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CLASSICAL STOCHASTIC CONTROL

I Consider a controlled Markovian process Xα.

Stochastic Control
Given (t, x) ∈ [0,∞)× Rd, can we solve

sup
α∈A

F(t, x, α)? (1)

I Classical Control Theory:
I Want: find an optimal control α∗t,x ∈ A.
I Methods: dynamic programming, martingale approach,...
I Consider α∗t,x as a mapping:

(t, x) 7−→ α∗t,x ∈ A.
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I Problem Solved. Feeling Good?

t s r

α∗t,x(t, x) α∗t,x(s,Xs) α∗t,x(r,Xr)

I The Reality:

t s r

α∗t,x(t, x) α∗s,Xs
(s,Xs) α∗r,Xr

(r,Xr)

I Time Inconsistency:
I α∗t,x, α∗s,Xs

, α∗r,Xr
may all be different.

I The original objective (1) cannot be attained...
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Time-inconsistent objectives:
I Non-exponential discounting:

F(t, x, α) := Et,x[δ(T − t)g(Xα
T)].

I Payoff depending on initials (t, x):

F(t, x, α) := Et,x[g(t, x,Xα
T)].

I Nonlinear functionals of E[·]:

F(t, x, α) := Et,x[g(Xα
T)]−H(Et,x[g(Xα

T)]).

I Probability distortion:

F(t, x, α) :=

∫ ∞
0

w
(
Pt,x [g(Xα

T) > u]

)
du.
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How to resolve time inconsistency?

Consistent Planning [Strotz (1955-56)]

I Take into account future selves’ behavior.

Find an equilibrium strategy that
once being enforced over time,

no future self would want to deviate from.
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DISCRETE TIME

I Definition: α∗ ∈ A is an equilibrium if

F(t, x, α∗) ≥ F(t, x, α⊗t+1 α
∗), ∀(t, x), α.

t t + 1 t + 2 t + 3 t + 4

α α∗ α∗ α∗ α∗

I How to find an equilibrium?
Backward sequential optimization [Pollak (1968)]:

α∗2α∗1α∗0

00 1 2 3

I Limitation: Infinite horizon?
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CONTINUOUS TIME

I Definition (Ekeland & Lazrak (2006)):

α∗ is an equilibrium if

lim inf
ε→0

F(t, x, α∗)− F(t, x, α⊗t+ε α
∗)

ε
≥ 0 ∀(t, x), α.

t t + ε

α∗ fixedchoose α

I How to find an equilibrium?
Ekeland & Pirvu (2008) characterize equilibrium α∗ by a
system of nonlinear differential equations (extended HJB
system).
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SUBSEQUENT STUDIES

I Control problems:

A long list...

Ekeland, Mbodji, & Pirvu (2012), Björk, Murgoci, & Zhou (2014),
Dong & Sircar (2014), Björk & Murgoci (2014), Yong (2012),
Björk, Khapko & Murgoci (2017), ...

I Stopping problems:

Only two preprints...
Ebert, Wei & Zhou (2017), Christensen & Lindensjö (2017).

I transform stopping problem into control problem;
I use the same definition and extended HJB system as in the

control case.
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THE PROBLEM

lim inf
ε→0

F(t, x, α∗)− F(t, x, α⊗t+ε α
∗)

ε
≥ 0 ∀(t, x), α. (2)

I This definition NOT fully making sense economically!
I Intuitively we want:

As ε > 0 small, it’s better to stay with α∗.
I However, there may exist α∗ satisfying

I for some (t, x), α,

F(t, x, α∗) < F(t, x, α⊗t+ε α
∗) ∀ε > 0 small;

I the limit in (2) is 0.
I =⇒ (2) may include controls we don’t really want...

(2) may be too weaker a definition for an equilibrium.

I cf. Remark 3.5 of Björk, Khapko & Murgoci (2017).
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IN THIS TALK...

I New definition of continuous-time equilibria:

α∗ is a strong equilibrium if for any (t, x) and α, there is
ε∗(t, x, α) > 0 such that

F(t, x, α∗) ≥ F(t, x, α⊗t+ε α
∗), ∀0 < ε < ε∗. (3)

I Precise economic interpretation:

If (3) is violated, agent at (t, x) has incentive to deviate to α
in a however small interval [0, ε].

I A similar notion in Appendix D of He & Jiang (2017).

I Relation between strong and weak equilibria
I Weak equilibria that are not strong
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THE MODEL

I X: time-homogeneous continuous-time Markov chain.
I State space S := {1, 2, ...,N}.
I The generator Q ∈ RN×N of X is to be controlled.

I Qi: the ith-row of Q.
I Di: admissible set for Qi.

Qi ∈ Di ⊆ Ei :=

{
(q1, ..., qN) ∈ RN : qj ≥ 0, j 6= i, qi = −

∑
j6=i

qi

}
.

I The control space:

Q :=
{

Q ∈ RN×N : Qi ∈ Di, ∀i ∈ S
}
.
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THE MODEL

I The objective:

F(i,Q) := Ei

[ ∫ ∞
0

f (t,Xt,QXt)dt
]
.

I Ei: expectation conditioned on X0 = i.
I always restart from time 0

=⇒ t in f (t, ·, ·) is not calendar time, but time difference.
=⇒ the usual time-homogeneous setting.

I Typical example:

F(i,Q) := Ei

[ ∫ ∞
0

δ(t)g(Xt,QXt)dt
]
,

where δ : [0,∞)→ [0, 1] is a discount function.
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INTEGRABILITY CONDITION

I Assume ∫ ∞
0

sup
i∈S
|f (t, i,Qi)|dt <∞, ∀Q ∈ Q. (4)

I Non-exponential discounting: (4) reduces to∫ ∞
0

δ(t)dt <∞. (5)

I Hyperbolic: δ(t) := 1
1+βt , β > 0, violates (5).

I Generalized hyperbolic: δ(t) := 1
(1+βt)k , β > 0 and k > 1,

satisfies (5).
I Pseudo-exponential: δ(t) := λe−ρt + (1− λ)e−ρ

′t, λ ∈ (0, 1)
and ρ, ρ′ > 0, satisfies (5).
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Weak Equilibria
Q∗ ∈ Q is a weak equilibrium, if

lim inf
ε→0

F(i,Q∗)− F(i,Q⊗ε Q∗)
ε

≥ 0 ∀i ∈ S, Q ∈ Q. (6)

Strong Equilibria
Q∗ ∈ Q is a strong equilibrium, if for any i ∈ S and Q ∈ Q, there
exists ε(i,Q) > 0 such that

F(i,Q∗) ≥ F(i,Q⊗ε′ Q∗) ∀0 < ε′ ≤ ε. (7)

By definition,
I A strong equilibrium is weak;
I If (6) holds with strict equality for all i ∈ S and Q ∈ Q, the

weak equilibrium Q∗ is also strong.
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CONDITIONS

Assume
1) t 7→ f (t, i,q) is C1 on [0,∞), for all i ∈ S and q ∈ Di.

I Consider 1st-order residual function r(t, ε; i,q), i.e.

|f (t + ε, i,q)− (f (t, i,q) + εft(t, i,q))| ≤ r(t, ε; i,q).

I Taylor’s theorem already implies r(t, ε; i,q)/ε→ 0.

2) r(t,ε;i,q)
ε ↓ 0 as ε ↓ 0.

3)
∫∞

0 r(t, ε; i,q)dt <∞, for ε small.
4) ft(·) satisfies (4).
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CONDITIONS

Non-exponential discounting:
I 1) and 4) reduce to

δ ∈ C1 and
∫ ∞

0
δ′(t)dt <∞. (8)

I 2) reduce to∣∣∣∣δ(t + ε)− δ(t)
ε

− δ′(t)
∣∣∣∣ increasing in ε, ∀t ≥ 0.

This is ensured whenever δ is convex.
I 3) reduce to

∫∞
0 |δ(t + ε)− (δ(t) + εδ′(t))|dt <∞. This is

always true under (5) and (8).

Generalized hyperbolic (with exponent k > 1), pseudo-exponential
discount functions satisfy these conditions.
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NOTATION

I F(Q) := (F(1,Q),F(2,Q), ...,F(N,Q)).
I For any i ∈ S and Q ∈ Q, consider

G(i,Q) := Ei

[∫ ∞
0

ft(t,Xt,QXt)dt
]
.

Define

G(Q) := (G(1,Q),G(2,Q), ...,G(N,Q)).
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The Expansion
For any i ∈ S and Q,Q∗ ∈ Q, as ε ↓ 0,

F(i,Q∗)− F(i,Q⊗ε Q∗)

=
(

ΓQ∗(Q∗i )− ΓQ∗(Qi)
)
ε

+
1
2

(
ΛQ∗(i,Q∗)− ΛQ∗(i,Q)

)
ε2 + o(ε2), (9)

where

ΓQ∗(Qi) := f (0, i,Qi) + Qi · F(Q∗),

ΛQ∗(i,Q) := ft(0, i,Qi) + Qi ·
(

2G(Q∗) + ΓQ∗(Q)
)
.

I ΓQ∗(Q) = (ΓQ∗(Q1),ΓQ∗(Q2), ...,ΓQ∗(QN)).
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WEAK EQUILIBRIA

Theorem 1
Q∗ ∈ Q is a weak equilibrium if and only if

ΓQ∗(Q∗i ) ≥ ΓQ∗(Qi) ∀i ∈ S, Q ∈ Q. (10)

I Proof:

F(i,Q∗)− F(i,Q⊗ε Q∗)
ε

=
(

ΓQ∗(Q∗i )− ΓQ∗(Qi)
)

+ o(1),

which directly implies

lim inf
ε↓0

F(i,Q∗)− F(i,Q⊗ε Q∗)
ε

= ΓQ∗(Q∗i )− ΓQ∗(Qi).
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CHARACTERIZATION

I (10) means: for any i ∈ S and Q ∈ Q,

f (0, i,Q∗i ) + Q∗i · F(Q∗) ≥ f (0, i,Qi) + Qi · F(Q∗). (11)

I (11) involves both Q∗ and Q =⇒ Hard to solve for Q∗.
I Idea: Let Q approach Q∗ in (11)

=⇒ get a differential equation involving Q∗ only.

I Taking Qi = Q∗i + ελ ∈ Di in (11) gives

f (0, i,Q∗i ) + Q∗i · F(Q∗) ≥ f (0, i,Q∗i + ελ) + (Q∗i + ελ) · F(Q∗).

=⇒
f (0, i,Q∗i + ελ)− f (0, i,Q∗i )

ε
+ F(Q∗) · λ ≤ 0.

=⇒
(
∇f (0, i,Q∗i ) + F(Q∗)

)
· λ ≤ 0 .
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Assume q 7→ f (0, i,q) is C1, for all i ∈ S.

Proposition 1
Let Q∗ ∈ Q be a weak equilibrium. For any i ∈ S and λ ∈ T s.t.

Q∗i + ελ ∈ Di for ε > 0 small enough,

we have (
∇f (0, i,Q∗i ) + F(Q∗)

)
· λ ≤ 0.

I Note: Q∗,Q are generators of a Markov chain

I For any i ∈ S,
∑N

j=i q∗ij = 0 and
∑N

j=1 qij = 0.
I For any i ∈ S,

Q∗i −Qi ∈ T :=

{
λ ∈ RN :

∑
i=1,...,N

λi = 0
}
.
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Corollary 1
Suppose q 7→ f (0, i,q) is concave, for all i ∈ S.

Then, Q∗ ∈ Q is a weak equilibrium if and only if(
∇f (0, i,Q∗i ) + F(Q∗)

)
· λ ≤ 0, (12)

for all i ∈ S and λ ∈ T s.t. Q∗i + ελ ∈ Di for ε > 0 small enough,

I Proof: Recall ΓQ∗(Q∗i ) = f (0, i,Q∗i ) + Q∗i · F(Q∗).
I (12) =⇒ Q∗i is a local maximizer.
I Concavity of f =⇒ Q∗i is a global maximizer.

That is, ΓQ∗(Q∗i ) ≥ ΓQ∗(Qi) for all Q ∈ Q.
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I If Q∗i is an interior point of Di,

for any λ ∈ T, Q∗i + ελ ∈ Di for ε > 0 small enough.

I Take λ ∈ T, with λn = 1, λm = −1, λi = 0 for i 6= n,m. Then(
∇f (0, i,Q∗i ) + F(Q∗)

)
· λ ≤ 0 implies(

∂nf (0, i,Q∗i ) + F(n,Q∗)
)
−
(
∂mf (0, i,Q∗i ) + F(m,Q∗)

)
≤ 0

I Take λ ∈ T, with λn = −1, λm = 1, λi = 0 for i 6= n,m. Then

−
(
∂nf (0, i,Q∗i ) + F(n,Q∗)

)
+
(
∂mf (0, i,Q∗i ) + F(m,Q∗)

)
≤ 0

Corollary 2
Let Q∗ ∈ Q be a weak equilibrium. If Q∗i is in the interior of Di,

∂nf (0, i,Q∗i )+F(n,Q∗) = ∂mf (0, i,Q∗i )+F(m,Q∗), n,m = 1, ...,N.
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STRONG EQUILIBRIA

Proposition 2
If Q∗ ∈ Q satisfies

ΓQ∗(Q∗i ) > ΓQ∗(Qi) ∀i ∈ S and Q ∈ Qwith
::::::::
Qi 6= Q∗i ,

then Q∗ is a strong equilibrium.

I Proof: For any Q ∈ Qwith Qi 6= Q∗i ,

ΓQ∗(Q∗i ) > ΓQ∗(Qi) and (9)

=⇒ F(i,Q∗)− F(i,Q⊗ε Q∗)
ε

=
(

ΓQ∗(Q∗i )− ΓQ∗(Qi)
)

+ o(1),

=⇒ F(i,Q∗)− F(i,Q⊗ε Q∗) > 0 as ε > 0 small.
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I Proof (conti.):
For any Q ∈ Q \ {Q∗}with Qi = Q∗i ,

I qij = q∗ij = 0 for all j 6= i:

F(i,Q⊗ε Q∗) =

∫ ∞
0

f (t, i,Qi)dt = F(i,Q∗) ∀ε > 0.

I qij = q∗ij > 0 for all j 6= i: (9) reduces to

F(i,Q∗)− F(i,Q⊗ε Q∗)
ε2

=
1
2

Q∗i ·
(

ΓQ∗(Q∗)− ΓQ∗(Q)
)

+ o(1)

=
∑
j6=i

q∗ij
(

ΓQ∗(Q∗j )− ΓQ∗(Qj)
)

︸ ︷︷ ︸
> 0

+o(1).

=⇒ F(i,Q∗)− F(i,Q⊗ε Q∗) > 0 as ε > 0 small.
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I Proof (conti.):
For any Q ∈ Q \ {Q∗}with Qi = Q∗i ,

I qij = q∗ij > 0 for some j 6= i: Consider

S0 = {j ∈ S : Qj 6= Q∗j } and τ := inf{t ≥ 0 : Xt ∈ S0}.

Then

F(i,Q∗)− F(i,Q⊗ε Q∗)

= Ei

[∫ ∞
τ

f (t,Xt,QXt)dt−
∫ ∞
τ

f (t,Xt, (Q⊗ε Q∗)Xt)dt
]

= Ei [F(Xτ ,Q∗)− F(Xτ ,Q⊗ε−τ Q∗) | τ ≤ ε]P(τ ≤ ε)

= Ei

[(
ΓQ∗(Q∗Xτ

)− ΓQ∗(QXτ )
)

︸ ︷︷ ︸
>0

(ε− τ)

∣∣∣∣ τ ≤ ε] ·O(ε)

=⇒ F(i,Q∗)− F(i,Q⊗ε Q∗) > 0 as ε > 0 small.
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A TWO-STATE MODEL

I S = {1, 2}.
I Generator: Any Q ∈ Q is of the form

Q =

[
−a a
b −b

]
, a, b ≥ 0.

Denote it by Q ∼ (a, b).
I Pseudo-exponential discount function:

δ(t) =
1
2
(
e−t + e−2t) t ≥ 0,

I Payoff:

f (t, 1, (−a, a)) = δ(t)g1(a) and f (t, 2, (b,−b)) = δ(t)g2(b),

for some given functions g1 and g2.
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A TWO-STATE MODEL
Let Q ∼ (a, b), Q∗ ∼ (a∗, b∗) be given.

I Notation:

F(1,Q),F(2,Q) =⇒ F1(a, b),F2(a, b)

G(1,Q),G(2,Q) =⇒ G1(a, b),G2(a, b)

ΓQ∗(Q1),ΓQ∗(Q2) =⇒ Γ
(a∗,b∗)
1 (a),Γ

(a∗,b∗)
2 (b)

ΛQ∗(1,Q),ΛQ∗(2,Q) =⇒ Λ
(a∗,b∗)
1 (a, b),Λ

(a∗,b∗)
2 (a, b)

I Explicit formulas:

F1(a, b)− F2(a, b) =
1
2

(
1

1 + a + b
+

1
2 + a + b

)
(g1(a)− g2(b)),

G1(a, b)− G2(a, b) = −1
2

(
1

1 + a + b
+

2
2 + a + b

)
(g1(a)− g2(b)).
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EXAMPLE 1

Consider

g1(a) = −a2 and g2(b) = 2− (b− 1)2.

I By Corollaries 1 and 2, Q ∼ (a, b) is a weak equilibrium iff
(i) if a, b > 0, we have

g′1(a) + F2(a, b)− F1(a, b) = 0, (13)
g′2(b) + F1(a, b)− F2(a, b) = 0, (14)

(ii) if a = 0 (resp. b = 0), then “≤” holds in (13) (resp. (14)).

=⇒ Q∗ ∼ ( 5
12 ,

7
12) is the unique weak equilibrium.
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EXAMPLE 1

I By Theorem 1, a∗ = 5
12 , b∗ = 7

12 are maximizers of

Γ
(a∗,b∗)
1 (a) = g1(a)− a (F1(a∗, b∗)− F2(a∗, b∗)) ,

Γ
(a∗,b∗)
2 (b) = g2(b) + b (F1(a∗, b∗)− F2(a∗, b∗)) .

I Strict concavity of g1, g2 =⇒ a∗, b∗ are strict maximizers.
I By Proposition 2, Q∗ ∼ ( 5

12 ,
7

12 ) is a strong equilibrium.
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EXAMPLE 2
Consider g1(a) = −a2 and

g2(b) =

{
193
144 + 5

6 b, for b < 7
12 ;

2− (b− 1)2, for b ≥ 7
12 .

First-order terms:

Γ
(a∗,b∗)
1 (a) = −a2 + (5/6)a,

Γ
(a∗,b∗)
2 (b) =

{
193
144 , if b < 7

12 ;

−
(
b− 7

12

)2
+ 193

144 , if b ≥ 7
12 .

,

I arg maxa≥0 Γ
(a∗,b∗)
1 (a) = { 5

12},
arg maxb≥0 Γ

(a∗,b∗)
2 (b) = [0, 7

12 ].

I Q∗ ∼ ( 5
12 ,

7
12) is a weak equilibrium.
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EXAMPLE 2

Second-order term:

Λ
(a∗,b∗)
2 (a∗, b) = − 1

12
b− 579

288
, for b ≤ b∗ =

7
12
.

I This shows that

Λ
(a∗,b∗)
2 (a∗, b∗) < Λ

(a∗,b∗)
2 (a∗, b), ∀b ∈ [0, 7/12).

I For any Q ∼ (a∗, b) with b ∈ [0, 7/12), (9) implies

F(2,Q∗) < F(2,Q⊗ε Q∗), for ε > 0 small.

I Q∗ ∼ ( 5
12 ,

7
12) is not a strong equilibrium.
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EXAMPLE 2
Question: Is there any strong equilibrium?

I Take b = 0 in (13) and (14) =⇒

5
6
≤ 2a =

1
2

(
1

1 + a
+

1
2 + a

)(
a2 +

193
144

)
.

I There is a unique solution ā ≥ 0 (ā ≈ 0.42364).
I First-order terms:

Γ
(ā,0)
1 (a) = −a(a− 2ā), Γ

(ā,0)
2 (b) =

193
144

+ (5/6− 2ā) b.

I a = ā is the unique maximizer of Γ
(ā,0)
1 (a).

I b = 0 is the unique maximizer of Γ
(ā,0)
2 (b).

I By Proposition 2, Q = (ā, 0) is a strong equilibrium.
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GENERAL EXISTENCE

Theorem
Suppose for any i ∈ S,

Di is a convex compact set and q 7→ f (0, i,q) is concave.

Then, there is a weak equilibrium.

I Proof: Define the set-valued map Φ : Q → 2Q by

Φ(Q) :=

{
R ∈ Q : Ri ∈ arg max

q∈Di

[f (0, i,q) + q · F(Q)] , ∀i ∈ S
}
.

I Φ(Q) is nonempty, closed, and convex, for all Q ∈ Q.
I Φ is upper semicontinuous

(i.e. Rn → R, Qn → Q, and Rn ∈ Φ(Qn) =⇒ R ∈ Φ(Q)).

By Kakutani-Fan’s theorem, ∃Q∗ ∈ Q s.t. Q∗ ∈ Φ(Q∗), i.e.

ΓQ∗(Q∗) ≥ ΓQ∗(Q) ∀Q ∈ Q.
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GENERAL EXISTENCE

Theorem
Suppose for any i ∈ S,

Di is a convex compact set and q 7→ f (0, i,q) is
:::::::
strictly concave.

Then, there is a strong equilibrium.

I Proof: Strict concavity of q 7→ f (0, i,q) implies Q∗i is the
unique maximizer, i.e.

ΓQ∗(Q∗) > ΓQ∗(Q) ∀Q ∈ Q, Qi 6= Q∗i .

By Proposition 2, Q∗ is a strong equilibrium.
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SUMMARY

I New definition of continuous-time equilibria:

α∗ is a strong equilibrium if for any (t, x) and α, there is
ε∗(t, x, α) > 0 such that

F(t, x, α∗) ≥ F(t, x, α⊗t+ε α
∗), ∀0 < ε < ε∗.

I In a model with a continuous-time Markov chain,
I Characterizations of strong and weak equilibria
I Existence of strong and weak equilibria
I Explicit demonstration of a weak equilibrium that is not

strong.
I Future work: How about in a diffusion model?

I He & Jiang (2018): weak, strong, regular equilibria.
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THANK YOU!!
I “Strong and Weak Equilibria for Time-Inconsistent Stochastic Control

in Continuous Time”
(H. and Z. Zhou), available @ arXiv:1809.09243.
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