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Analytical theory of modulated magnetic solitons
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Droplet solitons are coherently precessing solitary waves that have been recently realized in thin ferromagnets
with perpendicular anisotropy. In the strongly nonlinear regime, droplets can be well approximated by a slowly
precessing, circular domain wall with a hyperbolic tangent form. Utilizing this representation, this work develops
a general droplet modulation theory and applies it to study the long-range effects of the magnetostatic field
and a nanocontact spin torque oscillator (NC-STO) where spin polarized currents act as a gain source to
counteract magnetic damping. An analysis of the dynamical equations for the droplet’s center, frequency, and
phase demonstrates a negative precessional frequency shift due to long-range dipolar interactions, dependent
on film thickness. Further analysis also demonstrates the onset of a saddle-node bifurcation at the minimum
sustaining current for the NC-STO. The basin of attraction associated with the stable node demonstrates that spin
torque enacts a restoring force to excursions of the droplet from the nanocontact center, observed previously in
numerical simulations. Large excursions lead to the droplet’s eventual decay into spin waves.
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I. INTRODUCTION

Magnetic materials are a rich setting for the study of
nonlinear, coherent structures. Previously, magnetic excitation
mechanisms were predominantly limited to the application
of magnetic fields. Nowadays, spin polarized currents1,2 are
commonly used to create, manipulate, and control nanoscale
magnetic excitations such as domain walls3 and vortices,4

promising candidates for applications.5,6 Recently, a strongly
nonlinear, coherently precessing localized mode termed a
droplet soliton was observed in a nanocontact spin torque
oscillator (NC-STO) with perpendicular magnetic anisotropy.7

The observed droplet exhibited a number of intriguing
features including subferromagnetic resonance frequencies,
low-frequency modulations, and an almost complete reversal
of the magnetization within its core, hence a perimeter pre-
cession angle of 180◦. Supporting micromagnetic simulations
demonstrated that the low-frequency modulations could be due
to an oscillation of the droplet within the nanocontact resulting
from some restoring force. Previous theoretical studies of the
NC-STO droplet neglected long-range dipolar interactions and
observed a drift instability whereby the droplet was ejected
from the nanocontact.8 Motivated by these observations, we
analytically and numerically study general modulations of
a large amplitude magnetic droplet soliton’s precessional
frequency, phase, and position with particular emphasis on
the effects due to magnetostatics, magnetic damping, and spin
torque in the nanocontact geometry.

Basic properties of unperturbed, conservative droplets have
been extensively studied.9 A central assumption is that of
symmetry which gives rise to conserved quantities and a
family of soliton solutions. A stationary droplet soliton can
be parameterized by its center, initial phase and precession
frequency. In physical problems of interest, these high sym-
metry, idealized conditions are typically not met. Nevertheless,
due to their robust qualities, localized structures may persist.
In the context of weak, symmetry breaking perturbations, a
modulation theory can be developed whereby the soliton’s
parameters are allowed to vary adiabatically in time.10 The re-
sulting soliton modulation equations are analogous to Thiele’s

equation11 for the motion of a magnetic domain or vortex. One
symmetry-breaking example is the dissipative droplet soliton,
excited in the spin-transfer torque (STT) driven NC-STO
where translational invariance and time reversal symmetry
are broken.8 This is precisely the soliton observed in the
previously discussed experiment.7 In steady state, the balance
between STT forcing and damping centers the droplet within
the nanocontact and selects a specific frequency but the phase
is still arbitrary. Modulation theory generalizes the steady
state conditions by allowing for slow temporal variations of
the conservative droplet’s parameters due to the symmetry
breaking perturbations. In effect, the droplet is treated as a
slowly moving, precessing dipole particle.

In order to make analytical progress tractable and to
enable efficient micromagnetic simulations, magnetic soli-
ton studies often neglect the long-range component of the
magnetostatic field, inherent in any magnetic sample that
exhibits a nonuniform magnetization distribution. This is a
reasonable approximation in the case of very thin, extended
magnetic films12 where the magnetostatic field takes the local
form −Mzz (Mz is the component of the magnetization
perpendicular to the film); however, thickness-dependent,
long-range corrections can be important.13 These corrections
lead to a breaking of phase invariance.14

Here, we present the stationary droplet soliton modulation
equations for symmetry breaking perturbations. An approx-
imate, analytical representation of the conservative droplet
in the strongly nonlinear regime is discussed and used to
greatly simplify the modulation equations. The effects of
the long-range magnetostatic field, a NC-STO, and magnetic
damping are studied in detail by a dynamical systems analysis
of the modulation equations. The long-range component of
the magnetostatic field is shown to give rise to a thickness-
dependent, negative precessional frequency shift of the droplet.
These dynamics are independent of and do not alter the
effects due to the NC-STO and damping. The dissipative
droplet soliton is identified as the stable node of a saddle-node
bifurcation for sufficiently large spin torque. Consequently,
spin torque provides a restoring force to deviations in droplet
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frequency and position from the nanocontact center. This
analytical prediction explains the micromagnetic observation
of a restoring force and the corresponding slow droplet modu-
lations observed in Ref. 7. However, large deviations can lead
to decay to small amplitude spin waves, helping to explain the
previously observed droplet drift instability.8 Furthermore, the
dissipative droplet’s frequency above the Zeeman frequency is
inversely proportional to the nanocontact radius.

II. MODEL EQUATION AND NONDIMENSIONALIZATION

The mathematical model considered here is the following
torque equation for the vector field magnetization M:

∂M
∂t

= − |γ | μ0M × Heff + P,

Heff = 2A

μ0M2
s

∇2M +
(

H0 + 2Ku

μ0M2
s

Mz

)
z + Hm. (1)

The ferromagnetic material is taken to be of infinite extent
in the x-y directions and of finite thickness δ in z. The
parameters are the gyromagnetic ratio γ , the permeability
of free space μ0, the exchange stiffness parameter A, the
perpendicular magnetic field amplitude H0, the crystalline
anisotropy constant Ku, and the saturation magnetization Ms. P
represents any perturbation that maintains the magnetization’s
total length, i.e., P · M ≡ 0. The boundary conditions are
limx2+y2→∞ M = Msz and ∂M/∂z = 0 when z = ±δ/2. Hm

is the magnetostatic field resulting from Maxwell’s equations.
As derived in Ref. 13, the magnetostatic energy for a z

independent magnetization can be given in Fourier space as

Em = δ

2

∫
R2

{|k · M̂⊥|2
k2

[1 − �̂(kδ)] + | ̂Mz − Ms|2�̂(kδ)

}
dk,

(2)

where

�̂(κ) = 1 − e−κ

κ
. (3)

Computing the negative variational derivative of Em with
respect to M and expanding �̂(kδ) for |kδ| � 1 yields the
two-dimensional (2D), film thickness averaged magnetostatic
asymptotic approximation:

Hm ∼ −Mzz + δ

2
Hnl,

(4)

Hnl = z
√

−∇2(Mz − Ms) + 1√−∇2
∇(∇ · M⊥).

The magnetostatic field is composed of the usual local term
−Mzz and a long-range, nonlocal contribution δ

2 Hnl. We
define M⊥ = (Mx,My) and assume δ to be small relative
to the typical transverse wavelength of excitation, i.e., the
exchange length lex = √

2A/(μM2
s ). The operators are inter-

preted in Fourier space, e.g., ̂√−∇2f = |k|f̂ and f̂ (k) is
the two-dimensional Fourier transform of f at wave vector
k. Long-range magnetostatic corrections have also been used
to study domain patterns and vortices in materials with
easy-plane anisotropy.15–17 In order to nondimensionalize
the equation, we introduce the dimensionless quality factor
Q = 2Ku/(μ0M

2
s ) that measures the strength of the uniaxial,

crystalline anisotropy. The quality factor is assumed to be
greater than unity in order to guarantee the existence of
droplet solutions in the unperturbed (P = 0, δ = 0) problem.9

Nondimensionalizing time by [|γ | μ0Ms(Q − 1)]−1, lengths
by lex/

√
Q − 1, fields by Ms(Q − 1), and setting m = M/Ms,

Eq. (1) becomes the 2D model

∂m
∂t

= −m × [∇2m + (mz + h0)z] + p,

p = P
|γ |μ0M2

s (Q − 1)
− δ

2
m × hnl, (x,y) ∈ R2. (5)

Small amplitude, spin wave excitations to the uniform state
m = z of the unperturbed problem p = 0 admit the exchange
dispersion relation ω(k) = 1 + k2 where ω(0) = 1 represents
the scaled ferromagnetic resonance frequency. The rest of this
work concerns soliton dynamics associated with Eq. (5).

III. APPROXIMATE DROPLET SOLUTION

First, we consider droplet soliton solutions of Eq. (5) when
p = 0 representing an infinitely thin, undamped ferromagnet
with strong perpendicular, uniaxial anisotropy. It is convenient
to represent m in spherical coordinates by the radial unit vector,
m = [cos � sin 	, sin � sin 	, cos 	]. In these coordinates,
the stationary droplet soliton solution to Eq. (5) is the
positive, monotonically decaying solution of the boundary
value problem:

−
(

d2

dρ2
+ 1

ρ

d

dρ

)
	0 + sin 	0 cos 	0 − ω sin 	0 = 0,

d	0

dρ
(x0; ω) = 0, lim

ρ→∞ 	0(ρ; ω) = 0,

(6)

where 	 = 	0, � = (ω + h0)t + �0, ρ is the radial distance
from x0, and 0 < ω < 1.9 Consequently, the stationary droplet
is parameterized by frequency ω, the initial phase �0, and
the initial droplet center coordinates x0, the latter generated
by invariances with respect to azimuthal rotations of m and
translations. Droplets can also be made to propagate.18 While
this work is concerned with stationary droplets, we will use
the propagating solution in the appendixes to implement the
modulation theory. The boundary conditions in (6) arise from
the far field decay condition applied to (1) and the requirement
that (6) remain finite near the droplet center.

In the small ω regime, the droplet profile takes the
approximate form19,20

cos 	0 = tanh(ρ − 1/ω), 0 < ω � 1. (7)

We have derived this approximate solution using singular
perturbation theory (Appendix A) and find it to be accurate
to O(ω2) and uniformly valid for all ρ ∈ (0,∞). The error in
the approximate solution (7) is shown in Fig. 1. Based on the
form of the solution (7), the small ω droplet takes the form of
a slowly precessing (absent the applied field), circular domain
wall with radius 1/ω. Expanding this approximate solution for
the droplet around ρ = 0, we observe 	0(0) = π to all orders
in ω. However, the magnetization at the center of the small ω

droplet cannot equal −z, due to its nontopological structure.9
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FIG. 1. (Color online) Relative difference between approxi-
mate and numerically computed droplets (solid). ω2 (dashed) for
comparison of convergence order.

For the rest of this work, we will consider the small-ω regime
and use the approximate form (7) for the droplet.

IV. MODULATION EQUATIONS

We now consider the effects of small symmetry breaking
perturbations p in Eq. (5) on the droplet (7). The perturbation
has spherical components p	 = p · 	 and p� = p · �. The
principle effects can be captured by allowing the droplet’s
parameters to vary adiabatically in time, e.g., ω = ω(t) with
|dω/dt | � 1. The method of multiple scales allows for the
determination of their evolution. Following the approach in
Ref. 21 developed for perturbations to a nonlinear Schrödinger
soliton, we linearize Eq. (5) around a droplet and apply
solvability conditions at O(|p|) to determine the modulation
equations (Appendix B),

dω

dt
= − ω3

4π

∫
R2

sech(ρ − 1/ω)p	 dx, (8)

0 =
∫
R2

sech(ρ − 1/ω)p�

(
cos ϕ

sin ϕ

)
dx, (9)

d�0

dt
= ω

4π

∫
R2

sech(ρ − 1/ω)p� dx, (10)

dx0

dt
= ω

2π

∫
R2

sech(ρ − 1/ω)p	

(
cos ϕ

sin ϕ

)
dx, (11)

where the perturbation (p	,p�) is evaluated at the droplet
solution (7) and (ρ,ϕ) are the polar coordinates for the
domain R2. Note that Eq. (9) is not an evolution equation,
but rather serves as a constraint on admissible perturbations.
When this constraint is not satisfied, a nonzero momentum can
be generated and the droplet no longer remains stationary. The
stationary assumption is essential not only to the modulation
equations themselves but also to the small ω approximation
given in Eq. (7) and therefore a different set of modulation
equations is required for the nonstationary case. For example,
a magnetic field gradient will accelerate a stationary droplet.22

A. Long-range magnetostatic perturbation

We now investigate specific perturbations of physical rele-
vance. First, the long-range magnetostatic field is considered.
After applying modulation theory, we find that the contribution
to Eqs. (8)–(11) takes the form

p	 = 0, p� = −δ sin 	0

√
−∇2(1 − cos 	0)/2. (12)
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FIG. 2. (Color online) Negative frequency shift due to long-range,
thickness dependent magnetostatic corrections. Equation (13) (solid)
and micromagnetic simulations with δ = 0.1 (dots).

Consequently, thickness dependent magnetostatic effects only
enter in Eqs. (9) and (10). The constraint equation (9) is
automatically satisfied because p� depends only on ρ so
the ϕ integrals vanish. What is left is the expression for the
slowly varying phase �0. Evaluating (10) with (12) represents
a precessional frequency shift of the droplet

d�0

dt
= −δω

4

∫ ∞

0
sech2(ρ − 1/ω)

×{
√

−∇2[1 − tanh(ρ − 1/ω)]}ρ dρ. (13)

The total droplet frequency is h0 + ω + �′
0. Since the inte-

grand is strictly positive for ρ ∈ (0,∞), Eq. (13) represents a
negative frequency shift which is plotted in Fig. 2 as a function
of ω. Micromagnetic simulations (Appendix C) yield good,
asymptotic O(δω) agreement as expected.

B. NC-STO and Damping Perturbations

We now consider the effects of damping and STT. A NC-
STO consists of two magnetic layers, one that is assumed
fixed and acts as a spin polarizer of the driving current. The
other layer is dynamic, resulting from the solution of Eq. (5).
When the polarizing layer is z, the perturbation p takes the
form8

p	 = −αω sin 	0 + σV (ρ� − ρ)
sin 	0

1 + ν cos 	0
, p� = 0,

(14)

where α is the damping coefficient, ν = (λ2
st − 1)/(λ2

st + 1),
λst � 1 is the spin torque asymmetry, ρ� is the nanocontact
radius, and V is a localized function. In the following analysis,
we take V to be the Heaviside step function thus defining
the region of spin polarized current flow as a disk with
radius ρ�. The STT coefficient σ = I/I0 is proportional to
the applied, dc current I with nondimensionalization I0 =
(λ2

st + 1)M2
s eμ0πρ�

2δ/(h̄ελ2
st), where ε is the spin-torque

polarization, e is the electron charge, and h̄ is the modified
Planck’s constant. For simplicity, we take λst = 1, i.e., no
asymmetry. Both α and σ are assumed small, but as a balance
must be maintained for the sustenance of a dissipative soliton,8

they are of the same order. Substituting this perturbation into
(8)–(11), we arrive at a system of three ordinary differential
equations (ODEs). Since rotational symmetry is not broken
for a circular nanocontact, we are free to rotate the plane and

184401-3



L. D. BOOKMAN AND M. A. HOEFER PHYSICAL REVIEW B 88, 184401 (2013)

thereby eliminate one of the two equations for the center. The
modulation system is thus

dω

dt
= αω2(ω +h0) − σω3

4π

∫
|x|<ρ∗

sech2(|x − x0| − 1/ω) dx,

(15)

dx0

dt
= −σω3

2π

∫
|x|<ρ∗

sech2(|x − x0| − 1/ω)
x − x0

|x − x0| dx.

(16)

Note that when h0 = 0 and σ = 0, the remaining ODE ω′ =
αω3 agrees with the result in Ref. 23 and the more general
result for solitons of nontrivial topological charge in Ref. 24.
Equations (15) and (16) do not depend upon the slowly varying
phase �0 so that the inclusion of long-range magnetostatic
effects will lead to the same frequency shift given in Eq. (13),
decoupling from the ODEs (15) and (16). The fixed points
of this system correspond to steady-state conditions where
there is a balance between uniform damping and localized
spin torque, i.e., a dissipative droplet soliton. A fixed point at
(ω,x0) = (ω�,0) leads to a relationship between the sustaining
current and precession frequency

σ

α
= 2(ω� + h0)

1 + ω� ln
[
sech

(
ρ� − 1

ω�

)/
2
] + ρ� tanh

(
ρ� − 1

ω�

) . (17)

Linearizing about the fixed point, we find the eigenvalues

λ1 = 1
2ω�[σ tanh(ρ� − 1/ω�)

+ σ − ρ�σ sech2(ρ� − 1/ω�) − 2αh0], (18)

λ2 = − 1
2ρ�σω� sech2(ρ� − 1/ω�). (19)

For physical parameters, λ2 is always negative, however, λ1

can change sign as ω� is varied and hence the stability of the
fixed point can change. This family of fixed points arises from
a saddle-node bifurcation occurring as the current is increased
through the minimum sustaining current [Figs. 3(a)–3(d)].
The lower, stable branch of this saddle node bifurcation is
the dissipative soliton. Figure 3(a) shows that the frequency
changes little as the sustaining current is increased from
its minimum, stable value. To a good approximation, the
frequency is ω� = 1/ρ�, as illustrated by the horizontal line
in Fig. 3(a). Expanding (17) for ω� close to 1/ρ�, on the stable
branch, the fixed point relation can be simplified to

σ

α
∼ 2 (h0 + ω�)

1 + ρ�(ρ� − 1/ω�)
, |ρ� − 1/ω�| � 1. (20)

While this relation gives good agreement in the vicinity of the
stable fixed points, it does not predict the minimum sustaining
current. Evaluating λ1 for σ given by (20) and expanding
for 0 < ρ� − 1/ω� � 1, the eigenvalue λ1 in (18) is found to
be negative, hence the branch of (17) nearest to ω� = 1/ρ�

is indeed stable. The stable branch is further verified by
micromagnetic simulations (Appendix C) shown in Fig. 3(a).

Interestingly, the dissipative soliton is not a global at-
tractor. The saddle point’s stable manifold [solid curve in
Figs. 3(c)–3(d)] denotes the upper boundary in phase space
of the basin of attraction for the dissipative soliton. A droplet
with frequency ω and position x0 lying within the basin of

a

b c d
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unstable
numerics
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FIG. 3. (Color online) (a) Dissipative soliton relation (17). Hor-
izontal line is ω = 1/ρ�. (b)–(d) ODE vector fields corresponding
to Eqs. (15) and (16) as σ varies (b) just before the saddle-node
bifurcation, (c) just after, and (d) far past bifurcation. The upper/lower
dot corresponds to the unstable/stable fixed point. The solid black
curve encloses the basin of attraction. Parameters are ρ� = 12,
h0 = 0.5, and α = 0.01. (d) includes trajectories from ODE theory
(dashed) and micromagnetics (solid).

attraction will generally increase in frequency, move toward
the nanocontact center, then decrease in frequency to ω�,
converging to the dissipative soliton fixed point. If an initial
droplet lies outside the basin of attraction, the frequency
will increase, causing the droplet to decrease in amplitude.
An analysis of the small to moderate amplitude regime22

shows that the soliton decays to spin waves as its frequency
approaches the ferromagnetic resonance frequency ω → 1.
Figures 3(b)–3(d) show the vector field of this system before
and after the saddle node bifurcation. Figure 3(d) depicts
trajectories (dashed) generated by numerical evolution of Eqs.
(15) and (16) with the initial conditions (ω�,13) and (ω�,20).
The solid curves result from full micromagnetic simulations
with the same initial conditions. These numerical experiments
show good agreement up to evolution times O(α−2), as ex-
pected for this approximate theory. The resulting discrepancies
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0.15

0.2

ω

h0 = 1.5
h0 = 1.0
h0 = 0.5

σ/α

FIG. 4. (Color online) Fixed points, both stable and unstable for
several values of h0. The primary effect of h0 is to shift these curves
of fixed points along the σ/α axis.
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FIG. 5. (Color online) Scaled radius of the basin of attraction
ρb/ρ� at ω = ω� with ρ� = 12. While the center of the basin of
attraction depends on h0, the width of the basin remains essentially
unchanged as h0 varies.

lead to modulation theory slightly overpredicting the radius of
the basin of attraction compared to what is observed from
micromagnetics.

The other physical parameters in the fixed point relation
(17) are h0 and ρ�. Based on the analytical form of Eq. (17),
h0 should shift resulting stability curve. Near the stable branch,
the denominator of Eq. (20) is O(1) hence an shift of O(h0)
is expected. Numerical experiments with Eq. (17) suggest
that changes in h0 do essentially serve to shift the minimum
sustaining current by a constant (close to h0). This is apparent
from the numerical results shown in Figs. 4 and 5.

Figure 6 depicts the basin of attraction radius ρb (the value
of x0 at the edge of the basin of attraction when ω = ω�)
scaled by ρ�. As the current is increased, the basin radius
rapidly exceeds 3

2ρ� so that a droplet placed well outside
the nanocontact may still experience a restoring force to the
nanoncontact center.

V. DISCUSSION

We now describe some physical and theoretical implica-
tions of the presented analysis. The modulation equations
(8)–(11) are the droplet soliton analog of Thiele’s equation for
magnetic vortices. They treat the droplet as a precessing dipole,
describing adiabatic changes in its precessional frequency,
phase, and center due to symmetry breaking perturbations.
This description is valid so long as the evolution times
satisfy t � ε−2, where ε characterizes the magnitude of the
perturbation p = O(ε). Breaking of the constraint Eq. (9)
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1.5
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σ/α

ρb
ρ

ρ = 6
ρ = 12
ρ = 18

FIG. 6. (Color online) Basin of attraction radius ρb at ω = ω�

scaled by nanocontact radius ρ�. Applied field is h0 = 0.5.

can lead to an acceleration of the droplet so that a more
general modulation description of propagating droplets would
be required in this case. Finally, we have neglected coupling
to radiation modes in this analysis, which is, for example,
important in the small amplitude regime of NC-STOs.1

It is important to point out that the negative frequency
shift due to long-range magnetostatic effects is independent of
and does not influence the results pertaining to NC-STO and
damping perturbations. Recalling that 0 < ω < 1, stationary
droplets in the absence of long-range magnetostatics and
applied field are always dynamic. The negative frequency
shift suggests that a droplet in a sufficiently thick film could
be static, which would correspond to a magnetic bubble.25

However, this regime is strictly outside the validity range of the
asymptotic expression (13) so it is likely that a nonperturbative
analysis is required for further investigation.

The explicit hyperbolic tangent form for the droplet reveals
some intriguing physical characteristics. The droplet is a
circular domain wall whose precession prevents this nontopo-
logical structure from collapsing in on itself. The dissipative
droplet supported by the NC-STO has an approximate intrinsic
frequency (the frequency above field induced precession) that
is inversely proportional to the nanocontact radius.

Micromagnetic simulations and experimentally observed
low-frequency modulations in Ref. 7 suggest the existence of
a restoring force due to the NC-STO. Our analysis presented
here precisely describes how this restoring force arises, as
the manifestation of a stable fixed point and its basin of
attraction. That the dissipative soliton in the NC-STO is not
a global attractor was observed in micromagnetic simulations
previously in the form of the drift instability.8 As it is known
that a magnetic field gradient can accelerate a stationary
droplet,22 we postulate that STT provides a restoring force that
can keep the droplet inside the nanocontact for a sufficiently
small gradient. These competing effects could also account for
the observed shift of the droplet with respect to the NC-STO
center when Oersted fields are included in the model. However,
a sufficiently strong field gradient that overcomes the STT
restoring force can lead to expulsion of the droplet, hence
a drift instability. Because a field gradient perturbation does
not maintain the constraint (9), further investigation of this
requires the study of modulated propagating droplets in the
presence of an NC-STO.

An additional experimental implication of our results is
that of a restricted regime of droplet soliton excitation. In
NC-STOs, droplets can be nucleated by a spin wave instability
(subcritical Hopf bifurcation) associated with the uniform
state m = z.8 However, the instability may not generate an
excitation that lies within the droplet soliton basin of attraction.
Furthermore, Fig. 4 shows that a large applied field shifts the
minimum sustaining current to higher values. Since the spin
wave instability only weakly depends on the applied field,1,8 a
sufficiently large field may shift the stable dissipative soliton
branch above a given applied current so that the droplet is no
longer nucleated in a NC-STO.

VI. CONCLUSION

Using singular perturbation theory, we have derived mod-
ulation equations for parameters of a droplet soliton under
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very general perturbations. This theory was applied to two
such physically relevant perturbations: (1) higher-order, long-
range effects of the magnetostatic field and (2) damping and
spin transfer torque forcing in a nanocontact spin torque
oscillator. The key result is that these long-range effects
result in a down shift of the overall droplet frequency. For
a NC-STO system, we predict that a droplet shifted from
the nanocontact center can be drawn back by a STT-induced
restoring force. Sufficiently large shifts cause damping to
overwhelm STT effects so that the droplet soliton is no
longer an attractor, hence decays into spin waves. For both
perturbations investigated we see good agreement between
micromagnetic simulations and the reduced order models
proposed here. The robustness of magnetic droplet solitons to
symmetry breaking perturbations we have demonstrated here
suggests that their initial observation in Ref. 7 represents the
beginning of a rich inquiry into novel nonlinear physics.
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APPENDIX A: APPROXIMATE DROPLET CALCULATION

Here, we offer more detail on the derivation of the small
ω solution to (6). For a similar derivation, see Ref. 20. A
uniformly valid approximate solution to this problem is sought
in the limit 0 < ω � 1. We begin by introducing a shifted
coordinate system ρ = R + A

ω
, where A is some constant

which will be determined by solvability conditions. In this
coordinate, (6) becomes

−
(

d2

dR2
+ 1(

R + A
ω

) d

dR

)
	0

+ sin 	0 cos 	0 − ω sin 	0 = 0. (A1)

Expanding (A1) and keeping terms only to leading order in ω

gives

−d2	0

dR2
+ sin 	0 cos 	0 + ω

(
− 1

A

d	0

dR
− sin 	0

)
= O(ω2).

(A2)

Inserting the asymptotic expansion 	0 = 	0,0 + ω	0,1 +
O

(
ω2

)
into (A2) and equating like terms at each order in

ω, we obtain

O (1) : −d2	0,0

dR2
+ sin 	0,0 cos 	0,0 = 0, (A3)

O(ω) : −d2	0,1

dR2
+ cos(2	0,0)	0,1 = 1

A

d	0,0

dR
+ sin 	0,0.

(A4)

It is readily verified that the solution to (A3) is 	0,0 =
cos−1 [tanh(R + R0)], where R0 is some arbitrary constant. For
simplicity, we choose R0 = 0 since it is not restricted unless we
seek a higher order solution. Taking L = − d2

dR2 + cos(2	0,0),
Eq. (A4) is of the form Lψ = f . In this case, L is a Schrödinger
operator and hence self-adjoint with kernel spanned by
sech(R). Solvability then requires that the right-hand side of

Eq. (A4),

1

A

d	0,0

dR
+ sin 	0,0 =

(
1 − 1

A

)
sech(R),

is orthogonal to the kernel of L. Thus
(
1 − 1

A

)
sech(R) will be a

nontrivial element of the kernel of L unless A ≡ 1. Further, this
choice of A means the equation at O (ω) is trivially satisfied by
taking 	0,1 ≡ 0. Substituting back to the ρ coordinate system,
we obtain the leading order solution

	0 = cos−1

[
tanh

(
ρ − 1

ω

)]
+ O

(
ω2) . (A5)

This solution is expected to be valid in the regime when R is
O (1), that is when ρ is of the same order as 1/ω. The residual
of Eq. (6) with the approximate solution (A5) is

(1 − ρω)sech(ρ − 1
ω

)

ρ
.

Examination of this residual shows that the approximate
solution (A5) is in fact uniformly valid for all ρ and introduces
deviations at O

(
ω2

)
.

APPENDIX B: MODULATION EQUATIONS DERIVATION

For this derivation, we rescale the perturbation with a small
parameter ε, p → εp, 0 < ε � 1 and introduce the “slow”
time T = εt . The modulated droplet takes the asymptotic form

	(x,t) = 	0(x + x0(T ); ω(T )) + ε	1(x,t,T ) + · · · ,
�(x,t) = �0(T ) + h0t +

∫ t

0
ω(εt ′)dt ′ + ε

�1(x,t,T )

sin(	0)
+ · · · ,

where 	0 and �0 + h0t + ∫ t

0 ω(εt ′)dt ′ represent the conser-
vative droplet with slowly varying parameters. Introducing
these into the perturbed Landau-Lifshitz equation, at O (ε),
we obtain ψt = Lψ + f . where

L� = −∇2 + [−∇	0 · ∇	0 + cos2(	0) − ω(T ) cos(	0)],

(B1)

L	 = −∇2 + cos(2	0) − ω(T ) cos(	0), (B2)

ψ =
(

	1

�1

)
, (B3)

L =
(

0 L�

−L	 0

)
, and (B4)

f =
(

p	 − 	0,ω
dω
dT

− ∇	0 · dx0
dT

p� − sin(	0) d�0
dT

)
. (B5)

Since algebraic growth of either 	1 or �1 would lead to
secularity, we apply the condition that f is orthogonal to the
generalized null space of the adjoint of L (L†), denoted by
N (L†).21 By differentiating the leading order problem with
respect to each of the soliton parameters, x0 = (x1,x2), ω, �0,
and V = (V1,V2) (we temporarily allow for moving droplets
with velocity V), and evaluating at the conservative, stationary

184401-6
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droplet, we obtain

N (L†) = span

{(
0

∂	0
∂xi

)
,

(
sin(	0)

0

)
,

(
0
∂	
∂ω

)
,

(
sin(	0) ∂�

∂Vi

0

)}
, i = 1,2. (B6)

The vector ( ∂�
∂V1

, ∂�
∂V2

) is determined according to ( ∂�
∂V1

, ∂�
∂V2

) = �̃(cos(ϕ), sin(ϕ)), where �̃ satisfies the boundary value problem

−
(

∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− 1

ρ2

)
�̃ +

[
−

(
∂

∂ρ
	0

)2

+ cos2(	0) − ω cos(	0)

]
�̃ = − ∂

∂ρ
	0

lim
ρ→0

�̃ is finite, lim
ρ→∞ �̃ = 0.

(B7)

Applying the solvability condition that f is orthogonal to
N (L†) gives

dω

dT
= 1

∂N
∂ω

∫
Rn

sin(	0)p	dx, (B8)

0 =
∫
Rn

∇	0pφdx, (B9)

d�0

dT
= 1

∂N
∂ω

∫
Rn

∂	0

∂ω
pφdx, (B10)

dx0

dT
= 1

π
∫ ∞

0 �̃ ∂	
∂ρ

ρ dρ

∫
Rn

sin(	0)

(
cos(ϕ)
sin(ϕ)

)
�̃p	dx,

(B11)

where N = ∫
R2 (1 − cos(θ ))dx is the total spin. Substituting

in the small ω solution gives Eqs. (8)–(11).

APPENDIX C: NUMERICAL METHODS

Micromagnetic simulations were performed using a pseu-
dospectral/Fourier discretization in space and a method of
lines in time similar to those presented in previous work.8 The
spatial domain was taken to be square, typically [−75,75] ×
[−75,75], large enough that the solution decayed to zero at the
boundary. The mesh width was taken small enough to provide

sufficient decay of the Fourier coefficients of the solution,
typically �x = �y = 0.4. To improve convergence properties
of this method, the region associated with the nanocontact was
smoothed and approximated by a hyper-Gaussian exp(−z8),
normalized so that the total current density is the same as
for flow in a cylinder with sharp edges. For simulations
involving the magnetostatic correction, the nonlocal terms
were implemented in Fourier space.

The time evolution was conducted with an adaptive explicit
Runge-Kutta method, with normalization at each time step
to preserve unit length of the magnetization vector. Initial
conditions were chosen to be the approximate conservative
droplet at some frequency generally near the frequency of the
fixed point. The precessional frequency of the droplet was
obtained by examining a fixed spatial point near the edge
of the nanocontact, fitting a line to the time dependence of
the in-plane magnetization phase. For a purely precessional
mode, the frequency of the droplet is the slope of this line.
When ω is changing in time, we utilize the approximate droplet
expansion. For the approximate solution it holds that

ω2 = N
4
∫
R2 (x − x0)2[1 − cos(	0)]dx

.

This relation was used to extract frequencies from the

micromagnetic simulations see in Fig. 3.
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