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We investigate the dynamics of two miscible superfluids experiencing fast counterflow in a narrow channel.
The superfluids are formed by two distinguishable components of a trapped dilute-gas Bose-Einstein condensate
(BEC). The onset of counterflow-induced modulational instability throughout the cloud is observed and shown
to lead to the proliferation of dark-dark vector solitons. These solitons do not exist in single-component systems,
exhibit intriguing beating dynamics, and can experience a transverse instability leading to vortex line structures.
Experimental results and multidimensional numerical simulations are presented.
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Superfluids are a robust model system for the investi-
gation of nonlinear fluid flow. Governed by an underlying
macroscopic wave function, superfluids can display a large
variety of nonlinear wave phenomena in the context of
matter waves. In Bose-Einstein condensates (BECs), nonlinear
structures including solitons, vortices, and vortex rings have
been the focus of intense research efforts [1,2]. In this Rapid
Communication, we investigate the regime of fast counter-
flow between two distinguishable superfluids in a narrow
channel and observe dynamics leading to unique structures.
Modulational instability (MI), in which small perturbations
to a carrier wave, reinforced by nonlinearity, experience rapid
growth [3], plays a key role in the dynamics. In many nonlinear
systems, MI leads to the breakup of periodic wave trains, as
in sufficiently deep water [4], as well as the formation of
localized structures in optics [5] and BECs [6]. In our case,
MI-induced regular density modulations, formed throughout
the BEC, lead to the emergence of a large number of beating
dark-dark solitons. These solitons—which exhibit periodic
energy exchange between the two condensate components
[7]—are a generalization of static dark-dark solitons [8].
They are distinctly different from all previously observed
solitons in BECs, including dark-bright solitons which were
generated in a two-component mixture by marginally critical
counterflow-induced MI near a density edge [9]. We perform
three-dimensional (3D) numerical simulations to corroborate
this interpretation and furthermore identify a subsequent
transverse instability resulting in multidimensional structures
such as vortex lines (see Ref. [10] for the scalar counterpart).

We study superfluid counterflow with an experimental
system consisting of BECs with typically 8 × 105 atoms of
87Rb. The BECs are confined in a cigar-shaped, far-detuned
optical dipole trap with measured trap frequencies of 2π×{1.5,
140, 178} Hz with a horizontal weakly confined axis. By
starting with all atoms in the |F,mF 〉 = |1, − 1〉 hyperfine
state and transferring ∼50% of the atoms to the |2, − 2〉 state
via a 1-ms-long microwave sweep, a perfectly overlapped
two-component mixture is created. The predicted scattering
lengths for these states [11] imply that this mixture is miscible
[12], which is also supported by our experimental observation
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of no phase separation for an unperturbed mixture of these
states. To induce relative motion between the components,
an external magnetic gradient is applied along the elongated
(axial) direction. The gradient pulls atoms in the |2, − 2〉 state
to the left and those in the |1, − 1〉 state to the right. The atoms
are imaged using a free-expansion imaging procedure. Each
experimental image shows an upper cloud consisting of the
|2, − 2〉 atoms after 7 ms of free expansion and a lower cloud
consisting of the |1, − 1〉 atoms after 8 ms of free expansion.
Both clouds are imaged during the same experimental run.

Experimental data showcasing the formation of a very dense
counterflow-induced MI pattern are presented in Fig. 1. In the
presence of a 10.4 mG/cm axial gradient, a gradual pattern
formation starts after 70 ms of smooth evolution [Figs. 1(a)
and 1(b)]. We first observe pattern formation in noncentral
regions where the two condensates have differing densities
[Fig. 1(b)]. This is due to the dependence of the critical
velocities for counterflow-induced MI on the two-component
density ratio being largest when the densities are equal [9,13].
After ∼25 ms, a very dense and regular MI pattern fully
develops, filling the entire BEC [Fig. 1(c)]. The modulations
in the two components are offset in the axial direction in a
staggered way such that one component fills the depressions in
the other. Under the continued influence of the axial gradient,
the regular pattern of Fig. 1(c) quickly becomes uneven and
irregular. Alternatively, if the gradient is switched off after
the MI pattern has fully developed, we frequently observe
the formation of black dots such as those marked by the
arrows in Fig. 1(d), which might indicate the generation of
vorticity. We note recent theoretical work suggesting that
counterflow-induced MI may be used to generate quantum
turbulence [14].

Imparting slow counterflow conditions, implying a slow
MI onset in the quasiuniform background, we previously
generated a dark-bright soliton train emanating locally from a
density edge [9]. In contrast, the fast counterflow considered
here leads to a rapid MI onset and pattern formation throughout
the condensates.

MI theory agrees quantitatively with the experimentally
observed patterns as we now explain (Fig. 2). For a uniform
counterflow, the onset of MI corresponds to a complex
sound speed (see Ref. [15]) and exhibits a preferred wave
number kmax corresponding to the maximum growth rate
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FIG. 1. Counterflow-induced MI in the presence of a strong
magnetic gradient of 10.4 mG/cm. Evolution times (a) 10 ms, (b)
70 ms, and (c) 95 ms. (d) After MI onset, the axial gradient is turned
off, followed by a trapped evolution time of 20 ms.

gmax, both depending on the counterflow speed. Unfortunately,
our imaging procedure does not allow us to determine the
counterflow speeds experimentally. However, we can take
two independent theoretical approaches, described below, to
extract the onset velocities from our experimental data. The
fact that these two independent approaches lead to consistent
results gives quantitative credence to the theory. First, we
use the analytical theory in Refs. [9] and [13] to calculate
the counterflow speed vfit whose corresponding kmax equals
the experimentally observed pattern periodicity at the trap
center where the densities are assumed to be equal (the
solid, black curve in Fig. 2). In a second, independent
approach, we assume spatially uniform counterflow whereby
the applied gradient leads to unimpeded acceleration of each
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FIG. 2. (Color online) Consistent predictions of counterflow
speed based on wavelength and onset time measurements of MI as a
function of applied gradient. For details see the text.

component (calculated from the atomic magnetic moment and
the magnitude of the applied gradient). Using this simple
model, experimentally determined onset times for MI are
converted to relative speeds at the onset of the MI pattern
(the dashed blue curve in Fig. 2). The dashed-dotted red curve
in Fig. 2 uses the same uniform counterflow model but shifts
the measured MI onset time by −1/gmax. Subtracting this time
accounts for the development of the instability and leads to
a better approximation of the true relative speed that sets the
pattern periodicity. The resulting curve interpolates the two
models. The lowest dotted curve is the predicted critical speed
in the condensate center (vcr = 0.16 mm/s) demonstrating fast
counterflow [16]. Despite the approximations made, the curves
exhibit agreement for small-to-moderate gradients, suggesting
that the observed dynamics are theoretically described by
counterflow-induced MI. Discrepancies at large gradients are
likely due to the large accelerations involved and spatial
nonuniformity.

We now investigate the dynamics of the MI onset by using
a smaller gradient of 1.4 mG/cm so that kmax is reduced
relative to Fig. 1, enabling better experimental observation
of individual features (Fig. 3). After smooth counterflow, MI
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FIG. 3. (Color online) (a), (b) Dark-dark solitons as a result of
MI after applying a gradient of 1.4 mG/cm for 350 and 380 ms,
respectively. (c) Formation of dark-bright solitons when a small
magnetic gradient of 0.2 mG/cm is applied. The gradient is left
on for 1000 ms before the start of the expansion sequence. (d)–(f)
Enlargement of boxed region in (a)–(c), respectively. The red solid
lines are integrated cross sections of the |2, − 2〉 state, and the black
dashed lines of the |1, − 1〉 state.
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sets in across the BEC, leading to a regular array of dark-dark
solitons [Figs. 3(a), 3(b), 3(d), and 3(e)]. In accordance with
theory and our numerics (see below), the dark-dark solitons
exhibit a dynamic beating, as seen by comparing the integrated
cross sections of Figs. 3(d) and 3(e), noting the order of
the notch and bump feature in each component. While our
destructive imaging technique does not allow us to determine
the exact beat frequency, our 3D numerics indicate a time scale
of 15 ms per period [15]. The dark-dark solitons we observe
here are unique and distinct from the dark-bright solitons that
have been observed previously in BECs [9,17,18], which are
distinguished by their far-field conditions and dynamics. To
facilitate a comparison, an example dark-bright soliton train,
seeded at the condensate interfaces and generated by slow,
marginally critical counterflow [9], is shown in Figs. 3(c)
and 3(f). A dark-bright soliton consists of a dark notch
in one component, filled by a localized density bump of
the second component. In contrast, the beating dark-dark
soliton asymptotes to nonzero densities in both components
and dynamically changes its shape, with each component
possessing a density bump adjacent to a notch which alternate
their relative positions in time (see also Fig. 6 below).

The dynamics are well reproduced by 3D numerical
simulations [15] of the vector, mean-field Gross-Pitaevskii
equation with initial conditions and parameters corresponding
to the experiments in Figs. 1(a)–1(c) and 3(a) and 3(b) [19]. As
with experiment, a smooth, accelerating counterflow develops
due to the axial field gradient. Dark-bright solitons form at the
edges of the condensates until the rapid growth of large-scale
modulations is observed [Figs. 4(a) and 4(b)]. For moderate
gradients in Figs. 4(a), 4(c), and 4(e), these modulations
rapidly develop into a number of localized, essentially one-
dimensional (1D) beating dark-dark solitons with an initial
approximate spacing 2π/kmax. Continued evolution results in
interactions and eventual solitary wave transverse breakup at
approximately t = 600 ms.

For the strong gradient case, our numerics show the devel-
opment of axial modulations by approximately t = 125 ms
with an initial 1D structure. In contrast to the moderate
gradient regime, these structures rapidly undergo decay due
to transverse modulations, which leads to the formation of
columnar 2D vortex lines [Figures 4(b) and 4(d)], exhibiting a
2π phase winding around their core [Fig. 4(f)], and a uniform
structure along the direction of view. The numerics also
show vortex lines oriented along the orthogonal, horizontal
radial axis. In analogy to the scalar case [10], we interpret
this behavior as a transverse instability that depends on the
relative speeds of the two components, their densities, and the
transverse confinement strength.

Dark-dark solitons can also be observed in other settings,
e.g., during the mixing of two initially phase-separated
components. An experimental result is showcased in Fig. 5.
We start from the phase-separated situation in Figs. 5(a)
and 5(c) which forms after initially overlapped components
experience an axial gradient for 10 s. When the axial gradient
is suddenly switched off, the two components interpenetrate,
first forming a smooth and extended overlapped region. After
some evolution time, individual dark-dark solitons appear
[Figs. 5(b) and 5(d)] exhibiting an approximately constant
total density (upper blue or dark gray curve). This behavior
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FIG. 4. (Color online) Integrated densities from 3D numerical
simulations. (a), (c), (e) correspond to Figs. 3(a) and 3(b) at t = 421
ms with enlargement (c) and line plot (e) of dark-dark solitons. (b),
(d), (f) correspond to Figs. 1(a)–1(c) at t = 133 ms with enlargement
(d) and a phase plot along the vertical z = 0 plane (f) showing two
vortex lines with oppositely oriented 2π phase winding. The vertical
axes of (a)–(d) span 16.7 μm incorporating a vertical offset of 8 μm
between the clouds.

is reminiscent of dark soliton formation in colliding single-
component BECs [20]. Beating dark-dark solitons are also the-
oretically predicted to develop when a repulsive beam is swept
through a two-component miscible BEC with an appropriate
speed [21].

The beating solitons can be understood through the follow-
ing simplified model: Assuming that all scattering lengths are
equal to a22, the mean-field equation is the repulsive, vector
nonlinear Schrödinger (NLS) equation. Its most general known
soliton solution is the six-parameter dark-dark soliton [7] (e.g.,
two background densities n1,2, two background flow speeds
c1,2, soliton speed v, and beating frequency ω) of which the
well-studied five-parameter static dark-dark soliton [8] is a
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FIG. 5. (Color online) Dark-dark solitons as a result of two-
component mixing. (a) Phase-separated mixture in the presence of an
axial gradient. (b) Dark-dark soliton formed 1 s after sudden turnoff
of the gradient. (c), (d) Integrated cross sections with thin red or light
gray (thick black) curve showing the |2, − 2〉 (|1, − 1〉) component.
Blue or dark gray (upper) curve in (d) shows total density.
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FIG. 6. (Color online) Density and phase evolution of a beating
dark-dark soliton assuming equal scattering lengths.

special case. Even though analytical expressions for these
solitons were derived [7], their form is quite complicated and
basic properties such as the beating frequency as a function of
soliton parameters are unknown.

An example of a beating dark-dark soliton can be con-
structed by leveraging the SU(2) invariance of the vector

NLS equation [15]. Applying a rotation matrix to the two
components of a four-parameter dark-bright soliton [8], we
obtain a five-parameter beating dark-dark soliton where the
background flow speeds are equal to c. Its evolution over
half a beating period is shown in Fig. 6 [compare with
Figs. 3(d), 3(e), and 4(e)]. The beating angular frequency
ω = m

2h̄ (c − v)2 sec2(φ/2) satisfies [15]

m(c − v)2/(2h̄) < ω < πh̄a22(n1 + n2)/m. (1)

The soliton half-width is l = h̄/
√

2mωh̄ − m2(c − v)2, where
φ is the soliton phase jump and m is the particle mass. As ω

approaches the lower (upper) bound in (1), the beating soliton
degenerates to a plane wave (static dark-dark soliton). The
beating soliton strongly resembles features observed in ex-
periment and numerical simulations. The predicted minimum
oscillation period of 5 ms for our experimental parameters is
consistent with the numerically observed periods of ∼15 ms.

In conclusion, we have presented an experimental obser-
vation of a beating dark-dark soliton. These solitons naturally
arise from a fast counterflow-induced modulational instability
and can emerge during the mixing of two superfluids. Our
work opens the door to a range of studies of vector soliton
dynamics, with consequences for a diversity of nonlinear,
dispersive systems.
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