�n�

� ���
0

n ��d�out − d�in�tanh� � − n̂

w
� + 1� + d�in�d� ,

�B1�

where n=1, . . . ,N, and n̂, w are parameters determining the
location and width of the smooth change from the fine inner
grid spacing d�in to the coarser outer grid spacing d�out
�d�in. We typically have �1�d�in. For the angular, pseu-
dospectral discretization, we expand the cylindrical magneti-
zation basis in a truncated Fourier series with M Fourier
modes

m��n,�,t� � �
k=−M/2

M/2−1

eik��m̂n,k
����t�� + m̂n,k

����t�� + m̂n,k
�z� �t�z� .

�B2�

The transformation from an equispaced angular grid
�k=−�+ �k−1�2� /M with magnetization coefficients
mn,k

��,�,z��t� evaluated at the discrete grid ��n ,�k�, to the Fou-
rier representation in Eq. �B2� is achieved by use of the fast
Fourier transform.

The advantage of this discretization is that we can solve
on a uniform computational grid while the physical grid is
clustered in and around the nanocontact, where the majority
of the fine scale dynamics occur. The outer grid supports the
propagation of spin waves of the appropriate wavelength
away from the nanocontact. In order to simulate an infinite
domain, we choose a finite domain large enough, L��N

�30��, so that spurious waves are naturally damped to a
negligible amplitude. Then their reflection off the boundary
does not affect the strongly localized dynamics near the
nanocontact.

Computing the vector Laplacian �2m is the computation-
ally intensive portion of the algorithm. Angular derivatives
are approximated by multiplication in Fourier space �

�� → ik.
The approximation of radial derivatives using finite differ-
ences requires some care, especially near the origin. We dis-
cuss the details now.

Due to the nonuniform radial grid in Eq. �B1�, radial de-
rivatives in computational space require appropriate factors
of q and its derivatives. For example,

�

��
→

1

q�

�

�n
,

�2

��2 →
1

q�3�q�
�2

�n2 − q�
�

�n
� .

The radial derivatives in computational space are approxi-
mated using sixth-order finite differences. The boundary con-
dition at the artificial boundary �=L for Eq. �1� is the Neu-

mann condition
�m̂N

��,�,z�

�� �t�=0, which is implemented by use of
a standard ghost point method and one-sided differences. For
radial derivatives near the origin at n=1,2, we define sym-
metry conditions to obtain m̂−n,k

��,�,z��t� by taking �→�+�

m̂n,k
����t�eik�� = �− 1�k+1m̂n,k

����t�eik��+���− ��

� �− 1�k+1m̂−n,k
��� �t�eik�� ,

m̂n,k
����t�eik�� = �− 1�k+1m̂n,k

����t�eik��+���− ��

� �− 1�k+1m̂−n,k
��� �t�eik�� ,

m̂n,k
�z� �t�eik�z = �− 1�km̂n,k

�z� �t�eik��+��z

� �− 1�km̂−n,k
�z� �t�eik�z , �B3�

where we have used �→−� and �→−� when �→�+�.
Therefore, m̂n,k

��,���t� are even/odd functions of n as k is odd/
even while m̂n,k

�z� �t� is even/odd as k is even/odd. At �=0, we
take �see Ref. 27�

m̂0,k
��,���t� = 0, �k� � 1,

m̂0,k
�z� �t� = 0, k � 0,

�m̂0,�1
��,��

��
�t� = 0,

�m̂0,0
�z� �t�
��

= 0. �B4�

The derivative conditions in Eq. �B4� are approximated by
use of one-sided differences to obtain an estimate of m̂0,�1

��,���t�
and m̂0,0

�z� �t�. The symmetries in Eq. �B3� and the conditions in
Eq. �B4� enable the use of centered finite differences, even
near the origin. An explicit, Runge-Kutta second-order time-
stepping method is used to advance the discretized version of
Eq. �1� forward in time while renormalizing the magnitude
of m after every time step to preserve the constraint �m�=1.
To avoid severe time-step restrictions due to the small grid
spacing near the origin ��2��n /M�, we apply a smooth,
radial grid dependent angular mask that effectively reduces
the number of angular modes at �n from M to Mn=2� /kn

THEORY FOR A DISSIPATIVE DROPLET SOLITON… PHYSICAL REVIEW B 82, 054432 �2010�

054432-13



gn�k� =
1

2
+

1

2
tanh� kn − �k�

�k
� .

The mask’s parameters are the radial grid dependent wave
number cutoffs kn, n=1, . . . ,N and the cut-off width �k. Ap-
plication of the mask at every time step filters out numeri-
cally induced small wavelengths near the origin.28 The cut-
offs kn are chosen so that the approximate grid spacing is
2��n /Mn�d�in, hence the grid near the origin has an effec-
tive spacing of d�in. The mask applied to m̂n,k

�z� �t� takes the
form

G�z�	m̂�z��t�
n,k = gn�k�m̂n,k
�z� �t� .

Care must be taken when applying the mask to the in-plane
Fourier coefficients m̂n,k

��,���t� because � and � depend on the
grid location. We use

G���	m̂����t�
n,k =
1

2
	�gn�k − 1� + gn�k + 1��m̂n,k

����t�

+ i�− gn�k − 1� + gn�k + 1��m̂n,k
����t�
 ,

G���	m̂����t�
n,k =
1

2
	i�gn�k − 1� − gn�k + 1��m̂n,k

����t�

+ �gn�k − 1� + gn�k + 1��m̂n,k
����t�
 .

Numerical parameters we use are: d�in=0.048��, d�out
=0.25��, w=10, n̂=126, M =32–128, N=222, L=30��, k1
=4, and �k=1. We find no significant change in the pre-
sented results for more accurate grids and filtering
parameters.

In order to nucleate a droplet, we use initial conditions
that are saturated in the z direction with a current that is
above threshold. The small amplitude instability investigated
in Sec. IV leads to the formation of a droplet. For the com-
putation of the frequencies of the droplet in Fig. 7 found
from micromagnetics, we take the Fourier transform of the
spatially averaged magnetization time series from the simu-
lation and extract the frequency with the largest power. The
frequency resolution is finer than the size of the dots in Fig.
7.
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