PADE-BASED INTERPRETATION AND CORRECTION OF THE
GIBBS PHENOMENON

TOBIN A. DRISCOLL* AND BENGT FORNBERG'

Abstract. The convergence of a Fourier series on an interval can be interpreted naturally as
the convergence of a Laurent series on the unit circle in the complex plane. In turn this Laurent
series can be interpreted as the sum of an analytic and a co-analytic Taylor series.The Gibbs phe-
nomenon in this context can be seen as an attempt to approximate a logarithmic branch cut with
such series. Conversion of a truncated Taylor series to a Padé approximation does a much better job
of approximating on most of the unit circle, but a rational function cannot approximate the jump
itself. However, one can modify the traditional Padé approximation to include logarithmic singular-
ities. When the jump locations are known exactly, this process appears to converge exponentially to
a discontinuous or nonsmooth function throughout the interval . When the jump locations are not
known in advance, standard Padé approximation to the derivative of the original series gives poles
that approximate jump locations to what is observed to be fourth-order accuracy. All the procedures
have analogs in the case of trigonometric interpolation of equispaced data.

1. Introduction. From the standpoint of computation, the Gibbs phenomenon
is often an obstacle to be overcome. Truncated Fourier series, or trigonometric in-
terpolants, exhibit spectral (exponential) convergence to functions that are analytic
on and near the real axis. However, for a CP piecewise continuous function, the
convergence is reduced to the algebraic rate O(N~P~!) when N terms are kept [18].
As continuous functions, trigonometric polynomials can be expected to have trouble
representing jumps and corners. But the greatly reduced convergence occurs globally,
not just near the locations of jumps. (Henceforth we use the term “jumps” to include
jumps in value and/or one or more derivatives.)

Many remedies to the reduced convergence can be found in the literature. Broadly
speaking, there are two major tasks: finding the location(s) of jumps, and correcting
for their effects. The latter problem, which seems to be easier than the former, is
addressed by Eckhoff in [7] by using linear least-squares fitting for coefficients of extra
jump terms added to the Fourier series. In [10] (and references therein), Gottlieb
and Shu prove spectral reconstruction on subintervals of analyticity by least-squares
projection onto spaces of Gegenbauer polynomials with weights that vary with N,
though a subsequent study by Boyd [3] suggests that this method can run into a
Runge-like instability in practice. The Gegenbauer idea was much improved by Shizgal
and Jung in [14]. Tanner [17] uses a filter whose support is optimally adjusted in both
space and dual space to recover exponential convergence in intervals of analyticity,
though he acknowledges that accurate reconstruction near jumps is not possible with
this method. The more difficult task of reconstruction without prior knowledge of
jump locations is attempted by nonlinear optimization in [7] and [12]. Gelb and
Tadmor [9] use filtering to simultaneously recover jump locations and sizes, to an
accuracy of O(log N/N).

We will investigate the convergence issue using a natural connection between
Fourier series on the real line and Laurent series in the complex plane. Let f(z) be
piecewise analytic for z € [—m, 7). While we do not assume that f is 27w-periodic, the
Fourier series of f implicitly extends f periodically. A lack of native periodicity is
thus equivalent to discontinuities in f and all its derivatives at * = —m. The Fourier
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series for f is given by

oo
. 1 [T ,
flz) = Z cne™?, Cn = — flx)e ™" dux. (1.1)
z o ),
n=—oo
If f is real, then c¢_,, = &,. The transformation z = €* maps the interval [—m, ) to
the unit circle in z. The Fourier expansion (1.1) becomes for the z-plane a Laurent

expansion, which can be split into two parts:

f(z)= Z 2" = Z/ enz" + ZI conz M=)+ (27, (1.2)
n=0 n=0

n=—oo

where the primed sums indicate that the zeroth term should be halved. If f is real,
then we need only work with fT in practice, since on the unit circle we have

FEY = Y @ = 3 s = G (13)
n=0 n=0

Both f* and f~ are defined by Taylor expansions at the origin. Hence, questions
about the partial Fourier sum

N N
fn(x) = Z cne™, or fn(z) = Z enz", (1.4)
n=—N n=—N

are equivalent to questions about partial Taylor series for f™ and f~. If the trace
of f on the unit circle has jumps, it is clear that f, and thus f* and f~, will have
singularities in the complex plane. It is hardly surprising, then, that their Taylor
series converge very slowly.

Throughout this chapter, we will illustrate the statements and methods described
using the four test functions shown in Table 1.1 and pictured in Figure 1.1. (The
classical Gibbs examples f(x) = signum(z) and f(z) = x are not included because
our methods ultimately reconstruct these examples exactly.)

TABLE 1.1
Test functions.

fa(z) = exp(sin(3z) + cos(z)) Analytic and periodic

Analytic but nonperiodic (jumps of all or-

fo(w) = exp(sin(2.7z) + cos(x)) ders at +)

Continuous and periodic, with first-order
jumps at £

fe(x) = |z|

sin(z?), —-w<ax<-m/3

—e ¥, —m/3<x<7/6

fa(z) = < /8 <@ </ Jumps of multiple orders at four locations
0, /6 <z <72
2—-22, m/2<z<m

The convergence of unaltered Fourier partial sums fy is shown in Figure 1.2. Since
the difference f — fy can be expected to have many zero crossings that are distracting
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Fic. 1.1. Test functions having zero, one, two, and four jump locations, respectively, including
nonperiodicity (see Table 1.1).

on a log scale, the error curves are smoothed by extracting all the local maxima of
the absolute error, combined with the errors at irregular points, and connecting them
to make a smooth envelope. For the analytic, periodic function f,, the convergence
is spectral—the curves are nearly equispaced as N increases uniformly (until double
precision effects are felt near 10716). In the other cases, the convergence is globally
slow.

Similar considerations arise when we deal with trigonometric interpolants instead
of truncated Fourier series. Suppose we choose equispaced nodes

2n+1
2N

Ty = —T m, n=0,1,...,2N —1
and are given the 2N function samples y,, = f(z,). If we apply the discrete Fourier
transform to yo,...,Y2n—1,

2N-—1
Cn = N Z Yme T n=-N,...,N, (1.5)

then ¢, is an approximation to the true Fourier coefficient ¢,. The error in this
approximation, called aliasing, results from the compression of infinitely many fre-
quencies into the band-limited range that can be represented after discretization of
space. If we replace ¢, by ¢, in (1.4), the resulting fy is a trigonometric polynomial
interpolating the 2N function samples.

Trigonometric interpolants suffer the same Gibbs phenomenon as truncated Fourier]]
series. Correction of the phenomenon, however, is complicated by the aliasing error,
which tends to mask the precise jump information that is implicit in the Fourier coef-
ficients. One can again divide fy into analytic fN( z) and co-analytic fN( D). These
are no longer truncated Taylor series, because their coefficients change with N, but
their convergence behavior is similarly affected by jumps in the underlying f.
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Fic. 1.2. Error envelopes of Fourier partial sums for N = 8,16,24,32,40. (The points shown
represent local maxima of the errors; these are connected to avoid distracting zero crossings of the
true error.) Except for the analytic, periodic function fq, the convergence is globally slow.

In section 2 we review the classical technique of Padé approximation, which is
a powerful tool for improving on the convergence of truncated Taylor series. Padé
approximations define rational functions based on the truncated Taylor series. These
approximations can converge rapidly while the underlying Taylor series converges
poorly, or even diverges, as we will illustrate with an example. In section 3 we
show that the Fourier-Padé technique [5, 8, 11, 16|, in which Padé approximation
is applied to f* and f~, can indeed greatly improve upon the convergence of the
original Fourier series to a function with jumps (or even to an analytic, periodic
function). An analogous algorithm for the case of trigonometric interpolation is a
rational interpolant, which is also demonstrated in section 3 to have a similar level of
success. Still, the poles available in a rational approximation cannot reconstruct the
jumps themselves, and small neighborhoods around the jumps resist convergence.

In section 4 we consider more carefully the structures that jumps in f on the
unit circle cause in the complex plane. In fact, these jumps translate into logarithmic
branch singularities in z. As was shown in [6], by adding the proper logarithmic terms
into the Padé process, we can effectively restore spectral convergence throughout
[—7,7]. This leads to an algorithm that we describe and test in section 5.

In section 6 we demonstrate that the Fourier—Padé idea can also be used for the
problem of finding jump locations when they are unknown. By differentiating the
original series, the logarithmic jump singularity is transformed into a pole that is
accurately picked up by a standard Fourier-Padé approximation. Our experiments
suggest that this technique can locate singularities from Fourier data with an error
that is O(N %) in a difficult case. The method is not as successful in locating jumps
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in equispaced sample values, however, presumably because of aliasing error in the
Fourier coefficients.

2. Padé approximation. Given a formal power series expansion around zero,
>0 o cnz™, we define the type (M, N) Padé approximation by

N
E apz"
n=0

Pii(s) = 22 _ oo : (2.1)

M
g by 2™
m=0

where the coefficients of p and ¢ are chosen so that the expansion of Pi} matches
the given series to as high an order as possible. Often one is most interested in the
diagonal approximants PJ and the subdiagonal approximants P3 41

The normalization by = 1 leaves M + N + 1 degrees of freedom in Pjj. Thus, the
coefficients should satisfy

M+N M N
<Z cnz"> <Z bmzm> - (Z anz"> = O(MTNFL, (2.2)
n=0 m=0 n=0

The numerator p does not contribute to the terms beyond order N. Hence the coef-

ficients for 2N+, ... 2M*N in (2.2) yield the Toeplitz linear system
CN+1 CN CN-1 T CN+1-M bo
5 by
CN+2 CN+41  CN - CNt2-M
h + " =0, (2.3)
.. bm
CN+M CN+2 CN+1 CN

where we understand that ¢, = 0 if & < 0. This M x (M + 1) linear system has
nontrivial solutions. In most cases the normalization by = 1 creates a unique solution.
Once the coefficients of ¢ are known, the numerator p is found through the terms of
order N and less in (2.2). This gives a = Cb, where ¢;; = ¢;—;. For example, if
N = M, one obtains

ag Co bo
ay 1 Co b1

- e (2.4)
an cN v ¢ ¢l |bm

Computing Padé approximants through linear algebra, as we have done here, is simple
but not necessarily the most efficient or stable numerical method.

In Figure 2.1 we show how Padé approximation can accelerate the convergence of
a power series. The left of the figure shows error curves on the unit circle |z] = 1 of
diagonal Padé approximants P (z) of the function e?, for N = 4, 8,12, 16. Exponen-
tial convergence is clear, up to the point for N = 16 that the error is comparable to
machine precision. Of course, e* is very well behaved in the complex plane, and the
truncated Taylor series is exponentially convergent as well. Even so, the figure also
shows that the Padé approximants are orders of magnitude more accurate than the
series they are derived from.
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Fia. 2.1. Errors of diagonal Padé approximants P]]\\,’ on the unit circle for N = 4,8,12,16. In
case (a), the function is entire and its series (whose errors shown by dots) converges exponentially,
but the Padé approzimants converge faster still. In case (b), the formal series is divergent away
from the origin, but the Padé approximations again converge exponentially.

More drastic still are the results on the right in Figure 2.1. These show the results
of the same diagonal Padé approximants to

oo —t B [
/ S Ei(z!) e e~ Z nl(—z)",
0 n=0

1+tz

where the asymptotic series is divergent for all z ## 0. This function has a branch cut
along the negative real axis, so its trace on the unit circle has a jump at x = =+.
Nevertheless, the Padé approximants still converge exponentially, albeit slowly near
the branch cut, as shown in the figure. In fact, exponential convergence in the cut
plane is proven for all Stieltjes functions such as this one.

For a more thorough discussion of summation acceleration through Padé approx-
imation, see [2, 15]. A comprehensive treatment of Padé approximation can be found
in [1].

3. Fourier—Padé approximation. We return now to the context of Fourier
series and their partial sums, as in (1.4). Recalling the splitting of f into f* and
f~ in (1.2), we can convert their truncated Taylor series f]‘\'; and fy into Padé ap-
proximants. Specifically, we seek four polynomials p*(z), q¥(2), p~(2), ¢~ (2), each
of degree N/2 for even N, such that

pH(z) —a ()T (z) =0, 20 (3.1)
p(2)=q (2)f () =0, -0 '
If such polynomials can be found, the Fourier-Padé (FP) approximant to f is
AP () () p(en™)
IO~ e " e Ty 32

Figure 3.1 displays the errors of Fourier—Padé approximants for the test functions
in Table 1.1 and Figure 1.1. We observe dramatic improvement over the Fourier
partial sums of Figure 1.2, even for the analytic and periodic function f,. A Gibbs
phenomenon still occurs at each jump, although the magnitude of the overshoot is
observed to be about 2.5% instead of the usual 9% [16]. Unlike the case with Fourier
partial sums, though, the convergence is not degraded globally. (In fact, it was shown
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Fic. 3.1. Error envelopes (see Figure 1.2 for explanation) of Fourier—Padé approzimants for
N =8,16,...,40. Away from jump points, spectral convergence is observed. Compare to Figure 1.2.

by Brezinski [4] that FP-type approximants do converge faster at ordinary points than
the partial sums.)

The relationship between Fourier partial sums and trigonometric interpolants is
analogous to the relationship between Padé approximants and rational interpolants
(also called multipoint Padé approximants). Thus the interpolation form of the
Fourier-Padé technique, which we call Fourier-rational interpolation (FRI), is the
approximation p(z)/q(z), where polynomials p and ¢ have degrees N — 1 and N and
satisty

where z,, = ¢¥®n.

Figure 3.2 shows the results of Fourier rational interpolation for our four test
functions. The results are qualitatively very similar to those in Figure 3.1 for the
Fourier-Padé method.

4. Singularities and Fourier—Padé. Padé approximants are known to con-
verge in the presence of discontinuities. This was shown for algebraic, bounded branch
cuts in [13] and is also known for the unbounded cut along the negative real axis in
the example of Figure 2.1(b). However, in that example it was observed that the
jump in the function along the cut nevertheless makes approximation inaccurate in
practice. It is not surprising that the Fourier—Padé method is shown in Figure 3.1 to
have the same problem at jump locations; poles do not intrinsically reproduce jump
behaviors.

Consider the classical example of f(z) = z, extended periodically from [—, ).
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Fia. 3.2. Error envelopes of Fourier—rational interpolants for 16,32,...,80 equispaced points.

Away from jump points, spectral convergence is observed.

For the functions f* and f~ defined in (1.2), we have

22 2’3
fr(z) = —i (z _f +3§ - ) = —ilog(z + 1). -
f_(z):i(Z—%-i-%—“') =ilog(z +1).

Note that, in light of (1.3), on |z| = 1 we have

14e

[T+ () =fT) + fH(z) =ilog (14—7

) =iloge ™ =, (4.2)
as required. By the linearity and shift properties of the Fourier transform, every
zeroth-order (i.e., value) jump in a generic real f at the point = £ can be attributed
to a logarithm in fT of the form

log (1 - e%) , (4.3)

with branch point at the corresponding location on the unit circle.

At this point it might seem promising to try to differentiate f in order to convert
logarithmic singularities into poles. These poles would then be well approximated
by standard Padé methods. (See also [12] on series differentiation, and the “D-log
approximant” of [1, p. 51]. We revisit the idea in section 6.) However, if f’ is also
discontinuous, it too can be expected to have logarithmic singularities in the z-plane.
Instead, we shall look to incorporate logarithmic singularities into the approximation
directly.



FiG. 4.1. Real parts of the functions (—i)™t1(1 4 2)™ log(1 + 2) for m = 0,1,2,3 for z = e**.
Each leads to a jump in the mth derivative at © = +m.

We first consider a function which is C° but not differentiable; i.e., having a
first-order jump. We could continue with f(z) = 22/2 as a prototype:

1 1
fr(z) = =24+ 22— =23+ ... = Liy(—2),
4 9
where Lis is the dilogarithm. It is far more convenient computationally, however, to
observe that
1 3

1 1
f+(z):(1—|—z)log(1+z):z—|—§zz—62 +— TH 24—

also has a real part which is continuous on |z| = 1 and which satisfies
ier(z) = zzier(z) =iz [l +log(l + z)]
dx - Tdz N & '

After combination with its conjugate, this expression has a jump at z = —1 as re-
quired for a first-order singularity. In general, the real part of f*(z) = (=)™ (1 +
z)™log(1 + z) has an mth-order singularity, as illustrated in Figure 4.1. For other
jump locations, this is easily shifted around the unit circle as in (4.3).

This observation suggests that to represent a function with jumps at all orders at
=&, we let

FHE) =65 () + D Rin(e= Q™ og(1- 7)) = 05 ()6 (o) bog (1= 57 ) (4.4)

m=0

where ¢ = ¢’ and goi11 are analytic near z = —1. This in turn suggests the modification
of the Fourier—Padé method to

pH(2) i (2)log(L — 2/¢FY) + -+ () log(L — 2/¢fY) = g™ (2)fF(2) + 0N

(4.5)
for singularities (1,...,(s on the unit circle. We call this the singular Fourier—Padé
(SFP) approximation. If s = 0, it is the standard Fourier—Padé method. We remark
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again that for real functions, only the + superscript case need be computed. Note
that dividing (4.5) through by ¢*(z) implies that the equivalents of gy and g1 in (4.4)
have a shared rational denominator. This choice is crucial to developing a practical
algorithm in the next section.

It is interesting to consider how SFP works when applied to two of the most elegant
and classical cases of the Gibbs phenomenon. First, for f(z) = z, we note from (4.1)
that exact reconstruction using (4.5) occurs when p™ =0, ¢" =1, and 1y = —i. In
the case f(x) = signum(z), we observe that the transformation (1 + z)/(1 — z) maps
the unit circle to the imaginary axis, and hence

F = o (1) (16)

1—=2

has real part equal to half of the signum function. With {; = —1, (o = 1 in (4.5), we
again get exact reconstruction when p*, ¢, and TIQ are constants.

In the case of rational interpolation as in (3.3), there is no longer a splitting of
f(2) into analytic and co-analytic parts. Hence we combine the terms log(l — z/()
and log(1 — (/z) to get —ilog(z/¢). The natural adaptation of (4.5), then, is

p(zn) +71(2n) log(cl_lzn) + o+ rs(2n) 10g(<;12n) — fuq(zn) =0, (4.7)

n=20,...,2N — 1. (4.8)
The resulting approximation
F(a) ~ PE)LH () log(Gr 12(1)(; CAra(e)log(( s e (4.9)

is called the singular Fourier—rational interpolant (SFRI) for f

5. Singular Fourier—Padé algorithm. We take a straightforward approach
to computing the polynomial coefficients needed in the SFP method. For clarity, we
write out formulas in the case of s = 1 jump location at @ = +7. Rewriting (4.5)
(with some superscripts dropped for clarity), we have

p(z) +1r(2)log(1 + 2) = q(2)f(2) + O(="*). (5.1)

Both log(1 + 2) and f*(z) have Taylor expansions known to order N. Our goal is to
derive a linear system for the unknown polynomial coefficients.

Note that ¢(z) and r(z) are determined by the terms of order greater than n,
alone. Thus we seek a solution to

r

[c -] [q] — 0. (5.2)

Here C' is the (ng + n, + 1) X (ng + 1) Toeplitz matrix

CN/241 CN/2 T C1
CN/2+2 CNj2+41 " C2
. . ) (5.3)
CN CN—-1 '+ CN/2

and L has size (ng + n, + 1) X (n, + 1) and is defined similarly using the Taylor
coefficients of log(1+z). The vectors q and r hold the unknown polynomial coefficients
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in order of increasing degree. Because the matrix in (5.2) has column dimension one
greater than its row dimension, at least one nonzero solution exists. Usually this can
be made into a square system by choosing, say, ¢(0) = 1, but if one does not want
to assume that any particular coefficient is nonzero, one can solve (5.2) by a singular
value decomposition. Finally, the coefficients of p(z) are found by multiplication, via

1co 0 0 o 0 0
C1 %CO ce 0 él 60 te 0

pP= : : S la- . . ] r. (5.4)
CN/2 CN/2-1 " %CO éN/2 éN/2—1 o

If the original function f is real, only f* needs to be considered in (5.1). If there is
more than one jump location in the interval and (4.5) is to be used, the equation (5.2)
is modified to have an L matrix and a vector of coefficients for each location, and (5.4)
changes similarly.

We have no rigorously optimal formula for choosing the degrees n,, ng, and
ngl), . ,n&s). Because the denominator polynomial ¢(z) is shared, we allow n, to
be the largest, with the others equal so far as possible. For the case of just one
jump location, taking ng at roughly 40% of the total available degrees of freedom
seems to work well. Experiments suggest that these choices can affect the observed
accuracy, occasionally by as much as an order of magnitude, but on average there is
little variation within a broad range of choices.

The heart of the algorithm is implemented in MATLAB code as shown in Fig-
ure 5.1. The padelog function shown in the figure would be called twice, for f+
and f~ (unless f is real, in which case once call suffices). Figure 5.2 shows how
padelog could be used on our example f.(x) = |z|. The resulting graph (not shown)
demonstrates almost no visible difference between f. and its singular Fourier—Padé
approxmation using the first seven nonzero Fourier coefficients.

In Figure 5.3 we show the errors resulting when SFP is applied to our four test
functions. The convergence of the SFP approximations appears to be globally spectral,
albeit not at a spatially uniform rate. (Convergence at a zeroth-order jump is to the
average of the one-sided limit values.) The convergence at a jump is limited somewhat
by the well-known numerical ill-conditioning of the straightforward Padé problem.
Figure 5.4 shows that in arbitrary-precision arithmetic, convergence at £ for the
nonperiodic function f; is spectral down to at least 10716,

The interpolation case similarly reduces to a linear problem. Let Va; be a Van-
dermonde matrix of degree M that is,

Vi = (22)™, n=0,....,.2N—-1, m=0,...,M.

The coefficients of the polynomials in (4.7) satisfy an equation of the form

[Vnp —diag(fo,...,ng_l)an Lanl LsVns] | = 0.

The matrix has column dimension one larger than row dimension, so a nonzero solu-
tion exists. Results on our four test examples are shown in Figure 5.5. The improve-
ment close to the jump locations is especially significant.
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function [p,q,r] = padelog(c,z0)
%  PADELOG(c,z0) finds an expansion of the form

% p(z) + r{1}(z) log(1-z/z0(1)) + ... + r{m}(z) log(1-z/z0(m))

% q(z)

% N+1
% = f(z) + 0(z ), z—>0

%  for polynomials p, q, r{1},..., r{m}. Here f(z) is a polynomial
% of degree N, whose coefficients are given in ascending degree in
% c. The points in vector z0 represent the locations of jumps in f.

N = length(c)-1;
length(z0);

8
[

% Figure out the degrees of the polynomials.
nq = ceil((N-m)/(m+1.5));

s = floor((N-m-nq)/(m+1));

nr = s*ones(1,m);

np = N-m-ng-sum(nr);

% Taylor coeffs of log terms
k = (1:N)’;
for s = 1:m
1{s} = [0;-1./(k.*z0(s)."k)];
end

% The polynomials q and r{:} are found from the highest-order coeffs
row = [c(np+2:-1:max(1,np-nq+2)); zeros(ng-np-1,1)];
C = toeplitz(c(np+2:N+1),row);
L = cell(l,m);
for s = 1:m
row = [1{s}(np+2:-1:max(1,np-nr(s)+2));zeros(nr(s)-np-1,1)];
L{s} = toeplitz(1{s}(np+2:N+1),row);

end

% Find a vector v satisfying [C -L{1} ... -L{m}]*v = 0
Z = null(cat(2,-C,L{:})); % vector(s) in nullspace
qr = Z(:,end);

qr = qr/qr(min(find(qr))); % normalization

% Pull out polynomials

q = qr(l:ng+1);

idx = ng+1;

r = cell(l,m);

for s = 1:m
r{s} = qr(idx+(1:nr(s)+1));
idx = idx + nr(s)+1;

end

==

Remaining polynomial is found using low-order terms
C = toeplitz(c(l:np+1),[c(1) zeros(1,nq)]);
p = Cx*q;
for s = 1:m
L = toeplitz(1{s}(1:np+1),[1{s}(1) zeros(1l,nr(s))]1);
p = p - Lxr{s};
end

Fi1G. 5.1. Code for finding the polynomials in (4.5) for the singular Fourier—Padé method.
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c = [pi/4 zeros(1,11)];

c(2:2:12) = -(2/pi)*(1:2:11).7(-2);
z0 = exp(1ix[-pi 0]);

[p,q,r] = padelog(c,z0);

x = linspace(-pi+10*eps,pi-10%eps,200); z = exp(lixx);

pz = polyval(p(end:-1:1),z);

qz = polyval(q(end:-1:1),z);

rz{1} = polyval(r{1}(end:-1:1),2z);

rz{2} = polyval(r{2}(end:-1:1),z);

fplus = ( pz + rz{1}.xlog(1-z/z0(1)) + rz{2}.*log(1-z/20(2)) ) ./ qz;
plot(x,abs(x),x,2*real(fplus),’k.’)

F1c. 5.2. Demonstration of using the code of Figure 5.1 on the function f.(z) = |z|.
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Fi1c. 5.3. Error envelopes of singular Fourier—Padé approzimants for N = 8,16, ...,40 (except

in the last example, when the N = 8 case is not defined). Compare to Figure 3.1.
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Fi1c. 5.4. Error at the jump singularity using SFP for the function f,. Using arbitrarily
high precision (as performed by Mathematica), the convergence is spectral. For a double-precision
implementation, the effects of Padé ill-conditioning ultimately limit the accuracy obtained.
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Fia. 5.5. Error envelopes of singular Fourier—rational interpolants for 16,32, ...,80 equispaced

points. Compare to Figure 3.2.
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Fi1c. 6.1. Errors in the four jump locations of the function fg, as found by Fourier—Padé
approzimations of type [m,m] to the derivative. The convergence is roughly O(m™%).

6. Locating singularities. The methods described above all assume that the
locations of all irregular points are known. But we can also use Padé ideas to estimate
the locations of jumps well enough to allow good reconstruction nearly everywhere in
the interval.

As observed in section 4 after formula (4.1), differentiation of a function with a
jump in value leads to an ordinary pole at the jump location. Referring to (1.2) and
recalling that d% = izdiz, this suggests that we find Padé approximations of

N N

g5 (z) = Z incp2", gn(2) = Z —inc_n,z". (6.1)

n=0 n=0

While higher-order jumps mean that ¢* still have logarithmic singularities that make
the Padé approximations imperfect near the jumps, we can hope that the poles of
the resulting approximations nevertheless are good indicators of the jump locations,
which can then be incorporated into a singular Fourier-Padé approximation.

Figure 6.1 indicates how well this works on the function f4 having jumps at £,
—7/3, ©/6, and w/2. We form diagonal Padé approximations of type [m,m] to the
differentiated function (6.1), and a pole whose magnitude is within 0.01 of the unit
circle is assumed to be a jump location (after projection onto the circle). For m =5
only the jump at —7/3 is noticed by this method, but for m = 10,15,...,50, the
method suggests exactly four jump locations whose errors are shown in the figure.
The two larger jumps are located a bit more accurately than the weaker ones. The
error seems to vary roughly as O(m~*) = O(N~%). This compares very favorably to
the O(log N/N) error expected by filtering methods described in [9] and is only slightly
less accurate than the best cases reported using the more complicated method in [7].
Figure 6.2 shows the result of SFP approximation with the jump locations found using
m = 20. The results are noticeably better than for Fourier-Padé (Figure 3.1) but not
as good as SFP with the exact jump locations (Figure 5.3). Of course, values at
the jumps themselves cannot be reconstructed accurately using erroneous locations.
Figure 6.3 shows the error in the vicinity of the jump at z = 7/6.
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Fic. 6.2.  Error envelopes for singular Fourier—Padé approximations of fq with N =
16,24, ...,40, using differentiated Fourier—Padé approrimations to estimate the jump locations.
Compare to Figures 3.1 and 5.3.

0.1

fa(z)

-0.4 : :
-0.01 -0.005 0 0.005 0.01

x—7/6

F1a. 6.3. Approzimation of fq (shown with dashed curves) near x = w/6 using N = 40 and an
estimated jump location.

For the interpolation problem, we can use the aliased coefficients (1.5) computed
by the FFT to construct a differentiated Fourier-Padé approximation. This in turn
suggests singularity locations to be used in (4.9). For our test function fy, however,
we found that aliasing decreases the accuracy of the estimated jump locations. For
values of N from 40 to 100 (using diagonal Fourier—Padé approximants of maximum
degree [N/2, N/2]), we find that the location error stays fairly constant between 1072
and 1073, Algorithmically, all that would seem to matter is that the jump be located
between the correct pair of nodes, but this failed for the jumps at +7 and 7/2. In
Figure 6.4 we find that the SFRI approximations do not improve on ordinary rational
interpolation.

7. Conclusions. Fourier—-Padé approximation makes a dramatic improvement
over the direct partial summation of Fourier series. Convergence is accelerated even
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Fia. 6.4. Error envelopes for singular Fourier—rational interpolation approzimations of fq with
N = 32,48,...,80 nodes. The jump locations were estimated using differentiated aliased Fourier—
Padé approximations based on N = 60. Compare to Figures 3.2 and 5.5.

for analytic, periodic functions, and the global effects of the Gibbs phenomenon due to
a jump are largely eliminated. Moreover, this improvement is available via standard
Padé approximation, so that better numerical methods than the direct linear algebra
described above are available [1, Chapter 3]. Equally impressive results are observed
when rational interpolation is used in place of trigonometric polynomials.

In order to reconstruct functions at and near jumps, however, a more careful
treatment is beneficial. The Gibbs phenomenon is manifested in the complex plane
by logarithmic branches that can, when their locations are known, be incorporated
directly into Padé-type approximations. These appear to converge globally and expo-
nentially, offering 4-6 digits of accuracy at the jumps with just 40 terms of the series
of difficult functions. Similar results obtain in the interpolation problem.

When jump locations are not known in advance, they too can be found through
Padé approximation, after differentiation of the series. In the truncated series case,
the results are observed to be about fourth-order accurate, which compares favorably
with existing methods. The interpolation case is less successful, and one might be
better served by less accurate but more robust local detection techniques.

We view the main opportunity offered by our approach to be in situations when
Fourier reconstruction is desired for intrinsically nonperiodic data. Traditional spec-
trally accurate representations would in such cases typically be based on Chebyshev
or similar orthogonal polynomials. However, these are associated with highly nonuni-
form data point locations, which may be suboptimal for some functions and which
are seldom natural or practical in connection with experimental data. The singular
Padé approach allows many such difficulties to be bypassed, as it creates an easily
calculated, global, and spectrally accurate approximation to periodic and nonperiodic
functions to be constructed from a relatively small number of their leading Fourier
coeflicients.
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