
Exchangeability and deFinetti’s Theorem

Definition:

The random variables X1, X2, . . . , Xn are said to be exchangeable if the distribution of the
random vector (X1, X2, . . . , Xn) is the same as that of (Xπ1 , Xπ2 , . . . , Xπn) for any permuta-
tion (π1, π2, . . . , πn) of the indices {1, 2, . . . , n}.

We write
(X1, X2, . . . , Xn)

d
= (Xπ1 , Xπ2 , . . . , Xπn).

This means that the pdf or cdf for (X1, X2, . . . , Xn) must be the same as that for
(Xπ1 , Xπ2 , . . . , Xπn).

(If you’d allow me to be overly pedantic, the joint pdf of separate random variables

X1, X2, . . . , Xn is the pdf of the vector valued ~X = (X1, X2, . . . , Xn). We probably shouldn’t
talk about the joint pdf of (X1, X2, . . . , Xn), and yet we probably will!)

Let us denote the joint pdf of X1, X2, . . . , Xn as fX1,X2,...,Xn(x1, x2, . . . , xn).

For the Xi to be exchangeable, we want

fX1,X2,...,Xn(x1, x2, . . . , xn) = fXπ1 ,Xπ2 ,...,Xπn (x1, x2, . . . , xn)

to be the same.

For example, if n = 5, and using a particular permutation π = (3, 1, 5, 2, 4), we want

fX1,X2,X3,X4,X5(x1, x2, x3, x4, x5) = fX3,X1,X5,X2,X4(x1, x2, x3, x4, x5).

If the Xi are discrete, this is equivalent to

P (X1 = x1, X2 = x2, X3 = x3, X4 = x4, X5 = x5) = P (X3 = x1, X1 = x2, X5 = x3, X2 = x4, X4 = x5).

Since the right-hand side is the same as P (X1 = x2, X2 = x4, X3 = x1, X4 = x5, X5 = x3),
we could phrase exchangeability in terms of the arguments of the pdf and require that

fX1,X2,X3,X4,X5(x1, x2, x3, x4, x5) = fX1,X2,X3,X4,X5(x2, x4, x1, x5, x3).

This is true for continous random variables as well even though we can’t express the joint
pdf as a probability.



Example 1:

Suppose you have an urn containing 1 red balls and 2 white balls. Draw out balls, one at a
time and without replacement, and note the color.

Define

Xi =

{
1 , if the ith ball is red
0 , otherwise

The random variables X1, X2, X3 are exchangeable.

Proof: If the arguments for P (X1 = x1, X2 = x2, X3 = x3) are anything other than two 0’s
and one 1, regardless of the order, the probability is zero. So, we must only check arguments
that are permutations of (1, 0, 0).

P (X1 = 1, X2 = 0, X2 = 0) =
1

3
· 1 · 1 =

1

3

P (X1 = 0, X2 = 1, X3 = 0) =
2

3
· 1

2
· 1 =

1

3

P (X1 = 0, X2 = 0, X3 = 1) =
2

3
· 1

2
· 1 =

1

3

Since these are all the same, the random variables X1, X2, and X3 are exchangeable.

Example 2: iid ⇒ exchangeable

Suppose that X1, X2, . . . , Xn are independent and identically distributed (iid). Then
X1, X2, . . . , Xn are exchangeable.

Proof: Let f(x) be the pdf for any one of the Xi. They are identically distributed, so they
all follow one pdf.

The joint pdf (discrete or continuous) is

fX1,X2,...,Xn(x1, x2, . . . , xn)
iid
= f(x1) · f(x2) · · · f(xn)

Since you can multiply the terms on the right-hand side in any order, the left-hand side is
clearly symmetric in its arguments. Thus, X1, X2, . . . , Xn are exchangeable.

Example 3: exchangeable ⇒ identically distributed

Note that we already know, from Example 1, that exchangeable random variables are
not necessarily iid. If we got a red ball on the first draw, we definitely won’t get one



on the subsequent two draws and if we don’t get a red on the first draw, we have a higher
probability of getting one in the second two draws. So, there is dependence between the
outcomes of the draws.

However, exchangeable random variables must be identically distributed. In the context of
Example 1, this means that P (Xi = j) will be the same for all i = 1, 2, 3 and for all j.

Proof: (Continuous Case) Suppose that X1, X2, . . . , Xn are exchangeable random variables.
Consider any two indices i 6= j. Without loss of generality, we can assume that i < j.

The marginal pdf for Xi is

fXi(xi) =
∫ ∫

· · ·
∫
fX1,X2,...,Xn(x1, . . . , xi, . . . , xj, . . . , xn) dx1 · · · dxi−1 dxi+1 · · · dxn

We can exchange the ith and jth arguments to get

fXi(xi) =
∫ ∫

· · ·
∫
fX1,X2,...,Xn(x1, . . . , xj, . . . , xi, . . . , xn) dx1 · · · dxi−1 dxi+1 · · · dxn

This doesn’t change the fact that we will be integrating xj out and leaving xi in. Since xi is
in the jth position, the resulting integral is fXj(xi).

Thus, we have shown that fXi(xi) = fXj(xi) and so Xi and Xj are identically distributed.
Since i and j were arbitrarily chosen, we have that all of X1, X2, . . . , Xn have the same
distribution.

Definition:

The random variables X1, X2, . . . , in an infinite sequence are said to be exchangeable if
the finite collection X1, X2, . . . , Xn are exchangeable for any finite n ≥ 1.

Example 4: Pólya’s Urn

Suppose you have an urn containing R0 red balls and W0 white balls. Let c ≥ 0 be a fixed
integer.

Draw a ball, note the color, replace the ball and put an additional c balls of that color in
the urn as well. Rinse and repeat.

Define

Xi =

{
1 , if the ith ball is red
0 , otherwise

The random variables in the infinite sequence X1, X2, . . . are exchangeable.

Proof: We begin with an illustration that we will generalize. Note that

P (X1 = 1, X2 = 1, X3 = 0, X4 = 1, X5 = 0)



=
R0

R0 +W0

· R0 + c

R0 +W0 + c
· W0

R0 +W0 + 2c
· R0 + 2c

R0 +W0 + 3c
· W0 + c

R0 +W0 + 4c

Fix any positive integer n and consider the sequence X1, X2, . . . , Xn. We want to give an
expression for P (X1 = x1, X2 = x2, . . . , Xn = xn). From the particular case illustrated
above, it is easy to see that the denominator for this more general case will be

(R0 +W0)(R0 +W0 + c)(R0 +W0 + 2c) · · · (R0 +W0 + (n− 1)c).

Note that
∑n
i=1 xi is the number of red balls chosen in n draws from the urn and n−∑n

i=1 xi
is the number of white balls.

If
∑
xi = n (all balls drawn are red), we have that

P (X1 = x1, X2 = x2, . . . , Xn = xn)

=
R0(R0 + c)(R0 + 2c) · · · (R0 + c(

∑
xi − 1))

(R0 +W0)(R0 +W0 + c)(R0 +W0 + 2c) · · · (R0 +W0 + (n− 1)c)
.

If
∑
xi = 0 (all balls drawn are white), we have that

P (X1 = x1, X2 = x2, . . . , Xn = xn)

=
W0(W0 + c)(W0 + 2c) · · · (W0 + c(n−∑

xi − 1))

(R0 +W0)(R0 +W0 + c)(R0 +W0 + 2c) · · · (R0 +W0 + (n− 1)c)
.

If 0 <
∑
xi < n, we have that

P (X1 = x1, X2 = x2, . . . , Xn = xn)

=
R0(R0 + c)(R0 + 2c) · · · (R0 + c(

∑
xi − 1)) ·W0(W0 + c)(W0 + 2c) · · · (W0 + c(n−∑

xi − 1))

(R0 +W0)(R0 +W0 + c)(R0 +W0 + 2c) · · · (R0 +W0 + (n− 1)c)
.

In all cases, the probability is a function of
∑
xi and not the individual positions of the 1’s

and 0’s that make up the xi.

Thus, X1, X2, . . . , Xn are exchangeable.

Since this is true for any finite n ≥ 1. The infinite sequence of random variables is exchange-
able.

The Riemann-Stieltjes Integral

Recall the definition of the “usual” Riemann integral of a function g over the interval [a, b],
depicted here for a non-negative g.

One partitions up the interval [a, b] into a sequence of points

a = x0 < x1 < · · · < xn−1 < xn = b,

and then defines rectangles with heights given by g evaluated at some point in each subin-
terval [xi, xi+1], depicted as follows.



The area under the curve is approximated by the area of the rectangles which is given by

n−1∑
i=0

g(ci)(xi+1 − xi)

for some ci ∈ [xi, xi+1].

If we use Γ to denote a generic partition of [a, b] and |Γ| to denote the length of the longest
subinterval in Γ, we define the Riemann integral of g as

∫ b

a
g(x) dx = lim

|Γ|→0

n−1∑
i=0

g(ci)(xi+1 − xi).

For a Riemann-Stiltjes integral, we measure the base of those rectangles through a non-
decreasing real-valued function F over [a, b], and replace xi+1−xi with F (xi+1)−F (xi). Our
notation for this will be ∫ b

a
g(x) dF (x)

and the definition is ∫ b

a
g(x) dF (x) = lim

|Γ|→0

n−1∑
i=0

g(ci)[F (xi+1)− F (xi)] (1)

for some ci ∈ [xi, xi+1].

Note that, we may rewrite (1) as

∫ b

a
g(x) dF (x) = lim

|Γ|→0

n−1∑
i=0

g(ci)
F (xi+1)− F (xi)

xi+1 − xi
· (xi+1 − xi). (2)

This now looks like a usual Riemann integral. In fact, if F is differentiable, we have that

lim
|Γ|→0

F (xi+1)− F (xi)

xi+1 − xi
= F ′(xi)

and the Riemann-Stieltjes integral can be written as∫ b

a
g(x) dF (x) =

∫ b

a
g(x)F ′(x) dx. (3)



Although it was not required in the definition of the Riemann-Stiltjes integral, for us F will
be a cdf. The derivative, if it exists, will be a pdf f . In this case, the integral can be written
as ∫ b

a
g(x) dF (x) =

∫ b

a
g(x)F ′(x) dx =

∫ b

a
g(x)f(x) dx.

The nice thing about Riemann-Stieltjes integration is that it allows us to unify our treatment
of discrete and continuous random variables.

Suppose that X is a discrete random variable with distribution given by

x 1 2 3
P (X = x) 1/4 1/4 1/2

The cdf is then the step function

F (x) = P (X ≤ x) =


0 , x < 1
1/4 , 1 ≤ x < 2
1/2 , 2 ≤ x < 3
1 , x ≥ 3

(* A sketch of the step function here might be helpful for what is to follow. I just want to
get these notes out without spending time on the graphic right now!)

Note that F is differentiable on the intervals (−∞, 1), (1, 2), (2, 3), and (3,∞). In these
places, it is flat and constant and the derivative is zero. By (3) we then have that the
Riemann-Stieltjes integral

∫∞
−∞ g(x) dF (x) is “mostly zero”.

However, if you consider the definition in terms of a shrinking partition, when you evaluate
F (xi+1) − F (xi), you will eventually catch all of the “jumps” of F and you will have to
evaluate g at the points where these jumps occur.

The evaluation of the integral is∫∞
−∞ g(x) dF (x) =

∫ 1
−∞ g(x)F ′(x) dx+ g(1) · (1/4) +

∫ 2
1 g(x)F ′(x) dx+ g(2) · (1/4)

+
∫ 3
2 g(x)F ′(x) + g(3) · (1/2) +

∫∞
3 g(x)F ′(x)

= 1
4
g(1) + 1

4
g(2) + 1

2
g(3)

since F ′ is zero in all of those Riemann integrals.

If you look at the original discrete distribution, you’ll notice that we have computed the
expected value of g(X). Furthermore, we wrote it as an integral! Indeed we have

E[X] =
∫ ∞
−∞

g(x) dF (x)

for both discrete and continuous random variables. (Also for random variables with “mixed”
distributions where there are jumps but some non-trivially differentiable parts!)



We also have that the property that ∫ ∞
−∞

dF (x) = 1

for the discrete, continuous, and mixed cases. (Verify for yourself if it is not clear to you!)

de Finetti’s Theorem:

An infinite sequence of binary (0/1) random variables, {Xn}∞n=1, is exchangeable if and only
if there exists a cdf F on [0, 1] such that

P (X1 = x1, X2 = x2, . . . , Xn = xn) =
∫ 1

0
θ
∑

xi(1− θ)n−
∑

xi dF (θ).


