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Propagation and control of nanoscale magnetic-droplet solitons
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The propagation and controlled manipulation of strongly nonlinear, two-dimensional solitonic states in a
thin, anisotropic ferromagnet are theoretically demonstrated. It has been recently proposed that spin-polarized
currents in a nanocontact device could be used to nucleate a stationary dissipative droplet soliton. Here, an external
magnetic field is introduced to accelerate and control the propagation of the soliton in a lossy medium. Soliton
perturbation theory corroborated by two-dimensional micromagnetic simulations predicts several intriguing
physical effects, including the acceleration of a stationary soliton by a magnetic field gradient, the stabilization
of a stationary droplet by a uniform control field in the absence of spin torque, and the ability to control the
soliton’s speed by use of a time-varying, spatially uniform external field. Soliton propagation distances approach
10 μm in low-loss media, suggesting that droplet solitons could be viable information carriers in future spintronic
applications, analogous to optical solitons in fiber optic communications.
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I. INTRODUCTION

Nanomagnetism holds great promise for future spin-based
information storage and processing technologies.1 One en-
abling physical effect is spin torque,2 which imparts angular
momentum from a spin-polarized current to a magnet. Spin
torque forms the basis for tunable microwave nano-oscillators
in confined nanopillar structures3 and nanocontacts abutting
an extended ferromagnet.4 Most nanopillar dynamics can be
reasonably described by single-domain modeling5 with the
notable exception of gyrotropic vortex motion.6 In contrast,
nanocontacts enable the excitation of radiating7–9 and lo-
calized, coherently precessing, nonlinear wave states.8 The
analysis of solitonic waves in nanocontact systems has pre-
dominantly been limited to either the weakly nonlinear regime
at threshold10 or complex micromagnetic simulations.5,11

We recently proposed that a spin torque driven nanocontact
could act as a soliton creator in a uniaxial ferromagnet with
sufficiently strong perpendicular anistropy.12 The resultant
strongly nonlinear, coherently precessing state was termed
a dissipative droplet soliton, the locally driven/uniformly
damped cousin of the two-dimensional, nontopological droplet
soliton.13 Notably, the first observation of the dissipative
droplet soliton has been very recently reported.14 Prior numer-
ical computations suggested that the conservative, stationary
droplet could be generalized to a propagating solution.15

Small amplitude droplets were then shown to propagate as
approximate, nonlinear Schrödinger bright solitons in Ref. 16.
The construction and properties of a stable, two-parameter
family of large amplitude propagating droplet solutions in a
lossless medium was undertaken in Ref. 17. However, a viable
method to accelerate solitons and understand their propagation
in physically realistic, damped media is lacking.

In this work, we use soliton perturbation theory to semi-
analytically demonstrate the feasibility of sustaining, moving,
and controlling a droplet soliton in a damped medium solely
under the action of an external magnetic field. Modulation
equations describing the evolution of the soliton’s speed and
precessional frequency in the presence of damping and a
temporally/spatially varying external field are studied and the

results are corroborated by two-dimensional micromagnetic
simulations. We show that a stationary droplet can be ac-
celerated by a field gradient. Once in motion, the soliton’s
speed can be controlled by a spatially uniform, time-varying
external field. A field gradient due to two nanowires can
accelerate a soliton to propagate approximately 10 μm in a
low-loss ferromagnet. Stationary droplets of any allowable
frequency can be created from a sufficiently large, localized
magnetic excitation, induced by a nanocontact or otherwise,
and then stabilized by a linear feedback control field without
the use of spin torque. This represents a new mechanism to
study magnetic solitons without strong, spin-torque-induced
perturbations. Analogous to optical solitons in fiber optic
telecommunications,18 these results show that droplet solitons
act as stable, controllable, particlelike, precessing dipoles that
exhibit intriguing nonlinear physics and have potential for
spintronic applications.

The layout of this work is as follows. First, we introduce the
model equations and then proceed with the finite-dimensional
reduction via soliton perturbation theory. The reduced system
enables a thorough analysis of droplet dynamics under the
influence of damping and a spatiotemporal magnetic field
undertaken in the next section. Two control mechanisms,
feedback control of a stationary droplet’s frequency and
open-loop control of a propagating droplet’s speed, are then
introduced. We conclude with some discussion and future
outlook.

II. MODEL

The model of magnetization dynamics we consider is the
Landau-Lifshitz equation5

∂ �m
∂t

= − �m × �heff − α �m × ( �m × �heff)

�heff = ∇2 �m + (h0 + mz)ẑ, (1)

describing a thin, two-dimensional, unbounded, damped (α >

0 is the damping parameter) ferromagnet. The effective
field incorporates exchange ∇2 �m, an external magnetic field
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h0(�x,t)ẑ pointing in the perpendicular direction normal to
the film plane, and perpendicular anisotropy mzẑ. Crystalline
anisotropy, characterized by the anisotropy field Hk, is as-
sumed sufficient to overcome the local demagnetizing field so
that Hk > Ms. Time, space, and fields are normalized by scaled
versions of the Larmor frequency |γ |μ0Ms(Q − 1), exchange
length Lex/

√
Q − 1, and saturation magnetization Ms(Q − 1),

respectively, where Q = Hk/Ms > 1. We note that for the
solitons studied here, the magnetostatic field is approximately
local for films with thickness much smaller than Lex/

√
Q − 1

(see Discussion in Ref. 17). For Co/Ni multilayer anisotropic
ferromagnets used in recent experiments,19 the temporal
scale and length scale are approximately 27 ps and 17 nm,
respectively, and α ≈ 0.01, Q ≈ 1.25, and Ms ≈ 650 kA/m.
References to dimensional results use these parameter values.

In what follows, we assume that a localized excitation
of large amplitude has been nucleated by a spin torque
nanocontact12 or some other means. The rest of this work
is concerned with the manipulation of this structure in a lossy
medium by use of an external field.

When h0 = α = 0, Eq. (1) admits the conservation of total
spin, momentum, and energy,

N =
∫

(1 − cos �)d �x, �P =
∫

(cos � − 1)∇�d �x,

E0 = 1

2

∫
[|∇�|2 + sin2 �(1 + |∇�|2)]d �x,

respectively, where all integrals are taken over the plane
and � and � are the polar and azimuthal angles of the
magnetization, respectively. Minimizing the energy subject to
fixed N and �P leads to a two-parameter family of localized,
precessing, stable traveling waves called propagating droplet
solitons parametrized by their velocity �V and frequency in the
comoving frame ω.17 There is a bijective map from (N , �P) to
the physical parameters (ω, �V ). Droplet localization requires
that the velocity and frequency of the propagating droplet lie
below the spin wave band, enforcing the restriction13

ω + | �V |2/4 < 1, �V �= 0, 0 < ω < 1, �V = 0. (2)

We note that it is possible for moving droplets to exhibit
negative rest frequencies ω < 0.17 Typical droplet widths are
of order 1, and hence are nanoscale excitations. Stationary
droplets with rest frequencies close to 0 resemble static circular
bubbles, which have received a great deal of attention in the
past.20 However, typical bubble sizes are much larger. With the
inclusion of nonlocal magnetostatic fields, Thiele21 predicted
that a static bubble will be stable for a 5-nm-thick film with a
radius above 63 μm. Thus, droplets can be viewed as smaller,
dynamic generalizations of the static bubble.

Allowing for weak damping (α � 1) and a slowly varying
magnetic field (|∇h0|,|∂th0| � 1), with no restriction on the
magnitude of h0, causes the total spin, momentum, and
energy to evolve in time. Through the map to (ω, �V ), we can
describe the droplet’s adiabatic, particlelike evolution by a
time dependence of the droplet’s velocity and rest frequency,
trajectories in the V -ω phase plane.

III. FINITE DIMENSIONAL REDUCTION

Using soliton perturbation theory (see, e.g., Ref. 22), we
obtain the following finite-dimensional system of modulation
equations describing the slow modulation of the total spin and
momentum:

dN
dt

= −α(ω + h0)
∫

sin2 �d �x − α �V ·
∫

sin2 �∇�d �x,

(3a)

d �P
dt

= −∇h0N + α(ω + h0)
∫

sin2 �∇�d �x

−α �V ·
∫

(∇� sin2 �∇� + ∇�∇�) d �x. (3b)

The energy E = E0 + 1
2

∫
h0(1 − cos �) d �x is constrained

to evolve according to

dE
dt

= (ω + h0)
dN
dt

+ (∂th0 + �V · ∇h0)N + �V · d �P
dt

; (4)

thus, it is sufficient to evolve Eqs. (3) only. The integrals
are evaluated with conservative droplets (�,�) of given
total spin N (t) and momentum �P(t) or, equivalently, rest
frequency ω(t) and velocity �V (t). The slowly varying field is
evaluated along the soliton trajectory h0 = h0( �X(t),t), where
d �X/dt = �V . Similar modulation equations were derived for
one-dimensional droplets in Refs. 23–25 and stationary, two-
dimensional droplets ( �P ≡ 0) in Ref. 25. Without loss of
generality, we limit further discussion to droplet motion in
the x direction, so that �V = (V,0) and �P = (P,0).

In Ref. 17, we numerically computed a library of propagat-
ing droplets using an iterative technique.26 These precomputed
states are used here to numerically solve the modulation
equations (3) and to recover ω(t) and V (t). The initial
value problem for Eqs. (3) is numerically solved with initial
parameters (V0,ω0) chosen inside the precomputed library.26

Interpolants mapping (N ,P) to (V,ω) and vice versa as well
as for the integrals in Eqs. (3) are generated from the droplet
library. We then numerically evolve Eqs. (3) in time using the
interpolants. We also perform micromagnetic simulations of
Eq. (1) by use of a pseudospectral method.17 To recover the
micromagnetic solution’s speed and frequency, we compute
the center of mass

∫ �x(1 − cos �) d �x/N and the phase at the
center of mass at each time step. The velocity and comoving
frequency are then found by differentiation. The rest frequency
is recovered by subtracting the local magnetic field h0[ �X(t),t].

The modulation equations (3) represent a low-dimensional
projection of the magnetodynamics enabling us to bring
finite-dimensional dynamical systems methods and control
theory to bear on the problem. As we will demonstrate, the
results from modulation theory agree exceptionally well with
micromagnetics.

IV. DROPLET SOLITON DYNAMICS

The dynamics of Eqs. (3) depend on the magnitude of
|∇h0|/α. We consider each regime in turn.
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FIG. 1. (Color online) (a), (b), (c) Droplet trajectories in the
V -ω plane from numerical integration of the modulation equations
(3) (solid curves) and micromagnetics (dashed curves). The dotted
curves correspond to the edges of the precomputed droplet library and
the thick, solid parabolic curve is the spin wave band. (a) Low-loss
α = 0.001. (b) α = 0.01, positive bias field. (c) α = 0.01, negative
bias field. See text for further details. (d) Droplet velocity time
dependence for the solid/dashed trajectories in panels (b) and (c). (e),
(f) Droplet profiles from micromagnetics corresponding to the circles
in panels (b) and (c), respectively. The gray (color) scale represents the
out-of-plane magnetization mz and the arrows represent the in-plane
components.

A. Negligible damping: |∇h0/α| � 1

When |∇h0/α| 	 1, the total spin is approximately con-
served and the momentum varies. The V -ω phase plane
for h0 = 0.5 − 0.005x and α = 0.001 pictured in Fig. 1(a)
closely resembles trajectories of constant total spin, N = N0,
or constant energy depicted in Ref. 17. These low damping
dynamics can be approximated by setting α = 0. Then Eqs. (9)
and (11) become Newton’s law,

d �P/dt = −N0∇h0( �X,t), d �X/dt = �V ,

for the motion of the soliton center �X(t) subject to the potential
N0h0. Thus, engineering the magnetic field in an appropriate
way allows one to control the motion of the particlelike soliton.
Note that the effective mass,

meff(ω,V ) = P(ω,V )

V
, (5)

depends on the soliton speed and frequency. The stationary
droplet is accelerated while the rest frequency decreases,

representing a transfer of the effective potential energy stored
in the precessional motion ω to the effective kinetic energy of
translational motion V .

B. Comparable damping and field gradient: |∇h0/α| = O(1)

For the balance |∇h0/α| = O(1), different dynamics occur.
Figure 1(b) depicts trajectories for the same field as in Fig. 1(a)
but with an order of magnitude larger damping, α = 0.01. The
dashed curve depicts the trajectory from micromagnetics with
ω(0) = 0.37. The circle on this trajectory corresponds to the
droplet shown in Fig. 1(e). The droplet is accelerated and is
accompanied by an amplitude decrease until it devolves into
a linear spin wave upon reaching the band edge [Eq. (2)].
The micromagnetic simulation closely matches the adiabatic
theory until the band edge is reached and the solution
amplitude is very small, after which the droplet ansatz is no
longer valid. A plot of V (t) is shown in Fig. 1(d).

During the course of evolution, a droplet can experience
deceleration, as in Fig. 1(c) with α = 0.01 and a negative
bias field, h0 = −0.5 − 0.005x. This behavior is reminiscent
of Bloch oscillations predicted for one-dimensional droplets
in Ref. 24. In the one-dimensional (1D) case, the soliton
oscillates under a constant force. We have not observed
such behavior in our micromagnetic simulations or in the
modulation theory. Instead, simulations reveal the formation
of local, topological structure including vortex/antivortex pairs
and what appears to be switching of the magnetization to the in-
verted, � ≡ π state, corresponding to (V,ω) = (0,0) shown in
Fig. 1(f). Previous work on solitons in isotropic ferromagnets
reveals the existence of nontopological droplets bifurcating
into copropagating vortex, anti-vortex pairs when a critical
momentum is reached.27 Approximate vortex, antivortex pairs
were studied in the anisotropic case numerically15 but have
not been observed in our micromagnetic studies here.

In addition to the dynamics of Fig. 1 for a constant field
gradient, we have also simulated droplet acceleration due to
the field generated by two current-carrying nanowires in the
plane of the film with current in the same direction and a
stationary droplet nucleated in between them (Fig. 2). The
current-induced Oersted fields lead to a negative magnetic
field gradient that accelerates the droplet. The low-dimensional
modulation system, Eq. (3), enables a detailed investigation of
parameter space that would, using micromagnetic simulations,
be prohibitive to explore. The simulations incorporate the
Oersted field due to two infinite wires with 150-nm diameters
and varying separation. Stationary droplets with varying

FIG. 2. (Color online) Droplet acceleration by current flowing
through two nanowires.
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frequencies are assumed to be nucleated 300 nm from the
center of the left wire and allowed to propagate either until
reaching the second wire or until the soliton center of mass
attains the value mz = 0.5. For the moderate damping case
α = 0.01, the droplet is predicted to travel up to 3 μm in about
30 ns for a 15-mA current in each wire with a 3.3-μm wire
separation. Top speeds can approach 600 m/s. In the low-loss
case α = 0.001, the droplet can propagate about 10 μm in
70 ns for a 10-mA current with a 10.3-μm wire separation.

C. Negligible field gradient: |∇h0|/α � 1

The remaining regime, when |∇h0|/α � 1, is now in-
vestigated. We focus on the case of a uniform and static
magnetic field, assuming that a propagating droplet has been
created. In Fig. 3, solution of the modulation system (3)
reveals the acceleration of a propagating droplet due to
damping when the magnetic field is 0 or positive. When
the field is sufficiently negative, the droplet can experience
deceleration and then acceleration as its amplitude decays.
This counterintuitive droplet acceleration due to damping was
predicted for 1D droplets in the absence of a magnetic field.23

We can understand this behavior in terms of the droplet’s
effective mass (5). From Eq. (5) we have Ṗ = ṁeffV + meffV̇ ,
where ˙ denotes time differentiation. In the absence of a field
gradient, Eq. (3b) implies a decrease in momentum Ṗ < 0 due
to damping. Then a droplet can be accelerated (V̇ > 0) if

ṁeff < Ṗ/V < 0. (6)

In other words, the droplet is accelerated in the presence
of damping because the effective mass is decreasing at a
sufficiently fast rate.

As the examples in Figs. 3(a) and 3(b) suggest, inequality
(6) holds for ω > 0.3 and positive fields. When −1 < h0 <

0, there are some droplets that exhibit deceleration. In this
case, the magnet appears to undergo a complete reversal to the
(V,ω) = (0,0) state for initial droplets with parameters lying
below a separatrix [see Fig. 3(c)] which we term the switching
separatrix. The switching separatrix corresponds to the stable
manifold of the fixed point (V,ω) = (0, −h0). Linearization

of Eqs. (3) around this fixed point results in the eigenvalues(− ∫
sin2 �d �x
∂ωN

,
− ∫

�2
x d �x

∂VP

)
, (7)

evaluated at (V,ω) = (0, −h0). Since ∂ωN < 013 and ∂VP >

017 for stationary droplets, the fixed point is a saddle.
The switching separatrix from modulation theory accurately
resolves the micromagnetic dynamics as evidenced by the
close agreement in Fig. 3(c) for trajectories starting very close
to the separatrix. The switching separatrix for the negative bias
field helps to explain the differing phase plane trajectories in
Figs. 1(b) and 1(c). Physically, this analysis reveals that there
is a synergy between damping and the bias field. A bias above
−ω leads to a decrease of the soliton amplitude, whereas a bias
below causes an increase in soliton amplitude. This suggests
a mechanism for stabilizing a stationary droplet at the saddle
point (V,ω) = (0, −h0) by dynamically changing the bias field
with feedback control.

V. DROPLET SOLITON CONTROL

A. Stationary droplet stabilization

The nucleation of a stationary droplet by a spin torque
driven nanocontact has been theoretically demonstrated12 and
recently observed.14 The droplet, which would otherwise
decay due to damping, is sustained by a balance between
localized driving and uniform damping. However, the current-
induced Oersted field strongly perturbs the stationary droplet
from its ideal, symmetric structure, leading to phase variations
and potentially a drift instability whereby the droplet is
ejected from the nanocontact.12 Furthermore, canting of the
polarization layer is required to obtain an ac electrical signal
via giant magnetoresistance leading to symmetry breaking
of the spin torque term and further complexity. We propose
a simple alternative stabilizing mechanism that avoids these
difficulties: a closed-loop, spatially uniform control field. The
stationary droplet saddle point (V,ω) = (0,ω∗) for h0 = −ω∗
and 0 < ω∗ < 1 is altered to an attractor by introducing the
linear feedback control

h0(t) = −ω∗ + G	(t), (8)
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FIG. 3. (Color online) Droplet trajectories with uniform, static magnetic field and α = 0.01. (a) Modulation solution showing acceleration
or deceleration of a propagating droplet due to damping and h0 = −0.4 (solid curves), h0 = 0 (dashed curves), and h0 = 0.9 (dash-dotted
curves). (b) h0 = 1. (c) h0 = −0.7. In panels (b) and (c), the dashed curves are micromagnetic simulations. In panel (c), the dash-dotted curve
is the separatrix between the switched state (V,ω) = (0,0) and spin wave states.
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FIG. 4. (Color online) Stabilization of a stationary droplet with
ω∗ = 0.5 by the linear feedback control law (8) with G = 2.
(a) Stationary droplet relaxation. (b) Trajectories in the V -ω plane.

with gain G, bias −ω∗, and the total, measured system fre-
quency 	(t) = ω(t) + h0(t). Feedback implementation could
be realized by use of a small amplitude (subthreshold) dc
current applied to a trilayer nanocontact with a canted fixed
layer, resulting in a measurement of 	 with negligible spin
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FIG. 5. (Color online) Micromagnetic simulation giving the
spatially averaged magnetization frequency due to the control field
(8), with ω∗ = 0.4, G = 1.5, α = 0.01, and an update period of 74.
The droplet is locked when 	 = 0.

torque and Oersted field effects. Another possibility is direct
imaging of the dynamics.

The goal is to drive 	 to 0. With such a control law,
linearization of Eq. (3) around the fixed point results in the
eigenvalues ( ∫

sin2 �d �x
(G − 1)∂ωN

,
− ∫

�2
x d �x

∂VP

)
. (9)

Since ∂ωN < 0 and ∂VP > 0, when G > 1 both eigenvalues
are negative and the fixed point is linearly stable. However, if
the initial system frequency is too close to 1, one may apply
the feedback field (8) with h0 < −1 leading to spontaneous
reversal of the magnetic film. To avoid this scenario and
stabilize the droplet, the gain is restricted to

G > max[1,1 + ω(0) − ω∗].

The gain G determines the relaxation rate to the fixed point,
with larger values leading to slower relaxation. For excitations
with ω(0) − ω∗ > 0, G cannot be very close to 1. Thus, there
is a trade-off between the relaxation time and the stability of
the ferromagnet.

We observe that the fixed point is a global attractor of
the modulation equations (3) in Fig. 4. Figure 4(a) shows the
relaxation of the frequency to ω∗ = 0.5 for stationary droplets.
If V (0) = 0, and the control law (8) is assumed, then Eqs. (3)
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FIG. 6. (Color online) Open-loop control of droplet speed.
(a) Two trajectories (solid and dash-dotted curves) in the V -ω plane
from micromagnetic simulations with (b) the corresponding control
field (solid and dash-dotted curves, respectively) determined from the
modulation equations (3).
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simplify to

dω

dt
= α

(ω∗ − ω)

(1 − G)∂ωN

∫
sin2 �d �x, (10)

with V (t) ≡ 0. Since ∂ωN < 0 and G > 1, we observe that
ω = ω∗ is a global attractor for fixed V (t) = 0 with ω(t)
relaxing monotonically to ω∗.

When V (0) �= 0, the initial state exhibits phase variations
leading to droplet propagation. However, as Fig. 4(b) shows,
(ω,V ) = (ω∗,0) is still an attractor so the phase perturbations
decay in time; hence, any drift instability, such as that observed
in the case of a nanocontact system,12 has been removed.

We have also performed micromagnetic simulations of
Eq. (1) incorporating the feedback control law (8). We
begin the computation with an asymmetric, localized initial
condition

�(x,y,0) = Ae−(x/wx )2−(y/wy )2
, �(x,y,0) = 0, (11)

where �m = (cos � sin �, sin � sin �, cos �), A = 2.7, wx =
2.3, and wy = 3. Equation (1) is evolved with the spatially
uniform field (8), where ω∗ = 0.4, α = 0.01, and G = 1.5.
We “measure” 	(t) by averaging the in-plane magnetization
orientation over the unit disk to obtain an average phase
�(t). This models the nanocontact measurement technique
suggested; then, 	(t) = d�

dt
(t). We perform computations with

differing bandwidths or update times so that h0(t) is updated
instantaneously and periodically. Figure 5 depicts the evolution
of the total frequency 	(t) with a field update period of 74 time
units, which translates to 2 ns or a 500-MHz bandwidth for
perpendicular magnets used in recent experiments.19 Because
damping drives the dynamics, we expect that the operable
control bandwidth is approximately α|γ |μ0Ms(Q − 1), corre-

sponding to about 400 MHz. This suggests that any sufficiently
large, localized excitation created by spin torque or other
means can be deformed into a stationary droplet of choice
solely with the use of an external, spatially uniform magnetic
field. Physically, this stabilization mechanism balances the
switching of a droplet by a sufficiently negative bias field and
the decay of a droplet via damping.

B. Droplet speed control

In the presence of damping and a constant magnetic field, a
propagating droplet is either accelerated or decelerated (recall
Fig. 2). A time-varying, spatially uniform open-loop control
field can be used to stabilize the droplet’s speed. For this,
we implement an optimization strategy for the modulation
equations (3) by stepping forward in time and determining
the field h0(t) that enforces the constraint of constant speed.
The resulting field profile is fit to a quintic polynomial [see
Fig. 6(b)] and used in a micromagnetic simulation of Eq. (1)
resulting in the trajectories shown in Fig. 6(a). Remarkably, the
control field from modulation theory leads to accurate control
of the droplet’s speed in the full micromagnetic simulation.

VI. CONCLUSION

We have demonstrated that droplets propagating in a
realistic, damped ferromagnet can be sustained, accelerated,
and controlled by use of only an external magnetic field.
Combining a nanocontact system,12 such as that of recent
experiments,14 with the ideas presented here provides a
framework to create and control moving droplet solitons in a
ferromagnet. Their robustness and controllability hold promise
for future spintronic applications.
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T. Tyliszczak, K. W. Chou, B. Bräuer, Z. P. Li, O. J. Lee, P. G.
Gowtham, D. C. Ralph, R. A. Buhrman, and J. Stöhr, Phys. Rev.
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