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Abstract—In this paper, we analyze the signal-to-interference-
plus-noise ratio (SINR) performance at a mobile station (MS) in
a random cellular network. The cellular network is formed by
base stations (BSs) placed in a one-, two-, or three-dimensional
space according to a possibly non-homogeneous Poisson point
process, which is a generalization of the so-called shotgun cellular
system. We develop a sequence of equivalence relations for the
SCSs and use them to derive semi-analytical expressions for the
coverage probability at the MS when the transmissions from each
BS may be affected by random fading with arbitrary distributions
as well as attenuation following arbitrary path-loss models. For
homogeneous Poisson point processes in the interference-limited
case with power-law path-loss model, we show that the SINR
distribution is the same for all fading distributions and is not a
function of the base station density. In addition, the influence of
random transmission power, power control, and multiple channel
reuse groups on the downlink performance is also discussed. The
techniques developed for the analysis of SINR have applications
beyond cellular networks and can be used in similar studies for
cognitive radio networks, femtocell networks, and other heteroge-
neous and multi-tier networks.

Index Terms—Cellular systems, cochannel interference, ran-
dom cellular deployments, fading channels, stochastic ordering.

I. INTRODUCTION

THE modern cellular communication network is a complex
overlay of heterogeneous networks such as macrocells,

microcells, picocells, and femtocells. The base station (BS)
deployment for these network can be planned, unplanned, or
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uncoordinated. Even when planned, the base station placement
in a region typically deviates from the ideal regular hexagonal
grid due to site-acquisition difficulties, variable traffic load, and
terrain. The coexistence of heterogeneous networks has further
added to these deviations. As a result, the BS distribution
appears increasingly irregular as the BS density grows and is
outside standard performance analysis.

Two approaches of modeling have been widely adopted in the
literature. At one end, the BSs are located at the centers of reg-
ular hexagonal cells to form an ideal hexagonal cellular system.
At the other end, the BS deployments are modeled according to
a Poisson point process which we refer to as shotgun cellular
system (SCS). An in-depth study of Poisson point processes
and other stochastic geometric models can be found in [1]–[4].
In [5], we make a connection between the regular hexagonal
model and the Poisson process based model on a homogeneous
two dimensional (2-D) plane. It is shown that the signal-to-
interference ratio, (SIR), of the SCS lower bounds that of the
ideal hexagonal cellular system and, moreover, the two models
converge in the strong fading regime. The BS deployment in
the practical cellular system lies somewhere in between these
two extremes, and as noted in [5]–[7], significant insights about
the cellular performance can be gained by thoroughly under-
standing the hexagonal cellular system and the SCSs, especially
in the strong fading regime. The hexagonal cellular systems
are difficult to study analytically and hence, vast literature on
the performance studies of such systems is purely simulation-
based. On the other hand, in this paper we demonstrate that the
SCSs are extremely amenable to mathematical analysis even
for a very general system model. An in-depth analysis of the
downlink performance of the SCS is conducted by considering
three levels of generality. Firstly, the BS arrangement in the
SCS is according to a non-homogeneous Poisson point process
in an arbitrary dimension (l = 1, 2, 3), which can mimic the
BS arrangement in a real cellular system by the appropriate
choice of the intensity function of the point process. Secondly, a
general model is considered for the path-loss suffered by the BS
transmissions, which covers the most-popular power-law path-
loss model as well as other models that more accurately capture
indoor propagation losses. Thirdly, the fading undergone by
the transmitted signals of each BS is modeled as a random
variable with any arbitrary distribution that is independent and
identically distributed (i.i.d.) across all the BSs, that covers the
most commonly used log-normal and exponential distributions,
and more.

Prior Work and Our Contributions: A Poisson point process
has been adopted in the literature for the locations of nodes in
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Fig. 1. Contributions of this paper: SINR characterization for SCSs. A general SCS is reduced to the simplest SCS (canonical SCS, lower right corner of the
figure) using a series of transformations. The double arrows indicate equivalence of the SINR tail-probability of the SCS before and after the transformation
(proved in the theorem that label the corresponding arrows). The SINR tail-probability is derived for the canonical SCS, which is the same for the original SCS as
a result of the equivalent transformations.

the study of sensor networks, wireless LANs, cognitive radios,
ad hoc networks and other uncoordinated and decentralized
networks [8]–[22]. In the case of ad-hoc networks, bounds on
the transmission capacity have been derived in several different
contexts [23]. Similar outage probability analysis in ad-hoc
packet radio networks is considered in [24], [25].

An underlying assumption in all the previous work is that
the density of transmitters is constant throughout the cellular
region, i.e., the Poisson point process is homogeneous; propa-
gation model follows the power law path-loss; and the fading
models are log-normal, Rayleigh, or Rician distributions. In
this paper, the three levels of generality mentioned in the previ-
ous subsection helps in more accurately modeling the cellular
system thereby making the results hold for a wide variety of
practical scenarios. Moreover, the region of interest need not
be restricted to R

2 as in prior work, and may be R
1 or R

3.
Furthermore, the dependence of the downlink performance on
the MS location within the cellular region is also characterized.
Handoff features and correlations between the fading coeffi-
cients corresponding to different BS transmissions are out of
the scope of this work.

The main results of this paper are discussed below. As shown
in Fig. 1, we successively reduce the actual SCS to a canonical
model that is equivalent in terms of the SINR characteristics,
and characterize the SINR distribution for the simplest equiv-
alent system, thereby solving the problem for the most general
network. These results are covered in Section III borrow-
ing ideas from [17] for constructing the equivalent canonical
model. In [17], we looked at a qualitative comparison between
the SINRs of two SCSs based on usual stochastic ordering with-
out actually computing the distribution of SINR, whereas in this
paper, the main objective is to compute the SINR distribution
for any given SCS and to systematically characterize the influ-
ence of the model parameters on the downlink performance.

Next, for the special case of homogeneous SCSs, which is the
most widely used model for random node locations, the canon-

ical model takes an extremely simple form in which the BS
arrangement is according to a unit mean homogeneous Poisson
point process and where each BS has unity transmission power
and there is no fading. Further, the effect of the system param-
eters of the actual SCS (e.g., BS density, arbitrary transmission
power and fading distributions, background noise power) on
the downlink SINR are all captured in the background noise
power term in the canonical model. Finally, simple closed
form characterizations for the distribution of SINR, downlink
coverage (outage) probability, downlink average ergodic rate
and several insights about the cellular system are obtainable and
are the topic of concern in Section IV.

Applications of the above results to specific wireless commu-
nication scenarios are briefly described in Section VI, where we
point out the application of the ideas and results of this paper
to the performance analysis of cognitive radio networks and
heterogeneous and small-cell networks. Next, the system model
and the performance metric of interest are briefly explained.

II. SYSTEM MODEL

This section describes the various elements used to model
the shotgun cellular system, namely, the BS layout, the radio
environment, and the performance metrics of interest.

A. BS Layout

Definition 1: The Shotgun Cellular System (SCS) is a model
for the cellular system in which the BSs are placed in a given
l-dimensional plane (typically l = 1, 2, and 3) according to a
Poisson point process on R

l [1], [26].
The intensity function of the Poisson point process is called

the BS density function in the context of the SCS. A 1-D SCS
models, for example, the BS deployments along a highway. A
2-D SCS models planar BS deployments, and the 3-D SCS
models BS deployments in a dense urban area, or wireless
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LANs in an apartment building (note that to model urban areas
the BS density function might need to be heterogeneous). The
1-D, 2-D, and 3-D SCSs are described using the BS density
functions d(x), d(r, θ), and d(r, θ, φ), where −∞ ≤ x ≤ ∞
represents a point in 1-D, and r, θ, φ are used to represent a
point in polar coordinates, in 2-D and 3-D.

A l-D SCS is said to be homogeneous if the BS density
function is a constant over the entire l-D space. A homogeneous
2-D SCS is a common model for the random node placement in
many scenarios.

We consider the most general possible description for the
wireless radio environment. Let the received power at a distance
r(≥ 0) from a given BS be given by

P (r) = KΨ/h(r), (1)

where K represents the transmission power and the antenna
gain of the BS, Ψ captures the channel fading, and the function
h(·) represents a path-loss1 that a signal experiences as it prop-
agates in the wireless environment. The most commonly used
path-loss model is the power-law path-loss model, 1/h(r) =
rε, where ε is called the path-loss exponent.

B. Performance Metric

In this paper, we focus on the downlink performance of the
SCS. In other words, we are concerned with the signal quality
at a mobile-station (MS) within the SCS. The MS is assumed
to be located at the origin of the l-D SCS unless specified
otherwise. The signal quality at the MS is defined as the ratio
of the received power from the serving BS to the sum of the
interference powers (PI), and the background noise power (η),
and is called the signal-to-interference-plus-noise ratio (SINR).
In an interference-limited system, PI � η and the signal quality
is the signal-to-interference ratio (SIR).

Using (1), the SINR at the MS from a BS at a distance, say
Ri, is

SINR =
KiΨi/h(Ri)

∞∑
j=1
j �=i

KjΨj/h(Rj) + η
, (2)

where {Kj ,Ψj}∞j=1 are independent and identically distributed
(i.i.d) pairs of random variables representing the transmission
power and the channel gain coefficients, respectively, of the
jth BS, and {Rj}∞j=1 are random variables that come from
the underlying Poisson point process that governs the BS
placement. Also, the MS associates itself with the BS that has
the strongest received signal power (referred to as the serving
BS), and can successfully communicate with this BS only if
the corresponding SINR exceeds a certain operating threshold,
denoted by γ. In this paper, we find the tail probability [i.e.,
the complementary cumulative density function (c.c.d.f.)] of
the SINR, which helps characterize an important performance
metric for wireless networks, namely, the coverage probability,

1Following popular convention, we shall refer to the “path-loss model 1/h(r)”
throughout this paper, though from the above definition, 1/h(r) is really the
“path-gain.”

i.e., the probability that a MS is able to successfully communi-
cate with the desired BS. The following section presents some
necessary results that help simplify and solve the problem.

III. SINR CHARACTERISTICS

As illustrated in Fig. 1, this section presents several equiv-
alence relations on BS density, path-loss model, transmission
power and fading that leads to an equivalent canonical SCS
model. Then the equivalence relations are used to simplify the
analysis of the SINR. The equivalence is defined below.

A. Equivalence of SCSs

Definition 2: Two SCSs are equivalent if the joint distribu-
tion of the powers from all the BSs of a SCS received at the MS
located at the origin is the same as the joint distribution of the
other SCS.

As a result, if the noise powers are equal, the SINRs at the
MSs in two equivalent SCSs have the same distribution.

The following proposition gives an equivalent 1-D SCS for
any l-D SCS. It is a simple consequence of the fact that the
path-loss models considered in this paper is a function of only
the distance between the MS and a BS, not of the orientation.

Proposition 1: An l-D SCS, l = 1, 2, and 3 is equivalent to
a 1-D SCS with a one-sided BS density function λ(r), r ≥ 0,
calculated below, if other parameters are the same.

• For a 1-D SCS with density function d(x), −∞ ≤ x ≤ ∞,
λ(r) = d(r) + d(−r).

• For a 2-D SCS with density function d(r, θ), λ(r) =∫ 2π

θ=0 d(r, θ)rdθ.
• For a 3-D SCS with density function d(r, θ, φ), λ(r) =∫ π

θ=0

∫ 2π

φ=0 d(r, θ, φ)r
2 sin(θ)dθdφ.

Next, we show the equivalence between SCS’s with path-
loss model 1

h(R) and SCS’s with path-loss model 1
R , using the

concepts of stochastic ordering [26]–[28].
Theorem 1: Suppose h(r), r ≥ 0 is a monotonically increas-

ing function with derivative h′(r) > 0 ∀ r > 0 and an inverse
h−1(r), r > 0. Let R denote the distance between an arbitrary
BS and the MS. If all other parameters are the same, then a
1-D SCS with BS density function λ(r), r ≥ 0 and path-loss
model 1

h(R) is equivalent to a 1-D SCS with BS density function

λ̄(r) = λ(h−1(r))× d
drh

−1(r), and path-loss model 1
R . As a

result, if the noise powers are the same, the SINRs at the MSs
located at the origin in the two SCSs have the same distribution,
i.e., the SINR of (2) satisfies

SINR|λ(r) =st
KiΨi/R̃i

∞∑
j=1
j �=i

KjΨj/R̃j + η

∣∣∣∣∣∣∣∣∣∣
λ̄(r)

, (3)

where {R̃j}
∞
j=1 is the set of distances of BSs from the MS in

the 1-D SCS with BS density function λ̄(r) and =st represents
the equivalence in distribution.

Proof: See Appendix A. �
In other words, from the point of view of SINR distribution,

we may restrict ourselves to SCSs with the path-loss model
Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on June 05,2023 at 16:37:11 UTC from IEEE Xplore.  Restrictions apply. 



MADHUSUDHANAN et al.: DOWNLINK PERFORMANCE ANALYSIS FOR A GENERALIZED SHOTGUN CELLULAR SYSTEM 6687

1
h(R) replaced by the simple path-loss model 1

R . Next, we show
that we may also work only with SCSs where the random
transmission powers and fades are replaced with deterministic
transmission powers and fading coefficients. In the following
theorem, we show the equivalence between SCS’s with random
transmission power and fading and SCS’s with deterministic
transmission power and fading.

Theorem 2: A 1-D SCS with BS density function λ(r),
path-loss model 1

R , random transmission power K and random
fading Ψ that are i.i.d. across all BSs, is equivalent to another
1-D SCS with a BS density function λ̄(r), 1

R path-loss model,
unity transmission power and unity fading. The above is true
for arbitrary joint distributions of (K,Ψ) as long as λ̄(r) =
EK,Ψ[KΨλ(KΨr)] < ∞ holds for all r ≥ 0, where EK,Ψ[·] is
the expectation operator w.r.t. (K,Ψ). The distributions of the
SINRs at the MSs located at the origin of the two SCS’s are the
same if the noise powers of the MSs are equal.

Proof: See Appendix B. �
Combining Proposition 1, Theorem 1 and Theorem 2, with-

out loss of generality, we can now restrict our attention to the
SINR characterization of the canonical SCS defined below.
In other words, the distribution of SINR in a network with
arbitrary path-loss model, arbitrary i.i.d. fading, and arbitrary
i.i.d. transmission powers on the links can be computed from
that of the equivalent canonical SCS.

B. The Canonical SCS

Definition 3: A canonical SCS is a 1-D SCS with a BS
density function λ(r), r ≥ 0, unity transmission power and
unity fading factors for all BSs in the SCS, and a path-loss
model of 1

R .
For a canonical SCS, the BS closest to the origin is the

serving BS and the rest of the BSs contribute to the interference
power. The following is an interesting fact.

Lemma 1: The distributions of SINRs at the MS in canonical
SCSs with BS density function and noise power of the form
1
aλ
(
r
a

)
, η
a , respectively, are the same for all η ≥ 0 and a > 0.

Further, when η = 0, SIR|λ(r) =st SIR| 1
aλ( r

a ).
Proof: See Appendix C. �

As a result, the appropriate scaling of the BS density function
will not change the p.d.f. of SINR. Next, we derive expressions
for the tail probability of the SINR.

C. SINR Distribution of the Canonical SCS

Theorem 3: The tail probability of SINR at the MS in a
canonical SCS, P({SINRcanonical > γ}) is given by

P ({SINRcanonical > γ})

=

⎧⎨
⎩
∫∞
ω=−∞ Φ 1

SINRcanonical

(ω)

(
1−exp(− iω

γ )
iω

)
dω
2π , γ > 0

1, γ = 0,

(4)

where Φ 1
SINRcanonical

(ω) is the characteristic function of
1

SINRcanonical
given by

Φ 1
SINRcanonical

(ω)

= ER1

[
exp(iωηR1)× ΦPI |R1

(ωR1|R1)
]

(5)

= ER1
[exp (iωηR1)×

exp

(
R1 ×

∫ ∞

u=1

(
exp

(
iω

u

)
− 1

)
λ(uR1)du

)]
, (6)

where ER1
[·] is the expectation w.r.t. the random variable R1,

which is the distance of the BS closest to the origin, and
with the probability density function (p.d.f.) fR1

(r) = λ(r)×
e
−
∫ r

s=0
λ(s)ds, r ≥ 0.

Proof: See Appendix D. �
2) Special Case: SINR Tail Probability for 0 dB and Higher:

Now, we take a minor detour from studying the canonical
SCS and consider a 1-D SCS affected by i.i.d. random fading
factor with unity mean exponential distribution. For this case,
the following theorem gives a simpler expression for the tail
probability of SINR when γ ≥ 1.

Lemma 2: For a 1-D SCS with a BS density function λ̄(r),
1
R path-loss model, unity transmission power, i.i.d. unity mean
exponential random variable for fading at each BS, the tail
probability of SINR for γ ≥ 1 is given by

P ({SINR > γ}) =∫ ∞

r=0

λ̄(r) exp

(
−ηγr −

∫ ∞

s=0

λ̄ (s) ds

1 + (γr)−1s

)
dr. (7)

Proof: See Appendix E. �
The above result can be used to compute the tail probability

of SINR for γ ≥ 1 for a canonical SCS under certain condi-
tions. We briefly investigate this situation for which we define

L(f(x), s) Δ
=
∫∞
x=0 e

−sxf(x)dx to be the unilateral Laplace
transform of the function f(x).

Lemma 3: A canonical SCS with BS density function λ(r) is
equivalent to the 1-D SCS with i.i.d. unit-mean exponentially-
distributed fading coefficients Ψi considered in Lemma 2 if
there exists a continuous BS density function λ̄(r) ≥ 0 such
that L

(
λ̄(x), 1

r

)
,
∫ r

s=0 λ(s)ds exist and

L
(
λ̄(x),

1

r

)
=

∫ r

s=0

λ(s)ds, ∀ r ≥ 0. (8)

As a result, the tail probability of SINR for such canonical SCS
is equal to (7).

Proof: The above result is obtained as a consequence of
Theorem 2 which says that the two SCSs considered above
are equivalent if λ(r) = EΨ[Ψλ̄(rΨ)], ∀ r ≥ 0, where Ψ is the
unity mean exponential random variable representing the fading
factors in the latter SCS. By rewriting the expectation in the
above equation as an integral and simplifying, we obtain

λ(r) =

∫ ∞

x=0

d

dr

(
e−

x
r

)
λ̄(x)dx

(a)
=

d

dr

(
L
(
λ̄(x),

1

r

))
,
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where (a) is obtained by exchanging the order of integration
and differentiation, which is valid since λ̄(r) is continuous.
Further, the resultant integral can be written in terms of the
Laplace transform of λ̄(x). Using L

(
λ̄(x), 1

r

)∣∣
r=0

= 0 as the
initial condition, the above differential equation can be solved
to obtain the condition for equivalence between the two SCSs
to be (8). �

3) Computing Canonical SCS SINR Tail Probabilities From
Equivalent SCSs With i.i.d. Rayleigh Fading: The following
shows examples for the existence of BS density functions
(λ(r), λ̄(r)) that satisfy the condition in (8).

Example 1: Polynomial—polynomial equivalence: The pair
(λ(r), λ̄(r)) = (α1r

δ, α2r
δ) satisfy the condition in (8) as long

as δ + 1 > 0, and α1 = α2Γ(1 + δ) > 0, where Γ(·) is the
Gamma function.

Example 2: Rational—exponential equivalence: The pair

(λ(r), λ̄(r)) =
(

1
(1+αr)2 , e

−αr
)
, ∀α > 0 satisfy the condition

in (8).
We will see in the following section that the equivalent 1-D

BS density function for the homogeneous l-D SCSs are polyno-
mial functions, and using Example 1 and Lemma 2, simple ana-
lytical expressions for the tail probability of SINR are obtained.

The results presented in this section can together accurately
characterize the SINR in any arbitrary SCS with arbitrary
transmission and channel characteristics. The semi-analytical
expressions presented above might seem unwieldy at the first
glance. But it turns out that several insightful results can be
extracted from this representation for a special class of SCSs
that are practically important and popular in literature. This
special class of SCSs are the homogeneous l-D SCSs, l ∈
{1, 2, 3}, and we dedicate the next section to studying this
special class in detail.

IV. HOMOGENEOUS l-D SCS

In this section, we focus on the analysis of the homogeneous
l-D SCSs with a power-law path-loss model h(R) = Rε. The
homogeneous l-D SCS is the most widely used stochastic
geometric model in the literature for modeling arrangement of
node locations. Especially, its validity in the study of the small-
cell networks is extremely appealing. Moreover, this model has
the advantage of being analytically amenable for a variety of
situations that are of great importance in the modeling and
analysis of any type of wireless network. The results provide
several insights about such large-scale networks that can be
applied in the design of actual networks in practice. Next, we
apply the results of the previous section to the case of the
homogeneous l-D SCS.

Corollary 1. [of Proposition 1]: A homogeneous l-D SCS
with a constant BS density λ0 over the entire space is equiv-
alent to the 1-D SCS with a BS density function λ(r) =
λ0blr

l−1, ∀r ≥ 0, where b1 = 2, b2 = 2π, b3 = 4π.
This is easily proved by letting d(x), d(r, θ), and d(r, θ, φ)

be λ0 in Proposition 1.
For the power-law path-loss model 1/h(R) = Rε, we have

the following equivalent SCS using Corollary 1 and Theorem 2.
Corollary 2. [of Theorem 2]: A homogeneous l-D SCS with

BS density λ0 and path-loss model 1
Rε is equivalent to the 1-D

SCS with a BS density function λ̄(r) = λ0
bl
ε r

l
ε−1, r ≥ 0 and

the path-loss model 1
R .

Next, we characterize the effect of random transmission
powers and fading factors, i.i.d. across BSs in the homogeneous
l-D SCS. The effect of fading factors with arbitrary distribution
on the SINR of homogeneous 2-D SCS has been reported in
[18], [29], [30], and the following result generalizes it further.

Corollary 3. [of Theorem 2]: A homogeneous l-D SCS
with BS density λ0, power-law path-loss model

(
1
Rε

)
, random

transmission powers and fading factors that have arbitrary
joint distribution and are i.i.d. across all the BSs is equivalent
to another homogeneous l-D SCS with a BS density λ̄ =

λ0E

[
(KΨ)

l
ε

]
, same power-law path-loss model

(
1
Rε

)
, unity

transmission power and unity fading factor at each BS, where
K, Ψ have the same joint distribution as the transmission power
and fading factors of the original homogeneous l-D SCS and
E[·] is the expectation operator w.r.t. K and Ψ, as long as

E

[
(KΨ)

l
ε

]
< ∞.

Proof: Using Corollary 1 and Corollary 2, we obtain a 1-D
SCS with BS density function λ̃(r) = λ0

bl
ε r

l
ε−1, with a path-

loss model 1
R . Now, from Theorem 2, the equivalent canonical

SCS has a BS density function λ̂(r) = E

[
(KΨ)

l
ε

]
× λ̃(r).

This result can be traced back to the scaling of the BS density

of the original homogeneous l-D SCS by E

[
(KΨ)

l
ε

]
. �

As a result, we can restrict our attention to SINR characteri-
zation when all the BSs of the l-D SCS have unity transmission
power and fading factors. Now, we give the expression for the
tail probability of SINR in a homogeneous l-D SCS.

Corollary 4. [of Theorem 3]: In a homogeneous l-D SCS
with a BS density λ0, unity transmission power and fading
factor at each BS, if the path-loss exponent of the power-law
path-loss model satisfies ε > l, the characteristic function of the
reciprocal of SINR is given by

Φ 1
SINR

(ω) = ER1

[
eiωηR1 × e

λ0bl
l R

l
ε
1 (1−1F1(− l

ε ;1−
l
ε ;iω))

]
,

(9)

where the p.d.f. of R1 is fR1
(r) = λ0

bl
ε r

l
ε−1 · e−λ0

bl
l r

l
ε ,

r ≥ 0. When η = 0, the SINR is equivalently the signal-to-
interference ratio (SIR), and

Φ 1
SIR

(ω) =
1

1F1

(
− l

ε ; 1−
l
ε ; iω

) , (10)

where 1F1(. . .) is the confluent hypergeometric function of the
first kind [31]. The tail probability of SINR is given by (4).

Proof: From Corollary 2, the SINR distribution is equiv-
alent to the canonical SCS with BS density function λ(r) =

λ0
bl
ε r

l
ε−1, r ≥ 0. Now, by solving for (6), in Theorem 3, we

obtain (9). Further, the expectation in (9) reduces to (10). �
Due to Corollary 3, the homogeneous l-D SCS satisfies the

conditions in Lemma 2 and hence a simple expression for the
tail probability of SINR for γ ≥ 1 can be derived. A special
case of the following result for the homogeneous 2-D SCS and
exponential fading case was reported in [32].
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Corollary 5. [of Lemma 2]: For a homogeneous l-D SCS
with BS density λ0, path-loss model 1

Rε , ε > l, with unity
transmission power and fading factor at each BS, the tail
probability of SINR for γ ≥ 1 is

P({SINR>γ})=
∫ ∞

r=0

λ0blr
l−1

Γ
(
1+ l

ε

)
exp

(
−ηγrε− λ0blr

lπγ
l
ε

εΓ
(
1+ l

ε

)
sin

(
lπ
ε

)
)
dr, (11)

= γ− l
εP ({SINR > 1}) , (12)

and when η = 0, the tail probability of SIR is

P ({SIR > γ}) =
sin

(
lπ
ε

)
γ− l

ε(
lπ
ε

) = sinc

(
l

ε

)
γ− l

ε . (13)

Proof: Due to Corollary 3, the homogeneous l-D SCS is
equivalent to another homogeneous l-D SCS with the same
path-loss model and transmission powers as the former, and
with a BS density λ0

Γ(1+ l
ε )

and i.i.d. unity mean exponential

random fading factors at each BS. Using Corollary 2, the BS
density function of the 1-D SCS with 1

R path-loss model that
is equivalent to the latter homogeneous l-D SCS is λ̄(r) =
λ0blr

l
ε
−1

εΓ(1+ l
ε )

, r ≥ 0. An alternate approach to obtain the expression

for λ̄(r) is using Lemma 3 and Example 1.
For the 1-D SCS, Lemma 2 is used to obtain the expression

for the tail probability of SINR to be (11), using the identity∫∞
s=0

s
l
ε
−1ds

1+(γr)−1s = π(γr)
l
ε

sin( lπ
ε )

. Finally, (12) and (13) are obtained

by simple change of variables. This completes the proof. �
Using Corollaries 4 and 5, the expression for the tail prob-

ability of SINR in a homogeneous l-D SCS with random
transmission power and fading factor with an arbitrary joint
distribution that are i.i.d. across the BSs of the SCS can be ob-
tained by merely scaling the BS density λ0 with an appropriate
constant that is given in Corollary 3.

The following lemma shows another interesting property of
the SINR distribution in a homogeneous l-D SCS.

Lemma 4: The SINR distribution in a homogeneous l-D SCS
with a constant BS density λ0, path-loss model 1

Rε , unity trans-
mission power and fading factor at each BS with a background
noise power η is the same as in a homogeneous l-D SCS with
the same path-loss model, unity BS density, unity transmission
power and fading factor at each BS and a background noise
power ηλ

− ε
l

0 . Equivalently,

SINR(λ0, ε, η) =st SINR
(
1, ε, ηλ

− ε
l

0

)
. (14)

Proof: SINR(λ0, ε, η) =
R−ε

1∑∞
k=2

R−ε
k

+η

∣∣∣∣
λl(r)

(a)
= st

(αR1)
−ε∑∞

i=2
(αRi)−ε+ηα−ε

∣∣∣∣∣
λl(r)

(b)
= st

(R′
1)

−ε∑∞
k=2

(R′
k
)−ε+η̄

∣∣∣∣∣
1
αλl( r

α )

, where

α = λ
1
l
0 ; η̄ = ηα−ε; (a) is obtained by expressing SINR in

terms of the equivalent 1-D SCS with λl(r) = λ0blr
l−1,

r ≥ 0, and multiplying numerator and denominator with α−ε;
(b) follows from Corollary 1; and finally, (14) is obtained by

Fig. 2. Plot of Prob({SINR > 1}) vs normalized noise power, ηλ− ε
l , for a

homogeneous l-D SCS

noting that the 1-D SCS with BS density function 1
αλl

(
r
α

)
in (b) corresponds to a homogeneous l-D SCS with BS
density 1. �

Therefore, it is sufficient to analyze a homogeneous l-D
SCS with BS density λ0 = 1 and maintain a lookup table
for the tail probability of SINR for different values of the
noise powers and path-loss exponents using (4). The lookup
table is presented for a homogeneous 2-D SCS in Fig. 2
as a plot of P({SINR > 1}) against noise powers for dif-
ferent values of path-loss exponents, which with (12) com-
pletely characterizes the tail probability for γ ≥ 1. Further,
in a homogeneous l-D SCS with a high BS density λ0,
the equivalent noise power ηλ

− ε
l

0 is small according to Lemma 4.
Hence, in an interference-limited system (large λ0), the signal
quality can be measured in terms of SIR. Further remarks on
SIR of a homogeneous l-D SCS based on Corollaries 4 are
given below.

Remark 1: The characteristic function of the 1
SIR does not

depend on λ0, and hence the tail probability of SIR at a MS in
a homogeneous l-D SCS does not depend on λ0.

Remark 2: From Corollary 1 and Remark 1, the tail prob-
ability of SIR is invariant to random transmission powers and
fading factors with arbitrary joint distribution and i.i.d. across
the BSs.

Remark 3: The expression for the characteristic function of
1

SIR for a homogeneous 2-D and 3-D SCS is same as that of
a homogeneous 1-D SCS with path-loss exponents ε

2 and ε
3 ,

respectively.
Remark 3 helps build an intuition of why the homogeneous

1-D SCS has a higher tail probability of SIR than homogeneous
2-D and 3-D SCSs. As the path-loss exponent decreases, the
BSs farther away from the MS have a greater contribution to the
total interference power at the MS, and this leads to a poorer
SIR at the MS and a smaller tail probability. Next, Fig. 3(a)
shows the tail probabilities of SIR in a homogeneous 2-D SCS
as a function of the path-loss exponent ε; the squares (�)
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Fig. 3. (a) Comparison of Simulations with the analytical results for a homogeneous 2-D SCS. (b) Comparing exact SIR and the few BS approximation for
path-loss ε = 4.

and the pluses (+) represent the values computed analytically
and by Monte-Carlo simulations, respectively. According to
Remark 3, the same figure can be used for 1-D and 3-D systems
with path-loss exponent ε′ using the scaling ε=2ε′ and ε= 2

3ε
′.

In the following, we present an approximation to SIR based
on modeling the interference due to the strongest few BSs
accurately and the interference due to the rest by their ensemble
average. The approximation is expected to be tight for low BS
densities. Due to Remark 1, the same approximation will be
tight for all BS densities. Now, we define the so-called few BS
approximation and derive closed form expressions for the tail
probability of SIR at MS in a homogeneous l-D SCS for both
the SIR regions [0,1) and [1,∞).

Definition 4: The few BS approximation corresponds to
modeling the total interference power at the MS in a SCS as
the sum of the contributions from the strongest few interfering
BSs and an ensemble average of the contributions of the rest of
the interfering BSs.

Recall that the total interference power is PI =
∑∞

i=2 R
−ε
i ,

where {Ri}∞i=1 is the set of distances of BSs arranged in the as-
cending order of their separation from the MS. The arrangement
also corresponds to the descending order of their contribution
to PI , due to path-loss. In the few BS approximation, PI is ap-
proximated by P̃I(k) =

∑k
i=2 R

−ε
i + E[

∑∞
i=k+1 R

−ε
i |Rk], for

some k, where E[·] is the expectation operator and corresponds
to the ensemble average of the contributions of BSs beyond Rk.
The SIR at the MS obtained by the few BS approximation is
denoted by SIRk. The expectation is calculated as follows.

Lemma 5: For a homogeneous l-D SCS, with BS density λ0

and ε > l, for k = 1, 2, 3, · · ·,

E

[ ∞∑
i=k+1

R−ε
i

∣∣∣∣∣Rk

]
=

λ0blR
l−ε
k

ε− l
. (15)

Proof: Firstly, use Corollary 1 to reduce the l-D SCS to an
equivalent 1-D SCS with BS density function λ(r) = λ0blr

l−1,
∀ r ≥ 0. Next, given k, using the Superposition theorem of
Poisson processes, the original Poisson process is equivalent

to the union of two independent Poisson processes defined in
the non-overlapping regions [0, Rk] and (Rk, ∞), respectively,
with the same BS density function. Now, using Campbell’s
theorem [1, (3.18), p. 28] to the Poisson process defined in
(Rk,∞), we obtain (15). �

The following theorem gives the SIR tail probability approx-
imation, using k = 2.

Theorem 4: In a homogeneous l-D SCS with BS density λ0

and path-loss exponent ε, satisfying ε > l, the tail probability
of SIR2 at the MS is given by

P ({SIR2 > γ})

=

{
γ− l

εC ε
l
, γ ≥ 1

1− e−u(γ) (1 + u(γ)) + γ− l
εD ε

l
(γ), γ < 1,

(16)

where C ε
l
= G(0) and D ε

l
(γ) = G(u(γ)) with G(a) =∫∞

v=a
ve−v(

1+v( ε
l −1)

−1
) l

ε
dv, and u(γ) ≡

(
ε
l − 1

) (
1
γ − 1

)
.

Proof: See Appendix F. �
The above approximation can be further tightened by recall-

ing that we already have a simple closed-form expression in
(13) for the tail probability of SIR for values in the range [1,∞).
Hence, the new approximation is as follows

P ({SIRapprox > γ}) =
{
P ({SIR > γ}) ,γ ≥ 1
P ({SIR2 > γ}) ,γ < 1,

(17)

where the relevant quantities are obtained from (13) and
Theorem 4.

Notice that P({SIR > γ}) = sinc( l
ε )

C ε
l

P({SIR2 > γ}) for

γ ≥ 1. Fig. 3(a) shows that the few BS approximation (•)
closely follows the actual behavior (�). Fig. 3(b) shows the
comparison of the tail probabilities of SIR (computed using
Corollaries 4 and 5) and SIR2 for a homogeneous 2-D SCS
with path-loss exponent 4. Notice that the gap between the two
tail probability curves is negligible in the region γ ∈ [0, 1], and
further, both the curves are straight lines parallel to each other

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on June 05,2023 at 16:37:11 UTC from IEEE Xplore.  Restrictions apply. 



MADHUSUDHANAN et al.: DOWNLINK PERFORMANCE ANALYSIS FOR A GENERALIZED SHOTGUN CELLULAR SYSTEM 6691

Fig. 4. (a) Comparing the SINR distributions for various fading distributions and noise profiles (Nakagami-2 refers to the Nakagami distribution with a shape
parameter 2 and mean 23.45, Exp(23.45) refers to an exponential random variable with mean 23.45, logN(0,8 dB) refers to a log-normal random variable whose
natural logarithm has a mean and variance of 0 and 8 dB, respectively). (b) Evaluating the tightness of the few-BS approximation.

in the region γ ∈ [1,∞), when the tail probability is plotted
against γ, both in the logarithmic scale. This shows that the
few BS approximation characterizes the signal quality in closed
form and is a good approximation for the actual SIR.

Now, having characterized the SIR for the homogeneous
l-D SCS, we look closely into what happens when ε ≤ l. We
will restrict ourselves to the case when l = 2, and the steps are
similar for l = 1, and l = 3.

Theorem 5: A homogeneous 2-D SCS with BS density λ,
where the signal decays according to a power-law path-loss
function with a path-loss exponent ε ≤ 2, the SIR at the MS
is 0 with probability 1.

Proof: See Appendix G for the case ε = 2. From
[17, Corollary 5], P({SIR > γ})|ε<2 ≤ P({SIR > γ})|ε=2 =
0, ∀γ ≥ 0. Hence we have proved the above result. �

Note that once we have characterized the SINR distri-
bution, the outage probability at the MS is known. The
event that the MS is in coverage is given by {SINR > γ},
where γ is the SINR threshold that the MS should satisfy
to be in coverage. Consequently, the coverage probability,
P({SINR > γ}) is precisely the tail probability of SINR com-
puted at γ. Next, we study the area-averaged spectral efficiency
[33, Page 77] for an MS in coverage. This quantity, termed
as the coverage conditional average rate, is given by R =
E[log(1 + SINR)|{SINR > γ}] and is the average of the in-
stantaneous rate achievable at the MS when the interference is
considered as noise. The coverage conditional average rate at
the MS simplifies to the following expression.

R = log(1 + γ) +

∫ ∞

t=γ

P ({SINR > t})
(1 + t)P ({SINR > γ})dt.

As a result, based on Proposition 1 and Theorems 1-2, we
can compute the coverage conditional average rate for any SCS.
Specifically, in the interference-limited case, the following
proposition provides the expression for a homogeneous l-D
SCS and when the popular power-law path-loss model is as-

sumed. For this case, the SIR characteristics are invariant to the
randomness in the transmission powers and the fading factors
due to Remark 2. Hence, without loss of generality, we restrict
our attention to the case of constant transmission powers at all
BSs and no fading.

Proposition 2: The ergodic average rate at the MS in a
homogeneous 2-D SCS under the power-law path-loss model,
with constant transmission powers at all BSs and no fading is
given by

R = log(1 + γ) +

∫ α

x=γ

P ({SIR > x})
P ({SIR > γ}) (1 + x)

dx+

α− 2
ε
ε

2
·2 F1

(
1,

2

ε
; 1 +

2

ε
;−α−1

)
,

where α = max(γ, 1), where 2F1

(
1, 2

ε ; 1 +
2
ε ;−α−1

)
is the

Gauss hypergeometric function and the probabilities are com-
puted using (4). Note that for γ ≥ 1, the middle term drops out.

V. NUMERICAL EXAMPLE AND DISCUSSION

In the first example, we consider a homogeneous 2-D SCS
with λ = 0.01, a power-law path-loss model with path-loss
exponent 4, and a background noise power of −10 dB and unity
transmission powers. We compare the SINR tail probabilities
for several cases where we vary the distributions of the fading
factors as well as the background noise power. Notice in
Fig. 4(a) that in the case when there is background noise, the
distribution of the fading greatly affects the SINR performance
at the MS. We consider three examples for the i.i.d. fading
factors: Nakagami distribution with a shape parameter 2, ex-
ponential distribution and log-normal distribution, and keep the
same mean (=23.45) for all the cases, for a fair comparison.
In the presence of the background noise, the MS sees a better
SINR performance for the Nakagami and the exponential case
compared to the log-normal case and the SINR performance
in all cases is far more superior than that without fading. This

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on June 05,2023 at 16:37:11 UTC from IEEE Xplore.  Restrictions apply. 



6692 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 13, NO. 12, DECEMBER 2014

is justified by Corollary 3 and Lemma 4 where the equivalent
homogeneous 2-D SCS with unity BS density has an equivalent
background noise power for the log-normal fading case that
is strictly greater than that for the exponential fading and the
Nakagami distributions. Further, in the no noise case, the SINR
performance is invariant to the fading distribution and is the
same as in the no fading case. This is also depicted in Fig. 4(a).

In Fig. 4(b), we assess the few-BS approximation for the
SIR characterization in the homogeneous l-D SCS. This figure
shows that the SIR approximation derived in Section IV based
on the few-BS approximation (Equation (17)) closely follows
the exact SIR characterization. Moreover, this relationship
holds for a wide range of scenarios of interest such as for
arbitrary fading and transmission power distributions, and for
all BS densities. In the following section, we discuss the usage
of the results obtained thus far in the analysis of other useful
wireless communication scenarios.

VI. APPLICATIONS IN WIRELESS COMMUNICATIONS

We discuss several scenarios where the wireless communi-
cation systems are modeled by the homogeneous l-D SCS with
BS density λ0, where l = 1, 2, and 3 correspond to highway,
suburban, and dense urban deployments, respectively.

BSs With Sectorized Antennas: In this example, we give a
practical scenario where the transmission powers of the BSs are
i.i.d. random variables. For example, consider the case where
each BS has an ideal sectorized antenna with gain G and beam-
width θ, such that BS’s antenna faces the MS with probability
θ
2π , in which case Ki = G, and otherwise Ki = 0. In this case,

in the absence of fading, from Corollary 3, λ0 = λ0G
2
ε

θ
2π is

the BS density of the equivalent homogeneous l-D SCS.
Multiple Access Techniques: Next, we study the signal qual-

ity at the MS in a cellular system employing different multiple
access techniques. For example, in a code division multiple
access (CDMA) system, the goal is to maintain a constant
voice signal quality at the MS, which is done by power control.
This goal is achievable by having the serving BS increase its
transmission power by α = γSIR−1, where α is the power
control factor or the processing gain, SIR is the instantaneous
signal quality at the MS, and γ is the desired constant signal
quality. In this formulation, α for each BS is a random variable
and in general, the α’s of nearby BSs are correlated. But if the
correlation is small, the SIR distribution computed here enables
radio designers to approximately model the power needs to
communicate with a MS in a SCS. In another formulation, if
α is a constant factor by which the power of the serving BS
is improved, its effect on the tail probability SIR at the MS
is obtained by straightforward manipulations as P({α× SIR >

γ|ε, l}) = sinc
(
l
ε

) (
γ
α

)− l
ε if γ > α.

Then, consider frequency division multiple access (FDMA)
and time division multiple access (TDMA) based cellular sys-
tems. Let the available spectrum (in frequency for FDMA and
in time-slots for TDMA) be divided into N channel reuse
groups (CG), and indexed as k = 1, 2, · · · , N . Then, each BS
is assigned one of the N CGs, such that the kth CG is assigned
with probability pk. In such a system, the MS chooses a CG that
corresponds to the best SIR; the BS in the CG that corresponds

to the strongest received power is the desired BS, and the MS
chooses it as the serving BS. The SIR at the MS in such a
SCS is of interest to us. Note that this homogeneous l-D SCS
is equivalent to N independent homogeneous l-D SCSs with
constant BS densities λ0p1, · · · , λ0pN , by the properties of
Poisson point processes. The tail probability of SIR at the MS
in such a system is given by P({SIR > γ|ε,N}) = 1− [1−
P({SIR > γ|ε})]N , where the tail probability on the right hand
side is computed using Corollary 4.

Cognitive Radios: In cognitive radio technology, the cogni-
tive radio devices (or secondary users) opportunistically oper-
ate in licensed frequency bands occupied by primary users. The
interference caused by secondary user transmissions is harmful
for primary users operation, and is not acceptable beyond
certain limits. Studying the nature of these interferences and
formulating methods for addressing them has been an active
area of research (see [34]–[37]). Although the interference
study of the cognitive radio networks needs more complicated
stochastic geometric models, a Poisson point process models
several useful scenarios. The general results in this paper are a
rich source of mathematical tools for studying these scenarios.
In [19], [38], we have extensively applied the ideas and results
developed here to understand the role of cooperation between
the secondary users in ensuring that the interference caused
by the secondary users are within the acceptable limits. The
secondary users are modeled analogous to BS placement in
homogeneous 1-D and 2-D SCS, and the tail probability of C

I
at the primary user is characterized. Further, in the context of
radio environment map (REM, [19, and references therein]),
we have highlighted the practical significance of the study of
1-D SCS.

Overlay Networks: The modern cellular communication net-
work is a complex overlay of heterogeneous networks, such as
macrocells, microcells, picocells and femtocells. This complex
overlay network is seldom studied as is since the correlation
between the node locations and fading factors in such dense
networks tend to make performance studies analytically in-
tractable. Yet, simpler cases where the node locations as well as
the fading factors are independent are well modeled by Poisson
point processes, and provide interesting insights about such
networks. In [39], [40], cellular systems consisting of macrocell
and femtocell networks are analyzed. Using the results in our
paper, the cumulative effect of all the networks constituting
the overlay network, on the signal quality at the MS can be
studied. A detailed study on this is set aside as a future work,
while the preliminary results are presented in [16], [18], [41].
Other efforts on the downlink performance characterization for
heterogeneous networks can be found in [22], [32], [42]–[47].

VII. CONCLUSION

In this paper, we study the characterization of the SIR and
SINR at the MS in shotgun cellular systems where a SCS is
defined as a cellular system where the BS deployment in a given
region is according to a Poisson point process. A sequence
of equivalent SCSs are derived to show that it is sufficient to
study the canonical SCS that has unity transmission power and
unity fading factors, and a path-loss model of 1

R . Analytical
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expressions for the tail probabilities of the SIR and SINR at
the MS are obtained for 1-D, 2-D, and 3-D SCSs, where the
1-D, 2-D, and 3-D SCS are mathematical models for BS
deployments along the highway (1-D), in planar regions (2-D)
and in urban areas (3-D), respectively. Further, a closed form
expression for the tail probability of SIR is derived for the
homogeneous cases of 1-D, 2-D, and 3-D SCS. The results are
applicable for general fading distributions and arbitrary path-
loss models. This makes the results useful for analyzing many
different wireless scenarios that are characterized by uncoor-
dinated deployments. The application of the results has been
demonstrated in the study of the impact of cooperation between
cognitive radios in the low power primary user detection and
can be found in [19], and in the study of heterogeneous net-
works in [18]. Future work will further explore the applications
of the SCS model in the context of indoor femtocells, cognitive
radios, and multi-tier or overlay networks.

APPENDIX

A. Proof for Path-loss Equivalence Theorem (Theorem 1)

Let R̄ = h(R) be the equivalent BS location. Using the
Mapping Theorem in [1], BS with locations R̄ is also a
Poisson point process, whose density is obtained below. For any
non-homogeneous 1-D Poisson point process, E[N(r + s)−
N(r)] =

∫ r+s

r λ(z)dz is the expected number of occurrences
in the interval (r, r + s). Thus,

E [N(r + s)−N(r)]

= E
[
Number of BSs with R̄ ∈ (r, r + s)

]
= E

[
Number of BSs with R ∈

(
h−1(r), h−1(r + s)

)]
=

∫ h−1(r+s)

z=h−1(r)

λ(z)dz =

∫ r+s

z=r

λ
(
h−1(z)

)
h′ (h−1(z))

dz. (18)

Hence, the 1-D SCS with path-loss model 1
h(R) and a BS

density function λ(r) is equivalent to the 1-D SCS with path-
loss model 1

R and BS density function λ̄(r).

B. Proof for Arbitrary Fading Equivalence Theorem
(Theorem 2)

Let R̄ = R(KΨ)−1, where R is the random variable repre-
senting the distance from the MS to a BS in the 1-D SCS with
a BS density function λ(r), K,Ψ are the transmission power
and the fading factor corresponding to the BS, respectively, and
R̄ is the corresponding equivalent distance. Using the product
space representation and Marking Theorem in [1], R̄ also
corresponds to the 1-D SCS with a BS density function derived
following (18):

E [N(r + s)−N(r)]
(a)
= EK,Ψ

[∫ (r+s)KΨ

rKΨ

λ(z)dz

]

(b)
=

∫ (r+s)

r

EK,Ψ [KΨλ(KΨz)] dz,

where (a) is obtained by rewriting the expectation with re-
spect to each realization of Ψ and K, and (b) is obtained by
exchanging the order of integration and expectation in (b) as

EK,Ψ[KΨλ(KΨz)] < ∞. Hence, R̄′s corresponds to the 1-D
SCS with a BS density function λ̄(r) = EK,Ψ[KΨλ(KΨr)].

C. Proof for Lemma 1

Let {Rk}∞k=1 correspond to the 1-D SCS with BS
density function λ(r). Then, since the ordered base station
locations Rk’s are determined by inter-base station distances,

it follows that SINR|λ(r)
(i)
= (aR1)

−1∑∞
k=2

(aRk)−1+ η
a

∣∣∣∣
λ(r)

(ii)
= st

(R′
1)

−1∑∞
k=2

(R′
k
)−1+ η

a

∣∣∣∣
1
aλ( r

a )
, where the SINR expression is obtained

using (2) with h(R) = R, (i) is obtained by multiplying the
numerator and denominator by 1

a , a > 0; (ii) is because
{R′

k}
∞
k=1 can be shown to correspond to 1-D SCS with BS

density 1
aλ
(
r
a

)
, a > 0, due to Theorem 1. By substituting

η = 0, it is clear that the SIR distributions of all the canonical
1-D SCSs with the BS density functions of the form 1

aλ
(
r
a

)
,

a > 0 are equivalent.

D. Proof for the Tail Probability of SINR (Theorem 3)

The following are the sequence of step to derive the expres-
sion in (4).

P ({SINRcanonical > γ})

= P

({
1

SINRcanonical
<

1

γ

})
(a)
=

∫ 1
γ

x=0

∫ ∞

ω=−∞
Φ 1

SINRcanonical

(ω)e−iωx dω

2π
dx,

where (a) is obtained by rewriting the c.d.f. of 1
SINRcanonical

in

terms of the characteristic function of 1
SINRcanonical

, where the

inner integration computes the p.d.f. of 1
SINRcanonical

, and the

outer integration gives the c.d.f. at 1
γ . When γ = 0, the above

event occurs with probability 1, and otherwise, it is expressed in
terms of the integration in (4) which is obtained by exchanging
the order of integrations in (a), which is valid in this case, and
then evaluating the integral w.r.t. x. In the rest of this section,
we derive the expression for Φ 1

SINRcanonical

(ω), by first noting

that SINRcanonical =
R−1

1∑∞
k=2

R−1
k

+η
.

Φ 1
SINRcanonical

(ω)
(a)
= ER1

[
Φ 1

SINRcanonical

∣∣R1
(ω|R1)

]

(b)
= ER1

⎡
⎢⎣eiωηR1Φ∑∞

k=2
R

−1
k

R
−1
1

∣∣∣∣R1

(ω|R1)

⎤
⎥⎦

= ER1

[
eiωηR1Φ∑∞

k=2
R−1

k |R1
(ωR1|R1)

]
(c)
= ER1

[
eiωηR1E

[ ∞∏
k=2

eiωR1R
−1
k

∣∣∣R1

]]

(d)
= ER1

[
eiωηR1 · exp

(
−
∫ ∞

r=R1

(
1− eiωR1r

−1
)
λ(r)dr

)]
,

where (a) is obtained due to the properties of expectation,
and R1 is the random variable for the distance of the closest
BS from the origin; (b) is obtained by using the properties of
the characteristic functions and noting that in 1

SINRcanonical
=∑∞

k=2
R−1

k
+η

R−1
1

, conditioned on R1, the term η

R−1
1

is a constant
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and hence separates out as eiωηR1 from the original conditional
characteristic function expression in (a); (c) is obtained by
rewriting the exponential of summation in the characteristic
function term in (b) as a product of exponentials; (d) is obtained
by first noting that conditioned on R1, the events in the two
disjoint regions [0, R1] and (R1,∞) are independent of each
other, and hence by the Restriction theorem [1, Page 17], all
the points beyond R1, represented by the set {Rk}∞k=1 can be
regarded to be associated with a Poisson point process in 1-D
restricted to the region (R1,∞), and with a density function
λ(r). As a result, now we can apply Campbell’s theorem
[1, (3.18), p. 28] to the inner expectation in (c) to obtain (d),
which is further simplified to obtain (6).

E. Proof for Lemma 2

Here, we derive the expression for the tail probability
of SINR for values greater than or equal to 1. Due to
[32, Lemma 1], there exists a unique BS within the 1-D SCS
such that γ ≥ 1 holds true. Suppose the index of this unique BS
is i. Then the expression for the tail probability of SINRi, the
SINR at the user when receiving from this BS, is given by

P ({SINRi > γ})

(a)
= P

({
ΨiR

−1
i∑∞

j=1, j 
=i ΨjR
−1
j + η

> γ

})

(b)
= E

⎡
⎣exp(−ηγRi)

∞∏
j=1,j 
=i

exp
(
−γRiΨjR

−1
j

)⎤⎦
(c)
= E [exp(−ηγRi)×

exp

(
−
∫ ∞

r=0

(
1− EΨ

[
e−γRiΨr−1

])
λ̄(r)dr

)]
(d)
= E [exp(−ηγRi)×

exp

(
−
∫ ∞

r=0

(
1− 1

1 + γRir−1

)
λ̄(r)dr

)]
,

where (a) is the expression for the tail probability of SINR
of the 1-D SCS with BS density λ̄(r) for which {Rj}∞j=1 is
the set of distances of BSs from the MS and ‘i’ is the index
of the unique BS that can satisfy the constraint {SINR >
γ}; (b) is obtained by evaluating the expectation w.r.t. Ψi

and the expectation operator E is w.r.t. to all other random
variables in (a); (c) is obtained by first conditioning w.r.t.
Ri and by Slivnyak’s theorem noting that the Palm distri-
bution (see [21, Chapter 8] and [3, Chapter 13] for details
on Palm theory and Slivynak’s theorem) of the BSs repre-
sented by {Rj}∞j=1,j 
=i given a BS at Ri is still a Poisson
point process with density function λ̄(r), then applying
the Marking theorem [1, Page 55] and Campbell’s theorem
[1, (3.18), p. 28] where Ψ is the unity mean exponential random
variable; (d) is obtained by evaluating the expectation in (c);
and finally, since there is a unique BS i such that SINRi ≥
1, we can write the tail probability of SINR as P({SINR >
γ}) = P(∪∞

i=1{SINRi > γ}) =
∑∞

i=1 P({SINRi > γ})

E

[∑∞
i=1 exp(−ηγRi) exp

(
−
∫∞
s=0

λ̄(s)ds
1+(γRi)−1s

)]
(from (d)) =

(7) from Campbell’s Theorem [1, (3.18), p. 28].

F. Proof for the Few-BS Approximation Theorem (Theorem 4)

First, using Corollary 5, SIR2=
KR−ε

1

P̃I(2)
, with P̃I(2)=

KR−ε
2

(
1+ λ0bl

ε−l R
l
2

)
. Next, notice that the event {SIR2>γ} is

equivalent to the joint event

{
R1≤R2, R1<

(
γP̃I(2)

K

)− 1
ε

}
and

thus, P({SIR2>γ})=P

({
R1≤min

(
R2,

(
γP̃I(2)

K

)− 1
ε

)})
,

where

min

⎛
⎝R2,

(
γP̃I(2)

K

)− 1
ε

⎞
⎠

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
γP̃I(2)

K

)− 1
ε

, γ ≥ 1(
γP̃I(2)

K

)− 1
ε

, γ < 1, R2 >
(

l×u(γ)
λ0bl

) 1
l

R2, γ < 1, R2 ≤
(

l×u(γ)
λ0bl

) 1
l

.

Finally, (16) is obtained using the joint p.d.f., fR1,R2
(r1, r2) =

(λ0bl)
2(r1r2)

l−1 exp
(
−λ0bl

l rl2
)
, 0 ≤ r1 ≤ r2 ≤ ∞, due to the

properties of Poisson point processes.

G. Proof for Theorem 5

Let us consider the probability of the event that the interfer-
ence due to all the BSs beyond the signal BS at a given distance
R1 is below a certain value, say, δ, for the case ε = 2.

P

({ ∞∑
k=2

R−2
k ≤ δ

∣∣∣∣∣R1

})

= P

({
e−s

∑∞
k=2

R−2
k ≥ e−sδ

∣∣∣R1

})
(a)

≤ esδE
[
e−s

∑∞
k=2

R−2
k

∣∣∣R1

]
(b)
= esδe

−λ
∫∞

r=R1

(
1−e−sr−2

)
2πrdr

(c)
= esδe

λ
∫∞

r=R1

∑∞
k=1

(−sr−2)
k

k! 2πrdr

= esδe−λs2π· log(r)|∞r=R1
+λ2π

∑∞
k=2

(−s)k

k!

(R2−kε
1 )
kε−2

= esδ × 0× eα(R1) = 0,

where (a) is obtained by applying Markov’s inequality; (b) is
obtained by applying Campbell’s theorem to the homogeneous
Poisson point process defined in the 2-D plane beyond R1 from
the origin; (c) is obtained after the Taylor’s series expansion of
the exponential function in (b); and finally the result is obtained
by noting that the exponential of a sum of functions is a product
of exponential and by showing that one of the terms in the
product is 0 while the others evaluate to a finite number.
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As a result,

P ({SIR>γ}) =ER1

[
P

({ ∞∑
k=2

R−ε
k < (γRε

1)
−1

∣∣∣∣∣R1

})]

=0, ∀ γ ≥ 0.

and hence we have proved the result.

H. Simulation Methods

In this section, the details of simulating the SCS are pre-
sented. A single trial in simulating the BS placement for the
1-D SCS with BS density function λ(r) in the region of interest
which is a subset of the 1-D plane denoted by S, involves the
following steps:

1) Generate a random number M , according to a Poisson
distribution with mean

∫
S λ(s)ds, which is the number of

BSs to be placed in S for the given trial.
2) BS placement: For homogeneous 1-D SCS, generate M

random numbers according to a uniform distribution in
the range of S. If λ(s) does not correspond to a homo-
geneous 1-D SCS, if λmax = sup

s∈S
λ(s), then generate a

random number y which is uniformly distributed in the
range [0, λmax] and another random number x according
to a uniform distribution in the range of S. A BS is
placed uniformly at x, only if y < λ0(x). This process
is repeated until M BS are placed.

3) Compute the received power at the MS for each BS
using the path-loss exponent ε. The fading in the SCS is
incorporated by multiplying each of the received powers
with i.i.d. random number generated according to the
distribution of the fading factor. Finally, SINR at the MS
corresponding to this trial, is computed according to (2).

For all the simulations in this paper T = 100, 000 trials are
used unless specified otherwise.
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