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Dirac synchronization is rhythmic and explosive
Lucille Calmon1, Juan G. Restrepo 2, Joaquín J. Torres 3 & Ginestra Bianconi 1,4✉

Topological signals defined on nodes, links and higher dimensional simplices define the

dynamical state of a network or of a simplicial complex. As such, topological signals are

attracting increasing attention in network theory, dynamical systems, signal processing and

machine learning. Topological signals defined on the nodes are typically studied in network

dynamics, while topological signals defined on links are much less explored. Here we

investigate Dirac synchronization, describing locally coupled topological signals defined on

the nodes and on the links of a network, and treated using the topological Dirac operator. The

dynamics of signals defined on the nodes is affected by a phase lag depending on the

dynamical state of nearby links and vice versa. We show that Dirac synchronization on a fully

connected network is explosive with a hysteresis loop characterized by a discontinuous

forward transition and a continuous backward transition. The analytical investigation of the

phase diagram provides a theoretical understanding of this topological explosive synchro-

nization. The model also displays an exotic coherent synchronized phase, also called rhythmic

phase, characterized by non-stationary order parameters which can shed light on topological

mechanisms for the emergence of brain rhythms.
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Synchronization1–7 pervades physical and biological
systems8,9. It is key to characterize physiological10 and brain
rhythms11, to understand collective animal behavior12, and

is also observed in non biological systems such as coupled
Josephson junctions13, lasers14 and ultracold atoms15,16.

While topology is recognized to play a fundamental role in
theoretical physics17,18, statistical mechanics19 and condensed
matter20–23, its role in determining the properties of synchroni-
zation phenomena24–27 has only started to be unveiled.

Recently, sparked by the growing interest in higher-order
networks and simplicial complexes28–31, the study of
topology32–41 and topological signals24–26,42–50 is gaining
increasing attention in network theory, dynamical systems and
machine learning. In a network, topological signals are dynamical
variables that can be associated to both nodes and links. While in
dynamical systems it is common to consider dynamical variables
associated to the nodes of a network and affected by interactions
described by the links of the network, the investigation of the
dynamics of higher order topological signals is only at its
infancy24–26,42–44,50.

Topological signals associated to the links of a network are of
relevance for a variety of complex systems. For instance, topo-
logical signals associated to links, also called edge signals, are
attracting increased interest in the context of brain research51,52
and can be relevant to understand the behaviour of actual neural
systems. Indeed, they can be associated to synaptic oscillatory
signals related to intracellular calcium dynamics53, involved in
synaptic communication among neurons54, which could influ-
ence the processing of information through the synapses and
memory storage and recall. Furthermore, edge signals can be used
to model fluxes in biological transportation networks and even in
power-grids55–58.

It has recently been shown25 that the topological signals
associated to simplices of a given dimension in a simplicial
complex can be treated with a higher-order Kuramoto model that
uses boundary operators to show how the irrotational and sole-
noidal components of the signal synchronize. When these two
components of the dynamics are coupled by a global adaptive
coupling25, the synchronization transition then becomes abrupt.
These results open the perspective to investigate the coupled
dynamics of signals of different dimension both on networks and
on simplicial complexes. Thus, in26 it has been shown that a
global adaptive coupling can give rise to a discontinuous syn-
chronization transition. However the global adaptive mechanism
adopted in Ref. 26 is not topological and on a fully connected
network, the synchronization dynamics proposed in26 does not
display a stable hysteresis loop. Therefore, important open the-
oretical questions are whether a discontinuous synchronization
transition can be observed when topological signals are coupled
locally, and whether a topological coupling of the signals can lead
to a stable hysteresis loop even for fully connected networks.

Here, we propose a dynamical model called Dirac synchroni-
zation that uses topology and, in particular, the topological Dirac
operator43,59 to couple locally the dynamics of topological signals
defined on the nodes and links of a network. Dirac synchroni-
zation describes a Kuramoto-like dynamics for phases associated
to the nodes and the links, where for the synchronization
dynamics defined on the nodes, we introduce a time-dependent
phase lag depending on the dynamics of the topological signals
associated to the nearby links, and vice-versa. This adaptive and
local coupling mechanism induces a non-trivial feedback
mechanism between the two types of topological signals leading
to a rich phenomenology. The main phenomena observed include
a discontinuous forward transition and a rhythmic phase where a
complex order parameter oscillates at constant frequency also in
the frame in which the intrinsic frequencies are zero in average.

Results and discussion
Motivation and main results. Dirac synchronization adopts a
coupling mechanism of node and link topological signals dictated
by topology that makes use of the topological Dirac operator43,59
and the higher-order Laplacians41,42,45. A crucial element of
Dirac synchronization is the introduction of adaptive phase lags
both for phases associated to nodes and phases associated to links.
Constant phase lags have been traditionally studied in the fra-
mework of the Sakaguchi and Kuramoto model60,61, which in the
presence of a careful fine tuning of the internal frequencies62,63,
time delays64 or non trivial network structure65 can lead to non-
trivial phase transitions and chimera states. Recently, space-
dependent phase lags have been considered as pivotal elements to
describe cortical oscillations66. Here, we show that time-
dependent phase-lags are a natural way to couple dynamical
topological signals of nodes and links, leading to a very rich
phenomenology and a non-trivial phase diagram, including dis-
continuous synchronization transitions even for a Gaussian dis-
tribution of the internal frequencies.

The properties of Dirac synchronization are very rich and
differ significantly from the properties of the higher-order
Kuramoto26. Most importantly the order parameters of the two
models are not the same, as Dirac synchronization has order
parameters which are linear combinations of the signal of nodes
and links revealing a very interdependent dynamics of the two
topological signals. On the contrary, the order parameters of the
higher-order Kuramoto model are associated exclusively to one
type of topological signals: there is one order parameter
depending on node signals and one depending on link signals.
Moreover, the phase diagram of Dirac synchronization on a fully
connected network includes a discontinuous forward transition
and a continuous backward transition with a thermodynamically
stable hysteresis loop. Finally, the coherent phase of Dirac
synchronization also called rhythmic phase, is non-stationary. In
this phase the nodes are not just distinguished in two classes
(frozen and drifting) like in the Kuramoto model but they might
display a non-stationary dynamics in which one of the two phases
associated to the node is drifting and the other is oscillating with a
relatively small amplitude while still contributing to the
corresponding order parameter.

In this work, we investigate the phase diagram of Dirac
synchronization numerically and analytically capturing both the
stationary and the non-stationary phases of Dirac synchroniza-
tion. The theoretical results are in excellent agreement with
extensive numerical simulations.

Interestingly, we can predict analytically the critical coupling
constant for the discontinuous forward transition and capture the
salient features of the observed rhythmic phase.

Large attention has been recently devoted to investigate which
mechanisms are able to induce discontinuous, explosive synchro-
nization transitions67,68 in simple networks69–73, adaptive
networks74, multiplex networks65,71,75–78 and simplicial
complexes25,79–81. The discontinuous transition of Dirac syn-
chronization is driven by the onset of instability of the incoherent
phase, similarly to what happens in other synchronization models
treating exclusively nodes signals73,76. Moreover, Dirac synchro-
nization is driven by a topologically induced mechanism resulting
in an abrupt, discontinuous synchronization transition that
cannot be reduced to the recently proposed framework82
intended to unify the different approaches to explosive
transitions.

The emergent rhythmic phase of Dirac synchronization
extends to a wide range of values of the coupling constant and
is actually the only coherent phase that can be observed in the
infinite network limit. The rhythmic phase, characterized by non-
stationary order parameters, might shed light on the mechanisms
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involved in the appearance of brain rhythms and cortical
oscillations11,66,83 since Kuramoto-like dynamics has been
reported to be a very suitable theoretical framework to investigate
such brain oscillatory behaviour66. Oscillations of the order
parameters occur, for example, in the presence of stochastic noise
and time delays84, in networks with neighbour frequency
correlations85, and in the context of the D-dimensional Kuramoto
model86 in87. However, while in87 the magnitude of the order
parameter displays large fluctuations, in Dirac synchronization
we have a wide region of the phase diagram in which one of the
two complex order parameters (the complex order parameter Xα)
oscillates at a low frequency without large fluctuations in its
absolute value, while the other (the complex order parameter Xβ)
has non-trivial phase and amplitude dynamics. In addition to the
explosive forward synchronization transition and the complex
rhythmic phase described above, the bifurcation diagram of the
system features a continuous backward transition, resulting in a
very rich phenomenology that could potentially give insight into
new mechanisms for the generation of brain rhythms66.

Note that Dirac synchronization is fully grounded in discrete
topology but it is rather distinct from the synchronization model
proposed in Ref. 88, the most notable differences being (i) that
Dirac synchronization treats topological signals defined on nodes
and links of a network while Ref. 88 only treats node signals, (ii)
that Dirac synchronization makes use of the topological Dirac
operator which Ref. 88 does not, and (iii) that Dirac synchroniza-
tion treats non-identical oscillators while Ref. 88 focuses on
identical ones.

Dirac Synchronization with local coupling
Uncoupled synchronization of topological signals. We consider a
network G= (V, E) formed by a set of N nodes V and a set of L
links E. The generic link ℓ has a positive orientation induced by
the node labels, i.e. ℓ= [i, j] is positively oriented if i < j. The
topology of the network is captured by the incidence matrix B
mapping any positively oriented link ℓ of the network to its two
end-nodes. Specifically, the incidence matrix B is a rectangular
matrix of size N × L with elements

½B1"i‘ ¼
1 if ‘ ¼ ½j; i" and j < i;

$1 if ‘ ¼ ½i; j" and i < j;

0 otherwise

8
><

>:
ð1Þ

The standard Kuramoto dynamics1 describes the synchroniza-
tion of the phases θ ¼ ðθ1; θ2 ¼ ; θNÞ

> associated to the nodes of
the network. In absence of interactions, each phase θi oscillates at
some intrinsic frequency ωi, typically drawn from a unimodal
random distribution. Here, we consider the normal distribution
ωi ' N ðΩ0; 1=τ0Þ. However, the phases of next nearest neigh-
bours are coupled to each other by an interaction term that tends
to align phases. This term is modulated by a coupling constant σ̂,
which is the control parameter of the dynamics. In terms of the
incidence matrix B, the standard Kuramoto model can be
expressed as

_θ ¼ ω$ σ̂B sin B>θ
! "

; ð2Þ

where ω ¼ ðω1;ω2; ¼ ;ωN Þ
> indicates the vector of intrinsic

frequencies. Note that in Eq. (2) and in the following by sinðxÞ, we
indicate the vector where the sine function is taken elementwise.
As a function of the coupling constant, the Kuramoto model is
known to display a synchronization transition with order

parameter

Rθ ¼
1
N

∑
N

i¼1
eiθi

####

####: ð3Þ

The higher-order Kuramoto model25 captures synchronization
of topological signals (phases) defined on the n-dimensional faces
of a simplicial complex, with n > 0. Let us consider the topological
signals defined on the links, denoted by the vector of phases
ϕ ¼ ðϕ‘1 ; ϕ‘2 ; ¼ ; ϕ‘L Þ

>. On a network, formed exclusively by
nodes and links, the higher-order Kuramoto dynamics for these
phases can be written as

_ϕ ¼ ~ω$ σ̂B> sinðBϕÞ; ð4Þ

where ~ω indicates the vector of internal frequencies of the links,
~ω ¼ ð~ω‘1

; ~ω‘2
; ¼ ; ~ω‘L

Þ>, with ~ω‘ ' N ðΩ1; 1=τ1Þ. The phases
associated to the links can be projected to the nodes by applying
the incidence matrix that acts like a discrete divergence of the
signal defined on the links. The projection of the phases of the
links onto the nodes, indicated by ψ, is given by

ψ ¼ Bϕ: ð5Þ

As a function of the coupling constant, the higher-order
Kuramoto model has been recently shown in Ref. 25 to display a
synchronization transition with order parameter

Rψ ¼
1
N

∑
N

i¼1
eiψi

####

####: ð6Þ

Let us define the Dirac operator43 of the network as the
(N+ L) × (N+ L) matrix with block structure

D ¼
0 B

B> 0

$ %
; ð7Þ

whose square is given by the Laplacian operator

L ¼ D2 ¼
L½0" 0

0 L½1"

 !
: ð8Þ

Here L[0]= BB⊤ is the graph Laplacian describing node to
node diffusion occurring through links, and L[1]= B⊤B is the 1-
(down)-Laplacian describing the diffusion from link to link
through nodes42,45.

Using the Dirac operator, the uncoupled dynamics of nodes
and links of a network can simply be written as

_Φ ¼ Ω$ σ̂D sin DΦð Þ; ð9Þ

where Φ and Ω are N+ L dimensional column vectors given by

Φ ¼
θ

ϕ

$ %
; Ω ¼

ω

~ω

$ %
: ð10Þ

The dynamics of the phases associated to the nodes is identical
to the standard Kuramoto dynamics, and for the vast majority of
network topologies, it displays a continuous phase transition at a
non-zero value of the coupling constant4. However, the dynamics
of the phases associated to the links, for the higher-order
Kuramoto model, displays a continuous phase transition at zero
coupling constant25.

Dirac synchronization. Having defined the uncoupled dynamics
of topological signals associated to nodes and links, given by Eqs.
(9), an important theoretical question that arises is how these
equations can be modified to couple topological signals defined
on nodes and links in non-trivial ways (see Fig. 1). In Ref. 26, a
global adaptive coupling modulating the coupling constant with
the order parameters Rθ and Rψ was shown to lead to a dis-
continuous explosive transition of the coupled topological signals.
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However, the adaptive coupling proposed in26 is not local: it does
not admit a generalization that locally couples the different
topological signals, a desirable feature since it might be argued
that physical systems are typically driven by local dynamics. For
instance, if the dynamics of nodes and links is assumed to treat
brain dynamics, it would be easier to justify a local coupling
mechanism rather than a global adaptive dynamics. Here we
formulate the equations for the Dirac synchronization of locally
coupled signals defined on nodes and links. We start from the
uncoupled Eq. (9) and introduce a local adaptive term in the form
of a phase lag. More precisely, we introduce a phase lag for the
node dynamics that depends on the topological signal associated
to the nearby links, and vice versa, we consider a phase lag for the
link dynamics that depends on the signal on the nodes at its two
endpoints. The natural way to introduce these phase lags is by
using the Laplacian matrix L, with an appropriate normalization
to take into consideration the fact that nodes might have very
heterogeneous degrees, while links are always only connected to
the two nodes at their endpoints. While the model can be easily
applied to any network, we consider the case of a fully connected
network to develop a thorough theoretical treatment of the
dynamics. As we will show, even in this case, the model displays a
rich phenomenology. Therefore, we propose the Dirac synchro-
nization model driven by the dynamical equations

_Φ ¼ Ω$
σ
N
D sinðDΦ$ γK$1LΦÞ; ð11Þ

where the matrix K is given by

K ¼
K½0" 0

0 K½1"

 !
; ð12Þ

i.e., K is a block-diagonal matrix whose non-zero blocks are
formed by the diagonal matrix of node degrees K[0] and by the
diagonal matrix K[1] of link generalized degrees, encoding the
number of nodes connected to each link. Therefore K[1] has all
diagonal elements given by 2 in any network while K[0] has all
diagonal elements given by N− 1 in the case of a fully connected
network. Moreover, in Eq. (11) and in the following we will make

use of the matrices γ and I given by

γ ¼
IN 0

0 $IL

$ %
I ¼

IN 0

0 IL

$ %
; ð13Þ

where IX indicates the identity matrix of dimension X × X. On a
sparse network, Dirac synchronization obeying Eq.(11) involves a
local coupling of the phases on the nodes with a topological signal
defined on nearby links and a coupling of the phases of the links
with a topological signal defined on nearby nodes. In particular
we substitute the argument of the sinðxÞ function in Eq.(9) with

DΦ ! DΦ$ γK$1LΦ: ð14Þ

Indeed, to have a meaningful model, one must require that the
interaction term (in the linearized system) is positive definite
which for us implies that the first order term to couple the signal
of nodes and links includes a phase-lag proportional to the
Laplacian, i.e, proportional to the square of the Dirac operator
D2 ¼ L. However one could also envision more general models
where higher powers of the Dirac operator could be included. It is
to be mentioned that the introduction of the matrix γ is necessary
to get a non-trivial phase diagram, while K$1 is important to have
a linearized coupling term that is semidefinite positive. Finally, we
note that the introduction of quadratic terms in Eq. (14) is in line
with the analogous generalization of the Dirac equation for
topological insulators proposed in Ref. 21 which also includes an
additional term proportional to the square of the momentum
(analogous to our Laplacian).

For our analysis on fully connected networks, we draw
the intrinsic frequencies of the nodes and of the links, respectively,
from the distributions ωi ' N ðΩ0; 1Þ and ~ω‘ ' N ð0; 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
N $ 1

p
Þ.

This rescaling of the frequencies on the links ensures that the
induced frequencies on the nodes defined shortly in Eq. (18) are
themselves normally distributed, with zero mean and unit-variance.
It is instructive to write Eq. (11) separately as a dynamical system of
equations for the phases θ associated to the nodes and the phases ϕ

Fig. 1 Schematic representation of topological signals defined on the nodes and the links of a network. In Dirac synchronization topological signals
associated to the nodes and the links of a network are coupled locally thanks to the Dirac operator. The considered topological signals are the phases of
oscillators associated to nodes (blue oscillator symbols placed on nodes) or to links (non-filled oscillator symbols placed on links) of a network. The two
insets show schematically the time-series of node [1] and link [1, 2] signals respectively.
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associated to the links of the network, giving

_θ ¼ ω$
σ
N
B sin B>θ þ K$1

½1" L½1"ϕ
' (

;

_ϕ ¼ ~ω$
σ
N
B> sin Bϕ$ K$1

½0" L½0"θ
' (

:
ð15Þ

This expression reveals explicitly that the coupling between
topological signals defined on nodes and links consists of adaptive
phase lags determined by the local diffusion properties of the
coupled dynamical signals.

Using Eq. (8), we observe that the linearized version of the
proposed dynamics in Eq. (11) still couples nodes and links
according to the dynamics

_Φ ¼ Ω$
σ
N
ðI þ γDK$1ÞLΦ: ð16Þ

Note that one can interpret this linearized dynamics as a
coupling between node phases and phases of nearby nodes (which
is described by the Laplacian operator L). Additionally, the
phases of the nodes are coupled with the phases of their incident
links and of the links connected to their neighbour nodes (which
is mediated by the term proportional to DK$1L). A similar
interpretation is in place for the dynamics of the links.

Dynamics projected on the nodes. Let us now investigate the
dynamical equations that describe the coupled dynamics of the
phases θ associated to the nodes and the projection ψ of the
phases associated to the links, with ψ given by Eq. (5). Since K[1]
and B⊤ commute, in terms of the phases θ and ψ, the equations
dictating the dynamics of Dirac synchronization read

_θ ¼ ω$
σ
N
B sin B>ðθ þ ψ=2Þ

! "
;

_ψ ¼ ω̂$
σ
N
L½0" sin

!
ψ $ K$1

½0" L½0"θ
"
;

ð17Þ

where

ω̂ ¼ B~ω; ð18Þ

(see Methods for details on the distribution of ω̂), and where we
have used the definition of L[1]= B⊤B. The Eqs. (17) can be
written elementwise as

_θi ¼ ωi þ
σ
N

∑
N

j¼1
sin αj $ αi

' (
;

_ψi ¼ ω̂i þ σ sinðβiÞ $
σ
N

∑
N

j¼1
sin βj

' (
;

ð19Þ

where the variables αi and βi are defined as

αi ¼ θi þ ψi=2;

βi ¼ !cðθi $ Θ̂Þ $ ψi;
ð20Þ

with Θ̂ given by

Θ̂ ¼
1
N

∑
N

i¼1
θi ð21Þ

and !c ¼ N=ðN $ 1Þ. We observe that Θ̂ is the average phase of
the nodes of the network that evolves in time at a constant fre-
quency Ω̂, determined only by the intrinsic frequencies of the
nodes. In fact, using Eqs. (19), we can easily show that

dΘ̂
dt

¼
1
N

∑
N

i¼1
_θi ¼

1
N

∑
N

i¼1
ωi ¼ Ω̂: ð22Þ

Here and in the following, we indicate with G0(ω) the
distribution of the intrinsic frequency ω of each node, and with
G1ðω̂Þ the marginal distribution of the frequency ω̂ for any

generic node of the fully connected network (for the explicit
expression of G1ðω̂Þ, see Methods).

In order to study the dynamical Eqs. (19), entirely capturing
the topological synchronization on a fully connected network, we
introduce the complex order parameters Xα and Xβ associated to
the phases αi and βi of the nodes of the network, i.e.

Xα ¼ Rαe
iηα ¼

1
N

∑
N

j¼1
eiαj ; ð23Þ

Xβ ¼ Rβe
iηβ ¼

1
N

∑
N

j¼1
eiβj ; ð24Þ

where Rξ and ηξ are real, and ξ∈ {α, β}. Using this notation, Eqs.
(19) can also be written as

_θi ¼ ωi þ σ Im e$iαiXα

) *
;

_ψi ¼ ω̂i $ σ ImXβ $ σIm e$iβi :
ð25Þ

Since Eqs. (25) are invariant under translation of the αi
variables, we consider the transformation

αi ! αi $ Ω̂t $ α0 ð26Þ

where α0 is independent of time. Interestingly, this invariance
guarantees that if Xα is stationary then we can always choose α0
such that Xα is also real, i.e., Xα= Rα. Independently of the
existence or not of a stationary solution, this invariance can be
used to also simplify Eqs. (25) to

_αi ¼ κi þ σ Im X̂e$iαi
) *

; ð27Þ

where we indicate with αi and e$iαi the vectors

αi ¼
αi
βi

$ %
; e$iαi ¼

e$iαi

e$iβi

$ %
; ð28Þ

and where the vector κi ¼ ðκi;α; κi;βÞ
> and the matrix X̂ in Eq.

(27) are given by

κi ¼
ωi $ Ω̂þ ω̂i=2$ σ ImXβ=2

!cωi $ !cΩ̂$ ω̂i þ σ ImXβ

 !

;

X̂ ¼
Xα $1=2

!cXα 1

$ %
:

ð29Þ

Phase diagram of Dirac synchronization. In Dirac synchroni-
zation, the dynamics of the phases associated to the nodes is a
modification of the standard Kuramoto model1,3,5, and includes a
phase-lag that depends on the phases associated to the links. It is
therefore instructive to compare the phase diagram of Dirac
synchronization with the phase diagram of the standard Kur-
amoto model. The standard Kuramoto model with normally
distributed internal frequencies with unitary variance, has a
continuous phase transition at the coupling constant σ ¼ σstdc
given by

σstdc ¼ 1:59577¼ ð30Þ

with the order parameter Rθ becoming positive for σ > σstdc . The
synchronization threshold σstdc coincides with the onset of the
instability of the incoherent phase where Rθ= 0. Consequently,
the forward and backward synchronization transitions coincide.
The phase diagram for Dirac synchronization is much richer. Let
us here summarize the main properties of this phase diagram as
predicted by our theoretical derivations detailed in the Methods
section.

The major differences between Dirac synchronization and the
standard Kuramoto model are featured in the very rich phase
diagram of Dirac synchronization (see schematic representation

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-01024-9 ARTICLE

COMMUNICATIONS PHYSICS | ����������(2022)�5:253� | https://doi.org/10.1038/s42005-022-01024-9 |www.nature.com/commsphys 5



in Fig. 2) which includes discontinuous transitions, a stable
hysteresis loop, and a non-stationary coherent phase (which we
call rhythmic phase), in which the complex order parameters Xα

and Xβ are not stationary. In order to capture the phase diagram
of the explosive Dirac synchronization, we need to theoretically
investigate the rhythmic phase where the density distribution of
the node’s phases is non-stationary.

Moreover, our theoretical predictions indicate that the onset of
the instability of the incoherent state does not coincide with the
bifurcation point at which the coherent phase can be first
observed. This leads to a hysteresis loop characterized by a
discontinuous forward transition, and a continuous backward
transition. In the context of the standard Kuramoto model, the
study of the stability of the incoherent phase puzzled the scientific
community for a long time89,90, until Strogatz and Mirollo proved
in Ref. 91 that σc corresponds to the onset of instability of the
incoherent phase, and later Ott and Antonsen92 revealed the
underlying one-dimensional dynamics of the order parameter in
the limit N→∞. Here we conduct a stability analysis of the
incoherent phase (see Methods for the analytical derivations), and
we find that the incoherent phase becomes unstable only for
σ ¼ σ?c , with σ?c given by

σ?c ¼ 2:14623¼ : ð31Þ

Interestingly, the bifurcation point where the synchronized
branch merges with the incoherent solution in the backward
transition, is expected for a smaller value of the coupling constant
σc < σ?c that we estimate with an approximate analytical
derivation, (which will be detailed below), to be equal to

σc ’ 1:66229¼ : ð32Þ

It follows that Dirac synchronization displays a discontin-
uous forward transition at σ?c , and a continuous backward
transition at σc.

The forward transition displays a discontinuity at σ?c , where we
observe the onset of a rhythmic phase, the non-stationary
coherent phase of Dirac synchronization, characterized by
oscillations of the complex order parameters Xα and Xβ. This
phase persists up to a value σ?S where the coherent phase becomes
stationary. The backward transition is instead continuous. One
observes first a transition between the stationary coherent phase
and the non-stationary coherent phase at σ?S , and subsequently a
continuous transition at σc.

From our theoretical analysis, we predict the phase diagram
sketched in Fig. 2, consisting of a thermodynamically stable
hysteresis loop, with a discontinuous forward transition at σ?c and
a continuous backward transition at σc. The coherent rhythmic
phase disappears at σ?S , where σ?S diverges in the large network
limit. Therefore, for N→∞, the system always remains in the
rhythmic phase.

These theoretical predictions are confirmed by extensive
numerical simulations (see Fig. 3) of the model defined on a
fully connected network of N= 20,000 nodes (although we can
observe some minor instance-to-instance differences). These
results are obtained by integrating Eqs. (19) using the 4th order
Runge-Kutta method with time step Δt= 0.005. The coupling
constant σ is first increased and then decreased adiabatically in
steps of Δσ= 0.03. From this numerically obtained bifurcation
diagram, we see that our theoretical prediction of the phase
diagram (solid and dashed lines) matches very well the numerical
results (red and blue triangles). However, the discontinuous phase
transition, driven by deviations from the incoherent phase, is

Fig. 2 Schematic phase diagram of Dirac synchronization. The schematic representation of the phase diagram of the standard Kuramoto model with order
parameter Rθ depending on the coupling constant σ (a) is compared with the phase diagram of Dirac synchronization characterized by the two order
parameters Rα and Rβ depending on the coupling constant σ (b, c). The synchronization transition of the standard Kuramoto model occurs continuously at
the synchronization threshold σ stdc and the forward and backward transitions coincide. For Dirac synchronization, the forward transition observed for
increasing values of σ starting from σ= 0, is discontinuous at σ?c where we observe an abrupt transition from an incoherent state where Rα= 0 (but Rβ > 0)
to a non-stationary coherent state of the complex order parameters with Rα > 0 (and Rβ > 0). This non-stationary coherent phase, also called rhythmic
phase, is characterized by non-trivial oscillations of the order parameter Xα in the complex plane which are observed at essentially constant absolute value
∣Xα∣. This phenomenon occurs in the region indicated here by dashed-lines. For σ > σ?S , where σ?S diverges in the limit of infinite network size, the coherent
state becomes stationary. The backward transition of Dirac synchronization, observed for decreasing values of σ, first displays a transition from a stationary
coherent state to a non-stationary coherent state at σ?S , then displays a continuous phase transition from the non-stationary coherent phase to the
incoherent phase at σc.
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observed at σ?c ðNÞ < 2:14623::: in finite networks. We study this
effect quantitatively by measuring the transition threshold on
systems of varying size N, averaging 100 independent iterations
for each N (see Fig. 4). We find that the observed distance from
the theoretical critical point given in Eq. (31) decreases
consistently with a power-law in N, with scaling exponent
0.177 (computed with integration time Tmax ¼ 5), confirming
further our theoretical prediction of σ?c . The observed behavior is
consistent with the earlier transition being caused by finite N
effects. For finite N, the system will have fluctuations about the
incoherent state which may bring the system to the basin of
attraction of the rhythmic phase and cause a transition even when
the incoherent state is stable. Thus, the observed transition point
depends on N (larger N implies smaller fluctuations), and Tmax
(larger Tmax implies larger probability of transition before
reaching σ)c ).

Finally, we find that this rich phase diagram is only observable
by considering the correct order parameters for Dirac synchro-
nization, Rα and Rβ, which characterize the synchronization of the
coupled topological signals as predicted by the analytical solution
of the model. This is due to the local coupling introduced in Dirac

synchronization, which couples together the phases of nodes and
adjacent links locally and topologically. Interestingly this is a
phenomenon that does not have an equivalent in the model26 in
which the signals of nodes and links are coupled by a global order
parameter. Therefore as we will show with our theoretical
derivation of the phase diagram of the model, the phases α and β
become the relevant variables to consider instead of the original
phases associated exclusively to the nodes θ and to the projected
signal of the links into the nodes ψ. Indeed, in agreement with our
theoretical expectations, numerical results clearly show that the
transition cannot be detected if one considers the naïve
uncoupled order parameters Rθ and Rψ, which remain close to
0 for all values of σ.

Numerical investigation of the rhythmic phase. In this section
we investigate numerically the rhythmic phase, observed for
σc < σ < σ?S in the backward transition, and for σ?c < σ < σ?S in the
forward transition. In this region of the phase space, the system is
in a non-stationary state where we can no longer assume that Xα

and Xβ are stationary.
In order to study the dynamical behaviour of the complex

order parameters characterized by slow fluctuations, we consider
a fully connected network of size N= 500, where we are able to
follow the non-stationary dynamics for a long equilibration time
Tmax.

For σ > σ?S , the order parameters are stationary as shown in
Fig. 5a, b. However, in the rhythmic phase, the order parameters
do not reach a stable fixed point and their real and imaginary
parts undergo fluctuations as shown in Fig. 5c–h. In particular,
close to the onset of the rhythmic phase σ?S , the order parameter
Xα displays a slow rotation in the complex plane with constant
emergent frequency ΩE, and constant absolute value ∣Xα∣= Rα as
shown in Fig. 5c. In this region, Xβ performs a periodic motion
along a closed limit cycle (see Fig. 5d). If the value of the coupling
constant is decreased, first the order parameter Xβ displays a
more complex dynamics (Fig. 5f) while Xα continues to oscillate
at essentially constant absolute value Rα (Fig. 5e). As σ approaches
σc, higher frequency oscillations of the magnitude of Xα also set
in, see Fig. 5g. The phase space portraits corresponding to the
dynamics of the complex order parameters presented in Fig. 5 are
shown in Fig. 6, revealing the nature of the fluctuations of the
order parameters.

The dynamics of the complex order parameter Xα is
particularly interesting in relation to the study of brain rhythms
and cortical oscillations, which have their origin in the level of
synchronization within neuronal populations or cortical areas. In
order to describe the non-trivial dynamical behaviour of Xα

during the backward transition, we show in Fig. 7 the phase
portrait of Xα when the coupling constant σ is decreased in time
in a fully connected network of size N= 500, where at each value
of the coupling constant the dynamics is equilibrated for a time
Tmax ¼ 10. From Fig. 7a, it is apparent that for σc < σ < σ?S , the
order parameter Xα displays slow frequency oscillations with an
amplitude that decreases as the coupling constant σ is decreased.
Moreover, this complex time series reveals that the amplitude is
also affected on very short time scales by fluctuations of small
amplitude and much faster frequencies. These are seen to become
increasingly significant as the coupling constant approaches σc. In
Fig. 7b, we highlight the region close to the transition between
stationarity and rhythmic phase. We confirm excellent agreement
with the theoretical estimate of the onset of the steady state Eq.
(50) and compare this to the measured frequency of oscillation
ΩE. As expected, the onset of non-stationarity coincides with the
emergence of oscillations, as seen in the phase space evolution
and direct measurement of ΩE.

Fig. 3 The phase diagram of Dirac synchronization: Numerical results and
theoretical expectations. The forward and backward Dirac synchronization
transitions of the real order parameters Rα (a) and Rβ (b) are plotted as a
function of the coupling constant σ. The numerical results are obtained for a
network of N= 20,000 nodes, by integrating the dynamical equations with
a 4th order Runge-Kutta method with time step Δt= 0.005 where, for each
value of σ the dynamics is equilibrated up to time Tmax ¼ 10. The coupling
constant σ is adiabatically increased and then decreased with steps of size
Δσ= 0.03. For each step in σ, the plotted values of the real order
parameters are averaged over the last fifth of the time series. Black lines
indicate the theoretical predictions as developed in Eqs. (67). Solid lines
indicate steady state solutions of the continuity equations and dashed lines
represent theoretical predictions in the non-stationary coherent phase. The
discontinuous transition point occurs at a coupling strength below the
theoretical estimate due to finite-size effects. We show with the dotted line
the location of the onset of the instability as extracted from finite size
scaling corresponding to the network size N= 20000.
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Fig. 4 The finite size effects on σ?c . a Shows the absolute value of the difference between the synchronization threshold σ?c ðNÞ in a network of N nodes and
the theoretical prediction σ?c of the synchronization threshold in an infinite network. The value of σ?c ðNÞ shown are averaged over 100 independent
realizations of the forward transition. We find that these finite size effects depend on the equilibration time Tmax (here shown for Tmax ¼ 5 and 10). Indeed,
for larger integration times, the probability that finite-size fluctuations about the incoherent size bring the system to the basin of attraction of the rhythmic
phase increases. Thus, the observed transition point depends on N (larger N implies smaller fluctuations), and Tmax (larger Tmax implies larger probability of
transition before reaching σ)c ). This process has negligible effect on the rest of the phase diagram. The finite size effects are fitted by a power-law scaling
function jσ?c ðNÞ $ σ?c j ¼ cN$ξ with c= 1.208, ξ= 0.177 and c= 0.7906, ξ= 0.1065 respectively for Tmax ¼ 5 (dashed line) and Tmax ¼ 10 (dotted line). The
standard deviation (over the 100 iterations, Tmax ¼ 5) of the order parameters Rα and Rβ are shown in the forward transition in panels (b) and (c)
respectively. This is highest closest to the transition point, and tends to the theoretical estimate as N increases.

Fig. 5 Post-transient time evolution of the real and imaginary parts of the parameters Xα and Xβ. Numerical results are shown for a network of size
N= 500 during the downward transition. These results are obtained with σ= 4 (a, b), σ= 3.4 (c, d), for σ= 3.37 (e, f) and for σ= 1.69 (g, h).
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Finally, we numerically observe that the angular frequency of
oscillations of Xα in the rhythmic phase depends on the network
size, as well as the coupling strength. In order to evaluate this
effect, we have conducted simulations of Dirac synchronization
with varying system size. For each network size, we performed
100 independent iterations of the phase diagram. We show in
Fig. 8 the average of the oscillation frequency ΩE measured at
each σ step in the rhythmic phase along the forward transition for
varying N. These simulations were obtained with equilibration
time Tmax ¼ 10, and the individual frequencies measured for each
iteration are averaged over the last fifth of the time series.

These results confirm that the oscillation frequency of the order
parameter Xα decreases with stronger coupling strength and reaches 0
at the onset of steady state for all finite system sizes. These extended
numerical simulations also confirm that this corresponds precisely to
the predicted onset of the steady state, as shown for a single iteration
withN= 500 in Fig. 7. As expected, we also confirm that the rhythmic
phase extends further for larger systems. Moreover, Fig. 8 clearly
reveals that the oscillation frequency of the coherent phase decreases
as the systems considered increase in size.

Theoretical treatment of Dirac synchronization
The continuity equation. We can obtain analytical stationary
solutions to the dynamics of Dirac synchronization in Eqs. (27)
by using a continuity equation approach91. This approach is
meant to capture the dynamics of the distribution of the phases αi

and βi. To this end let us define the density distribution
ρðiÞðα; βjωi; ω̂iÞ of the phases αi and βi given the frequencies ωi
and ω̂i. Since the phases obey the deterministic Eq. (27), it follows
that the time evolution of this density distribution is dictated by
the continuity equation

∂ρðiÞðα; βjωi; ω̂iÞ
∂t

þ ∇ * Ji ¼ 0; ð33Þ

where the current Ji is defined as

Ji ¼ ρðiÞðα; βjωi; ω̂iÞvi ð34Þ

and∇= (∂α, ∂β). Here the velocity vector vi is given by

vi ¼ κi þ σ Im X̂e$iαi
) *

: ð35Þ

In order to solve the continuity equation, we extend the Ott-
Antonsen92 approach to this 2-dimensional case, making the
ansatz that the Fourier expansion of ρðiÞðα; βjωi; ω̂iÞ can be
expressed as

ρðiÞðα; βjω; ω̂Þ ¼
1

ð2πÞ2
1þ ∑

n>0
f ðα;iÞn ðω; ω̂; tÞeinα þ c:c:
) *+ ,

´ 1þ ∑
m>0

f ðβ;iÞm ðω; ω̂; tÞeimβ þ c:c:
) *+ ,

;

ð36Þ

where c. c. denotes the complex conjugate of the preceding

Fig. 6 Phase portraits of the order parameters. The trajectories of the real and imaginary parts of the complex order parameters Xα and Xβ are displayed
for different values of the coupling constant σ in the backward transition. These results are obtained by neglecting the transient, in a network of N= 500
nodes with σ= 3.4 (a, b), with σ= 3.37 (c, d) and with σ= 1.69 (e, f).
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quantity. The expansion coefficients are given by

f ðα;iÞn ðω; ω̂; tÞ ¼ ½aiðω; ω̂; tÞ"
n

f ðβ;iÞm ðω; ω̂; tÞ ¼ ½biðω; ω̂; tÞ"
m

ð37Þ

for n > 0,m > 0. The series in Eq. (36) converges for ∣ai∣ ≤ 1 and

∣bi∣ ≤ 1 provided that we attribute to α and β an infinitesimally
small imaginary part.

For Xα ≠ 0, ai ≠ 0 and bi ≠ 0, the continuity equation is satisfied
if and only if (see Methods for details) ai and bi are complex
variables with absolute value one, i.e., ∣ai∣= ∣bi∣= 1, that satisfy
the system of differential equations

∂tai þ iaiκα;i þ 1
2 σ Xαa

2
i $ X?

α

) *
$ σ 1

4 aiðbi $ b$1
i Þ ¼ 0;

∂tbi þ ibiκβ;i þ 1
2 σ!c Xαai $ X?

αa
$1
i

) *
bi þ σ 1

2 ðb
2
i $ 1Þ ¼ 0;

ð38Þ

where here and in the following we indicate with X?
α the complex

conjugate of Xα, and with a$1
i ¼ a?i and b$1

i ¼ b?i the complex
conjugate of ai and bi respectively. We note that the only
stationary solutions of these equations are

ai ¼ $idi;α ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ d2i;α

q

bi ¼ $idi;β ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ d2i;β

q
;

ð39Þ

with di,α, di,β defined as

di;α ¼
ωi $ Ω̂
σRα

;

di;β ¼ $ω̂i=σ þ ImXβ;

ð40Þ

and having absolute value ∣di,α∣ ≤ 1 and ∣di,β∣ ≤ 1. This last
constraint is necessary to ensure ∣ai∣= ∣bi∣= 1. This result is
very different from the corresponding result for the standard
Kuramoto model because it implies that the coherent phase with
Rα > 0 cannot be a stationary solution in the infinite network limit
as long as ω and ω̂ are drawn from an unbounded distribution.
Indeed, a necessary condition to have all the phases in a
stationary state implies that ∣di,α∣ ≤ 1 and ∣di,β∣ ≤ 1 for every node
of the network. This implies in turn that the frequencies ω and ω̂
are bounded as we will discuss in the next sections.

In the case in which Xα= 0, instead, the continuity equation is
satisfied if and only if (see Methods for details) ai and bi, with
∣ai∣ ≠ 0 and ∣bi∣= 1, follow the system of differential equations

∂tai þ iaiκα;i $ σ 1
4 aiðbi $ b$1

i Þ ¼ 0

∂tbi þ ibiκβ;i þ σ 1
2 ðb

2
i $ 1Þ ¼ 0:

ð41Þ

For ∣ai∣= 0, the equation for bi is unchanged, but bi can have
an arbitrary large absolute value. In this last case, the steady state
solution of Eqs. (41) reads

ai ¼ 0

bi ¼ $id̂i;β ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ d̂

2
i;β

q
;

ð42Þ

with

d̂i;β ¼ κβ;i=σ: ð43Þ

Let us now derive the equations that determine the order
parameters Xα and Xβ for any possible value of the coupling
constant σ. Let us assume that the frequencies ωi and ω̂i
associated to each node i are known. With this hypothesis, the
complex order parameters can be expressed in terms of the
density ρðiÞðα; βjωi; ω̂iÞ as

Xα ¼
1
N

∑
N

i¼1

Z
dα
Z

dβ ρðiÞðα; βjωi; ω̂iÞe
iα;

Xβ ¼
1
N

∑
N

i¼1

Z
dα
Z

dβ ρðiÞðα; βjωi; ω̂iÞe
iβ:

ð44Þ

When ρðiÞðα; βjω; ω̂Þ satisfies the generalized Ott-Antonsen
ansatz given by Eq. (36) and Eq. (37), these complex order
parameters can be expressed in terms of the functions aiðωi; ω̂iÞ

Fig. 7 The desynchronization transition. The evolution of the complex
order parameter Xα during the backward synchronization transition is
plotted in panel (a) as the coupling constant decreases (each σ step is
indicated by the colors of different lines). These results have been obtained
for a network of N= 500, Tmax ¼ 10, and Δσ= 0.03. During this backward
transition, the onset of the rhythmic phase at σ?S and the onset of the
incoherent phase at σc are indicated. The onset of the rhythmic phase
corresponds exactly to the emergence of a non-zero oscillation frequency
ΩE, as shown in panel (b).

Fig. 8 The emergent frequencyΩE characterizing the rhythmic phase. The
absolute value of the emergent frequency ∣ΩE∣ characterizing the rhythmic
phase is shown as a function of σ, for networks of different network sizes N.
The data is averaged over 100 realizations of the intrinsic frequencies along
the forward transition. The equilibration time taken is Tmax ¼ 10.
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and biðωi; ω̂iÞ as

Xα ¼
1
N

∑
N

i¼1
a?i ðωi; ω̂iÞ;

Xβ ¼
1
N

∑
N

i¼1
b?i ðωi; ω̂iÞ;

ð45Þ

where a?i and b?i are the complex conjugates of ai and bi,
respectively.

If the internal frequencies ωi and ω̂i are not known, we can
express these complex order parameters in terms of the marginal
distributions G0(ω) and G1ðω̂Þ as

Xα ¼
Z

dω
Z

dω̂G0ðωÞG1ðω̂Þa
?ðω; ω̂Þ;

Xβ ¼
Z

dω
Z

dω̂G0ðωÞG1ðω̂Þb
?ðω; ω̂Þ:

ð46Þ

This derivation shows that aðω; ω̂Þ and bðω; ω̂Þ can be obtained
from the integration of (Eqs. (38) and (41)). In particular, as we
discuss in the next paragraph (paragraph II E 2) these equations
will be used to investigate the steady state solution of this
dynamics and the range of frequencies on which this stationary
solution can be observed. However for Dirac synchronization we
observe a phenomenon that does not have an equivalent in the
standard Kuramoto model. Indeed Eqs. (38) and (41) do not
always admit a coherent stationary solution, and actually the non-
stationary phase, also called rhythmic phase, is the stable one in
the large network limit. In this case we observe that Eqs. (38) and
(41) are equivalent to Eqs. (27) and therefore even their
numerical integration is not advantageous with respect to the
numerical integration of the original dynamics. Therefore the
Ott-Antonsen approach is important to demonstrate the
emergence of a rhythmic phase but cannot be used to derive
the phase diagram of Dirac syncrhonization, which will be
derived in the following using other theoretical approaches.

The stationary phases of Dirac synchronization. In the previous
section we have shown that Dirac synchronization admits a sta-
tionary state in the following two scenarios:

– Incoherent Phase - This is the incoherent phase where for
each node i, ai and bi are given by Eqs. (42). In this phase,
Rα= 0 and the order parameter Xβ ¼ Rβe

iηβ is determined by
the equations

Rβ cos ηβ ¼
1
N

∑
N

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ d̂

2
i;β

q
Hð1$ d̂

2
i;βÞ;

Rβ sin ηβ ¼
1
N

∑
N

i¼1
d̂i;βHð1$ d̂

2
i;βÞ;

ð47Þ

where d̂i;β is given by Eq. (43) and H(⋅) is the Heaviside step
function. Finally, if the intrinsic frequencies ω and projected
frequencies ω̂ are not known, we can average a?i ðω; ω̂Þ and
b?i ðω; ω̂Þ appearing in Eqs. (45) over the marginal distribu-
tions G0(ω) and G1ðω̂Þ. We observe that the steady state Eqs.
(47) always has a solution compatible with ηβ= 0, indicating
that the contribution from the phases βi that are drifting is
null. Therefore, Rβ in the incoherent phase is given by

Rβ ¼
Z

dω
Z

jd̂i;βj≤ 1
dω̂G0ðωÞG1ðω̂Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ d̂

2
i;β

q
: ð48Þ

– Stationary Coherent Phase - This is the coherent phase where
for each node i, ai and bi are given by Eqs. (39), respectively.
Note that this phase differs significantly from the coherent
phase of the standard Kuramoto model where drifting phases
can also give rise to a stationary continuity equation. Indeed

the constraints ∣ai∣= ∣bi∣= 1 imply that this phase can only be
observed when there are no drifting phases, and for each node
i the phases αi, βi are frozen. This can only occur in finite size
networks, provided that the coupling constant σ is sufficiently
large. Indeed, ∣ai∣= ∣bi∣= 1 implies that ∣di,α∣ ≤ 1 and ∣di,β∣ ≤ 1
for all nodes i of the network. By using the explicit expression
of di,α and di,β given by the Eqs. (40), this implies that the
stationary coherent phase can only be achieved if

σ ≥
1
Rα

max
i

jωi $ Ω̂j; σ ≥ max
i

jω̂i $ ImXβj; ð49Þ

are simultaneously satisfied, which gives

σ?S ¼ max max
i

jωi $ Ω̂j
Rα

;max
i

jω̂i $ ImXβj
$ %

: ð50Þ

We numerically find excellent agreement with this estimate,
as discussed previously.
Using a similar derivation as the one outlined for the
incoherent phase, we can derive the expression for Rα and Rβ
in the stationary coherent phase, which can be expressed as

Rα ¼
1
N

∑
N

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ d2i;α

q
;

Rβ ¼
1
N

∑
N

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ d2i;β

q
;

ð51Þ

where di,αdi,β are both smaller than one in absolute value and
given by Eqs. (40). If the frequencies of the individual nodes
are not known, averaging over the distributions G0(ω) and
G1ðω̂Þ one finds that ImXβ= 0 and the order parameters Rα

and Rβ can be expressed as

Rα ¼
Z

dωG0ðωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ d2i;α

q
;

Rβ ¼
Z

dω̂G1ðω̂Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ d2i;β

q
:

ð52Þ

From this discussion, and since this phase can only be
observed for a coupling constant σ satisfying Eqs. (49), it
follows that this stationary coherent phase can only be
achieved if the internal frequencies ω and ω̂ are bounded.
Since the internal frequencies are Gaussian distributed, this
implies that the stationary coherent phase is only observed in
finite size networks at a value of the coupling constant that
increases with the network size N. We were able to verify this
effect numerically, finding that σ?S clearly increases with N.

The theoretical interpretation of the non-stationary rhythmic
phase. From the theoretical treatment of the stationary phases of
Dirac synchronization performed in the previous paragraph, we
draw the important conclusion that the coherent phase of Dirac
synchronization is non-stationary in the thermodynamic limit.
Indeed, in this phase, the continuity equation is characterized by a
non-vanishing current. This is very different phenomenology in
comparison with the standard Kuramoto model, where the
drifting phases can still coexist with a stationary continuity
equation.

In order to treat the coherent non-stationary phase (the
rhythmic phase), we provide here an approximate theoretical
framework that captures the essential physics of this dynamics.
Our starting point is the dynamical equation (Eq. (27)) obeyed by
the vector αi ¼ ðαi; βiÞ

> of phases associated to each node i. We
also make the important numerical observation that in the non-
stationary coherent phase, the order parameter Xα ¼ Rαe

iηα

acquires a phase velocity even if Ω̂ ¼ 0. We characterize this
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phase as a rhythmic phase with

ηαðtÞ ’ ηαð0Þ þΩEt; ð53Þ

where we note, however, that numerical simulations reveal that
the observed emergent frequency ΩE decreases with increasing
network size (see Fig. 8).

While in the standard Kuramoto model the phases are either
frozen in the rotating moving frame of the order parameter or
drifting, in Dirac synchronization the scenario is richer, because
some phases are allowed to oscillate but still contribute to the
order parameters. Indeed, by studying Eq. (27) with the
hypothesis that ηα obeys Eq. (53), we can classify the phases αi
associated to each node i of the network into four classes (whose
typical trajectories are shown in Fig. 9):

(a) Nodes with frozen phases- These are nodes i that for large
times have both αi and βi phases frozen in the rotating
frame. A typical streamplot of the phases of these nodes is
represented in Fig. 10a. Under the simplifying assumption
that only the order parameter Xα rotates with frequency ΩE,
these phases obey

_αi ¼ ΩE;
_βi ¼ 0: ð54Þ

Therefore, in the rotating frame of the order parameters
these phases are frozen on the values

sinðαi $ ηαÞ ¼ di;α; sin βi ¼ di;β: ð55Þ

with

di;α ¼
ωi $ Ω̂$ΩE=ð1þ !c=2Þ

σRα

di;β ¼
$ω̂i þ !cΩE=ð1þ !c=2Þ

σ
þ ImXβ:

ð56Þ

A necessary condition for the nodes to be frozen is that

jdi;αj ≤ 1; jdi;βj ≤ 1; ð57Þ

so that Eqs. (55) are well defined. Therefore in the plane
ð Im ðXαe

$iαÞ; sin βÞ, these phases in theory should appear as

a single dot. Since in the real simulations the order
parameter Xβ has a non-zero phase, these phases appear in
Fig. 9 as little localized clouds instead of single dots.

(b) Nodes with α-oscillating phases- These are nodes i that for
large times have the phase βi drifting, while the phase αi
oscillates in a non-trivial way contributing to the order
parameter Xα. A typical streamplot of the phases of these
nodes is represented in Fig. 10b. Asymptotically in time,
these phases obey

_αi ¼ ΩE; sin βi ’ 0; ð58Þ

where we denote a late-time average with an overbar. By
inserting these conditions in the dynamical Eq. (27), it
follows that

ImðXαe$iαi Þ ’
1
σ
ðΩE $ κα;iÞ: ð59Þ

Approximating ImðXαe$iαi Þ ’ Rα sin ðηα $ αiÞ, we get

sin ðαi $ ηαÞ ’ d̂i;α +
1

σRα
ðκα;i $ ΩEÞ: ð60Þ

From these arguments, it follows that these αi oscillating
phases are encountered when

jd̂i;αj ≤ 1; jdi;βj≥ 1: ð61Þ

In the plane ð Im ðXαe
$iαÞ; sin βÞ, these phases have a

trajectory that spans only a limited range of the values of
Im(Xαe−iα) while the βi phases are drifting (see the blue
trajectory in Fig. 9).

(c) Nodes with β-oscillating phases- These are nodes i that at
large times have the phase αi drifting, while the phase βi
oscillates in a non-trivial way, contributing to the order
parameter Xβ. A typical streamplot of the phases of these
nodes is represented in Fig. 10c. Therefore, asymptotically
in time, the phases of these nodes obey

ImðXαe$iαi Þ ’ 0; _βi ¼ 0: ð62Þ

By inserting these conditions in the dynamical Eq. (27), we
conclude that

sin βi ’ $d̂i;β +
$κβ;i
σ

: ð63Þ

By approximating sin βi ’ sin βi, we obtain the following
estimation of sin βi

sin βi ’ $d̂i;β ¼
$κβ;i
σ

: ð64Þ

It follows that these nodes are encountered when the
following conditions are satisfied:

jd̂i;βj ≤ 1; jdi;αj≥ 1: ð65Þ

In the plane ð Im ðXαe
$iαÞ; sin βÞ, these phases have a

trajectory that spans only a limited range of the values of
sin βi while the αi phases are drifting (see the red and yellow
trajectories in Fig. 9).

(d) Nodes with drifting phases- These are nodes whose phases
do not satisfy any of the previous conditions, where one
observes

ImðXαe
$iαi Þ ’ 0; sin βi ’ 0: ð66Þ

A typical streamplot of the phases of these nodes is represented
in Fig. 10d. The phases of these nodes do not contribute to any of
the order parameters.

The frozen phases and the α-oscillating phases both contribute
to the order parameter Rα while the frozen phases and the β-

Fig. 9 Classification of nodes based on the trajectory of their phases. The
trajectory of the (αi, βi) phases is shown in the plane ðIm ðXαe

$iαÞ; sin βÞ for
nodes with frozen phases (green and purple trajectories), for nodes with α-
oscillating phases (blue trajectory) and nodes with β oscillating phases (red
and yellow trajectories). Data are obtained from numerical simulation of
Dirac synchronization in their backward transition for a value of the
coupling constant σ= 1.77 and network size N= 500.
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oscillating phases both contribute to Rβ. Therefore, the order
parameters Rα and Rβ can be approximated by

Rα ’
1
N

∑
N

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ d2i;α

q
Hð1$ d2i;αÞHð1$ d2i;βÞ

þ
1
N

∑
N

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ d̂

2
i;α

q
Hð1$ d̂

2
i;αÞHðd2i;β $ 1Þ;

Rβ ’
1
N

∑
N

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ d2i;β

q
Hð1$ d2i;αÞHð1$ d2i;βÞ

þ
1
N

∑
N

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ d̂

2
i;β

q
Hðd2i;α $ 1ÞHð1$ d̂

2
i;βÞ:

ð67Þ

where di,α, di,β are given by Eq. (40) and d̂i;α, d̂i;β are given by

d̂i;α ¼
κα;i $ ΩE

σRα
;

d̂i;β ¼
κβ;i
σ

:

ð68Þ

If the frequencies of the individual nodes are not known, in the
approximation in which ImXβ≃ 0, the order parameters Rα and

Rβ can be expressed as

Rα ’
Z

jdi;αj ≤ 1
dωG0ðωÞ

Z

jdi;βj ≤ 1
dω̂G1ðω̂Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ d2i;α

q

þ
Z

jd̂i;αj≤ 1
dωG0ðωÞ

Z

jdi;βj≥ 1
dω̂G1ðω̂Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ d̂

2
i;α

q
;

Rβ ’
Z

jdi;αj≤ 1
dωG0ðωÞ

Z

jdi;βj≤ 1
dω̂G1ðω̂Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ d2i;β

q

´
Z

jdi;αj≥ 1
dωG0ðωÞ

Z

jd̂i;βj≤ 1
dω̂G1ðω̂Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ d̂

2
i;β

q
:

ð69Þ

We now make use of the numerical observation that ΩE
decreases with the network size, implying that the period of the
oscillations of the order parameter Xα becomes increasingly long
with increasing network sizes. By substituting ΩE= 0, these
equations can be used to determine the order parameters Rα and
Rβ as a function of the coupling constant σ in the limit N→∞.
Indeed, these are the equations that provide the theoretical
expectation of the phase diagram in Fig. 3. Moreover, these
equations can be used to estimate the critical value σc by
substituting ΩE= 0 and expanding the self-consistent expression
of Rα for small values of Rα. To this end, we write the self-

Fig. 10 Streamplots of the dynamical equations of Dirac synchronization. Streamplots of Eq. (27), for Xα= Rα= 0.8 (~Ω ¼ 0) and σ= 2. The four different
streamplots corresponds to nodes with frozen phases (a) ω= 1, ω̂ ¼ 0:5, to nodes with α-oscillating phases (b) ω= 1, ω̂ ¼ $3:5, to nodes with β-
oscillating phases (c) ω= 8, ω̂ ¼ 8, to nodes with drifting phases (d) ω= 7, ω̂ ¼ 3.
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consistent equation for Rα as

1 ¼ σ
Z 1

$1
dxG0ðΩ0 þ σRαxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ x2

p Z σ

$σ
dω̂G1ðω̂Þ

þ σ
Z

jω̂j≥ σ
dω̂G1ðω̂Þ

Z 1

$1
dxG0ðΩ0 þ σRαx $ ω̂=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ x2

p
:

ð70Þ
For Rα≪ 1, we make the following approximations

G0ðΩ0 þ xRαxÞ ’ G0ðΩ0Þ;
G0ðΩ0 þ σRαx $ ω̂=2Þ ’ G0ðΩ0 $ ω̂=2Þ:

ð71Þ

Inserting these expressions into the self-consistent equation for
Rα, we can derive the equation determining the value of the
coupling constant σ= σc at which we observe the continuous
phase transition,

1 ¼ σ

ffiffiffi
π
2

r
1
2
erf

σffiffiffi
2

p
$ %

þ
1ffiffiffi
5

p erfc
1
2

ffiffiffi
5
2

r
σ

 !" #

ð72Þ

where erf(x) is the error function and erfc(x) is the complemen-
tary error function. This equation can be solved numerically,
providing the value of σc given by

σc ¼ 1:66229¼ : ð73Þ

Similarly, we can consider the classification of the different
phases of oscillators to study the onset of the instability of the
incoherent phase. We obtain the estimate for σ?c given by (see
Methods for details)

σ?c ¼ 2:14623¼ : ð74Þ

Conclusions
In this work, we have formulated and discussed the explosive
Dirac synchronization of locally coupled topological signals
associated to the nodes and to the links of a network. Topological
signals associated to nodes are traditionally studied in models of
non-linear dynamics of a network. However, the dynamics of
topological signals associated to the links of the network is so far
much less explored.

In brain and neuronal networks, the topological signals of the
links can be associated to a dynamical state of synapses (for
example oscillatory signals associated to intracellular calcium
dynamics involved in synaptic communication among
neurons54), and more generally they can be associated to dyna-
mical weights or fluxes associated to the links of the considered
network. The considered coupling mechanism between topolo-
gical signals of nodes and links is local, meaning that every node
and every link is only affected by the dynamics of nearby nodes
and links. In particular, the dynamics of the nodes is dictated by a
Kuramoto-like system of equations where we introduce a phase
lag that depends on the dynamical state of nearby links. Similarly,
the dynamics of the links is dictated by a higher-order Kuramoto-
like system of equations25 where we introduce a phase lag
dependent on the dynamical state of nearby nodes.

On a fully connected network, Dirac synchronization is
explosive as it leads to a discontinuous forward synchronization
transition and a continuous backward synchronization transition.
Therefore, Dirac synchronization determines a topological
mechanism to achieve abrupt discontinuous synchronization
transitions. The theoretical investigation of the model predicts
that the discontinuous transition occurs at a theoretically pre-
dicted value of the coupling constant σ?c when the incoherent
phase loses stability. However, for smaller value of the coupling
constant, the incoherent phase can coexist with the coherent one.

The coherent phase can be observed for σ > σc. However, for
σc < σ < σ?S , the system is in a rhythmic phase characterized

by non-stationary order parameters. Here, we theoretically
predict the numerical value of σ?S and we investigate
numerically the dynamics of the order parameters in the
rhythmic phase.

This work shows how topology can be combined with dyna-
mical systems leading to a new framework to capture abrupt
synchronization transitions and the emergence of non trivial
rhythmic phases.

This work can be extended in different directions. First of all,
the model can be applied to more complex network topologies
including not only random graphs and scale-free networks but
also real network topologies such as experimentally obtained
brain networks. Secondly, using the higher-order Dirac
operator43,59, Dirac synchronization can be extended to simplicial
complexes where topological signals can be defined also on
higher-order simplices such as triangles, tetrahedra and so on. We
hope that this work will stimulate further theoretical and applied
research along these lines.

Methods
Internal frequencies of the projected dynamics. The frequencies ω̂ character-
ising the uncoupled dynamics of the projected variables ψ can be determined
using Eq. (18) from the internal frequencies of the links ~ω. In particular, since
the frequencies ~ω are normally distributed, the frequencies ω̂ will also be nor-
mally distributed. However, Eq. (18) implies that the frequencies ω̂ are corre-
lated. Let us recall that the internal frequencies of the links ~ω are taken to be
independent Gaussian variables with zero average and standard deviation
1=

ffiffiffiffiffiffiffiffiffiffiffiffi
N $ 1

p
, i.e.

~ω‘ ' N ð0; 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
N $ 1

p
Þ ð75Þ

for each link ℓ of the network. Using the definition of the incidence matrix B, it
is easy to show that the expectation of ω̂i is given by

hω̂i ¼ B ~ωh i ¼ 0: ð76Þ
Given that in a fully connected network each node has degree ki=N− 1, the

covariance matrix C is given by the graph Laplacian L[0] of the network, i.e.

Cij ¼
-
ω̂iω̂j

.
c
¼

-
½B~ω"i½B~ω"j

.
c

¼ ½L½0" "ij
1

N $ 1
;

ð77Þ

where we have indicated with ¼h ic the connected correlation. Therefore, the
covariance matrix has elements given by

Cij ¼ δij $
1

N $ 1
ð1$ δijÞ: ð78Þ

Moreover we note that the average of ω̂ over all the nodes of the network is
zero. In fact

∑
N

i¼1
ω̂i ¼ 1T ω̂ ¼ 1TB~ω ¼ 0; ð79Þ

where we indicate with 1 the N-dimensional column vector of elements 1i= 1.
With these hypotheses, the marginal probability G1ðω̂Þ that the internal

frequency ω̂i of a generic node i is given by ω̂i ¼ ω̂ can be expressed as (see26 for
the derivation),

G1ðω̂Þ ¼
1ffiffiffiffiffiffiffiffiffiffi
2π=!c

p exp $!c
ω̂2

2

/ 0
; ð80Þ

where we have put

!c ¼
N

N $ 1
: ð81Þ

Derivation of the stationary state expression for ai and bi. Let us now consider
a given node i and its continuity equation, Eq. (33). By using the ansatz defined in
Eq. (37) and omitting the index i as long as Xα ≠ 0, we can observe that the
continuity Eq. (33) is satisfied if the following equations are satisfied for m= 0,
n ≠ 0 and for n= 0, m ≠ 0,

nan$1∂taþ iannκα þ
1
2
σn Xαa

nþ1 $ X?
αa

n$1) *
$ σ

1
4
nanðb$ b?Þ ¼ 0; ð82Þ

mbm$1∂tbþ ibmmκβ þ σ!c
1
2
m Xαab

m $ X?
αa

?bm
) *

þ σ
1
2
mðbmþ1 $ bm$1Þ ¼ 0;

ð83Þ
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Moreover, for every m > 0, n > 0 the following equation needs to be satisfied

nan$1bm∂taþmanbm$1∂tbþ ianbmnκα þ ianbmmκβ

þ
1
2
σn Xαa

nþ1 $ X?
αa

n$1) *
bm $ σ

1
4
nanðbmþ1 $ bm$1Þ

þ σ!c
1
2
m Xαa

nþ1 $ X?
αa

n$1) *
bm þ σ

1
2
manðbmþ1 $ bm$1Þ ¼ 0:

ð84Þ

As long as a ≠ 0 and Xα ≠ 0, all these equations are satisfied if and only if
∣a∣= ∣b∣= 1 and

∂taþ iaκα þ 1
2 σ Xαa

2 $ X?
α

) *
$ σ 1

4 aðb$ b$1Þ ¼ 0;

∂tbþ ibκβ þ 1
2 σ!c Xαa$ X?

αa
$1

) *
bþ σ 1

2 ðb
2 $ 1Þ ¼ 0:

ð85Þ

For Xα= 0, instead, by proceeding in a similar way, we get that for ∣a∣ ≠ 0,
∣b∣= 1, the equations for a and b are given by

∂taþ iaκα $ σ 1
4 aðb$ b$1Þ ¼ 0;

∂tbþ ibκβ þ σ 1
2 ðb

2 $ 1Þ ¼ 0:
ð86Þ

while for ∣a∣= 0, the equation for b is unchanged but b can have an arbitrary large
absolute value.

The onset of the instability of the incoherent phase. In this section we use
stability considerations to derive the synchronization threshold σ?c . This approach
is analogous to similar approaches used to study the onset of instability of the
incoherent phase in models focusing solely on signals defined on the nodes of a
network73,76. Let us now consider the first of Eqs. (38) for every aiðωi; ω̂iÞ, and
study the stability of the trivial solution in which aiðωi; ω̂iÞ ¼ 0 for every node i and
every choice of the frequencies ðω; ω̂Þ, also implying that Rα= 0. The stationary
solutions for ai and bi describe a discontinuous transition from steady state solu-
tions with ai= 0 to ∣ai∣= 1. Studying the stability of the incoherent phase is
therefore non-trivial. In order to do so, we study the continuity equations using the
generalized Ott-Antonsen ansatz and we consider non zero values of ai with
absolute value ∣ai∣ ≪ 1 while keeping ∣bi∣= 1 so that b$1

i ¼ b?i . With these
hypotheses, we notice that Eq. (84) describing the dynamics of the high frequency α
modes of ρ(α, β) are negligible and we can just focus on Eq. (82) obtained for
m= 0, n= 1. Since aiðω; ω̂Þ is only a function of ðω; ω̂Þ, in this section we simplify
the notation by omitting the index i. This entails for instance considering the
function aðω; ω̂Þ instead of aiðωi; ω̂iÞ. A similar convention is used for other
variables only depending on the node i through the internal frequencies ω= ωi and
ω̂ ¼ ω̂i . To this end, we write Eq. (82) as

∂taðω; ω̂Þ ¼ Fðaðω; ω̂Þ; bðω; ω̂Þ;XαÞ; ð87Þ

with F(a, b, Xα) given by

Fða; b;XαÞ ¼ $iaκα $ 1
2 σ Xαa

2 $ X?
α

) *

þσ 1
4 aðb$ b?Þ;

where κα ¼ καðω; ω̂Þ. In this equation Xα is intended to be a function of all the
variables a according to Eqs. (46). By linearizing Eq. (87) for aðω; ω̂Þ ¼ Δaðω; ω̂Þ ,
1 for every value of ðω; ω̂Þ, and neglecting fluctuations in the variables bðω; ω̂Þ, we
obtain

∂tΔaðω; ω̂Þ ¼ ½$iκα þ σB"Δaþ σS=2; ð88Þ

where we have defined B as

B ¼
1
4
ð!b$ !b

?Þ; ð89Þ

with !b ¼ !bðω; ω̂Þ being the stationary solution of Eq. (38) in the limit Xα→ 0 and
aj→ 0, ∀ j and where S indicates

S ¼
Z

dω0
Z

dω̂0G0ðω
0ÞG1ðω̂0ÞΔaðω0; ω̂0Þ: ð90Þ

In order to predict the onset of the instability of the incoherent phase, i.e., in
order to predict the value of σ?c , we study the discrete spectrum of Eq. (88).
Assuming that Eq. (88) has Lyapunov exponent λ, we find that Δaðω; ω̂Þ obeys

Δaðω; ω̂Þ ¼
1
2
SΔ̂ðω; ω̂Þ: ð91Þ

where Δ̂ðω; ω̂Þ is given by

Δ̂ðω; ω̂Þ ¼
1

ðiκα þ λÞ=σ $ B
; ð92Þ

By inserting Eq. (91) in the definition of S given by Eq. (90), we obtain a self-
consistent equation that reads

1 ¼
1
2
Î ¼

1
2

Z
dω0

Z
dω̂0G0ðω

0ÞG1ðω̂0ÞΔ̂ðω0; ω̂0Þ: ð93Þ

Therefore, this equation provides the value of the Lyapunov exponent λ for any
given value of the coupling constant σ. We look for the onset of the instability
σ ¼ σ?c of the incoherent solution Rα= 0 by imposing that its Lyapunov exponent
vanishes, i.e., λ= 0.

In order to solve this equation, we need to find the explicit form for B in the
limit Xα→ 0. By considering the stationary solution in the incoherent phase, we
obtain that the variable B is given by

Bðω; ω̂Þ ¼ $i
κβ
2σ

: ð94Þ

as long as ∣bi∣= 1, i.e. as long as ∣κβ/σ∣ ≤ 1. We can now insert this expression in Δ̂
finding

Δ̂
$1

¼ i
κα þ κβ=2

σ
¼ i

ω$ Ω̂
σ

1þ
1
2
!c

$ %
; ð95Þ

for ∣κβ/σ∣ ≤ 1. Otherwise, since we assume ai ≠ 0, bi does not have a stationary value
and in expectation over time we have

Bðω; ω̂Þ ¼ 0: ð96Þ
This leads to

Δ̂
$1

¼ i
κα
σ
; ð97Þ

for ∣κβ/σ∣ ≥ 1.
In the limit N→∞, we have that !c ! 1 and Ω̂ ! Ω0: Therefore in this limit,

we obtain

Δ̂
$1

¼
ið3=2Þðω$Ω0Þ=σ for jκβ=σj ≤ 1;

iðω$ Ω0 þ ω̂=2Þ=σ for jκβ=σj≥ 1:

(

ð98Þ

By using this explicit expression for Δ̂ in terms of the frequency of the nodes, it
is straightforward to see that Î can be evaluated with the method of residues leading
to

Î ¼
ffiffiffi
π
2

r
σ

2
3
erf

σ
2

' (
þ

2ffiffiffi
5

p erfc
1
3

ffiffiffiffiffiffi
5
2
σ

r !" #

: ð99Þ

By inserting the values of these integrals in Eq. (93) and solving for σ, we get
that the synchronization threshold occurs at

σ?c ¼ 2:14623¼ : ð100Þ
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