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Critical Dynamics in Complex Networks
Daniel B. Larremore, Woodrow L. Shew, and Juan G. Restrepo

17.1
Introduction: Critical Branching Processes

A central concept in the preceding chapters has been that of a critical branching
process that has been used to explain the statistics of neuronal avalanches observed
in vivo and in vitro. Branching processes were first systematically studied by Galton
and Watson [1] in 1874 in a context unrelated to neuroscience: their aim was to
mathematically explain the extinction of aristocratic family names in Victorian
England. As generations passed, the name of the patriarchs would be passed down
only to their male children. Thus, the family name survives only if there is at least
one male alive in each generation. Considering that each newborn child will be male
with probability 1∕2, it is clear that if each male has only one child, the family name
will likely die out very quickly. On the other hand, if each male has 10 children, the
family name will likely carry on indefinitely. Such a process where an active node
(father) may branch to other nodes (children) which are active (male) with some
probability may be generalized so that the number of offspring may vary from node
to node, and the probability of producing an active node may vary from branch
to branch. This generalization is called a branching process, and finds application
beyond genealogy in diverse situations including nuclear chain reactions [2] and
propagation of neural activity through a network of neurons or functional units.
When the number of active nodes (which will also be called excited nodes) neither
increases nor decreases, on average, from generation to generation, the process is
called a critical branching process. On the other hand, when the number of active
nodes decreases, on average, the process is called subcritical and when the number
active nodes increases, on average, the process is called supercritical. Figure 17.1
illustrates these three scenarios.

The branching process described above produces a cascade of excitations, hence-
forth just called an avalanche. Since the avalanche is a stochastic process, that is,
the propagation through consecutive generations depends on chance, the duration
of an avalanche (number of generations before extinction) will vary according to
a distribution determined by the parameters of the process. For example, if each
node that is excited at a given generation can produce M excited nodes in the
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366 17 Critical Dynamics in Complex Networks

Subcritical SupercriticalCritical

Figure 17.1 Example of subcritical, criti-
cal, and supercritical branching processes
in which each ancestor produces three off-
spring who may possess a particular trait
(filled circles) or lack it (empty circles). In
a critical branching process, each ancestor
possessing some trait produces on aver-
age one descendant who possesses the trait

(center). In a subcritical branching process,
each ancestor with the trait produces on
average less than one descendant with the
trait (left), and in a supercritical branching
process, each ancestor with the trait pro-
duces on average more than one descendant
with the trait (right).

next generation with probabilities p1, p2, p3, … , pM, the process is critical when
these probabilities add exactly to 1 [1, 3–5]. Defining the branching ratio 𝜎 to be
the expected number of excitations produced by an excited node, the condition for
criticality can be written as

𝜎 =
M∑

n=1

pn = 1. (17.1)

Critical branching processes are interesting to theoreticians and experimentalists
alike because of their statistical signatures: the probability that an initial excited
node results in an avalanche where a total of x nodes are excited in the course of
the avalanche is, for large x, a power law

p(x) ∝ x− 3
2 , (17.2)

and the probability that an initial excited node results in a cascade that spans t
generations is, for large t, also a power law

p(t) ∝ t−2, (17.3)

a demonstration of which can be found, for example, in [5]. Remarkably, these
exponents are observed in experimental distributions of neuronal avalanches in
various settings. The exponent −3∕2 for the distribution of avalanche sizes has
been observed in rat cortical tissue cultures [6–10], awake monkeys [10, 11], and
anesthesized mammals [10, 12, 13], while the exponent −2 for the distribution of
avalanche durations has been observed in resting humans [14]. This suggests that,
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17.2 Description and Properties of Networks 367

at the functional level, some aspects of brain activity can be well described by a
critical branching process.

The agreement between neuroscience experiments and classical theory of branch-
ing processes is surprising given the rather different structure of a neural network
compared to a family tree, for example. Indeed, the network of interactions in a
classical branching process is always ‘‘tree-like’’ – it has no loops. In contrast, in
the cerebral cortex there are recurrent interactions, for example, neuron A can
excite neuron B, which can in turn re-excite neuron A. More specifically, various
functional brain networks have been reconstructed partially [15–19], and it has
been consistently found that these reconstructed networks possess a rich structure,
including in some cases a power law distribution in the number of connections
per node [15], long-range connections [17], and correlations [19]. Thus, it is imper-
ative to consider the effect that such network structural properties might have on
the statistics of avalanche sizes and durations, since they are a key experimental
signature of criticality.

The study of propagation of avalanches of activity in complex networks has
received considerable attention recently [20–23]. Most of these studies focus on the
typical behavior of avalanches in ensembles of networks sharing a certain property
(e.g., the degree distribution). In contrast to these previous studies, this chapter
describes a theory of avalanche sizes and durations based on [24] which explicitly
accounts for networks with complex network topology. This approach allows an
analysis of avalanches starting from arbitrary nodes in the network and the effect of
nontrivial network structure on the distribution of avalanche sizes and durations.
Some of the results presented in this chapter, such as a criterion for criticality
based on the largest eigenvalue of an appropriate matrix, have counterparts in the
so-called multi-type branching processes [4] if one identifies each individual node
with a ‘‘particle type.’’ However, this chapter addresses explicitly the applicability
of these results to describe avalanches in complex networks and the effect of
modern network topology measures on the distribution of avalanches. Section 17.2
summarizes the terminology and concepts that will be used in subsequent analysis
of branching processes in complex networks. Section 17.3 describes how the
classical results for the statistics of avalanche durations and sizes mentioned
above are affected by the network structure, focusing particularly on the statistics
of avalanche durations. Important differences with the classical results include
topology-dependent criteria for criticality, and expressions for the distribution of
avalanche sizes and durations which explicitly depend on the network topology
as described by an appropriate adjacency matrix. In addition, the effect of various
network structural properties of interest in modern network research is discussed.

17.2
Description and Properties of Networks

Many common tools have been developed to describe and handle structural aspects
of complex networks [25], and their use proves to be instrumental for analyzing
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368 17 Critical Dynamics in Complex Networks

the statistics of avalanches in networks. Very generally, a network can be defined
as a set of N nodes (or vertices), V = {1, 2, … ,N}, and a set of M links (or
edges), E = {e1, e2, … , eM}, where each edge is an ordered pair of nodes and the
order represents the direction of the link. For example, e = (n,m) represents a link
pointing from node n to node m. In the study of neuronal avalanches that follows,
each node corresponds to a functional population of neurons.

17.2.1
Network Representation by an Adjacency Matrix

A network with N nodes can be conveniently represented by an N × N adjacency
matrix A with entries given by

A𝑛𝑚 =

{
1 if there is a link from node n to node m,

0 otherwise.
(17.4)

In many applications, links between different pairs of nodes differ in their impor-
tance and/or their effect. For this reason, it is often convenient to relax the definition
above to allow any value for each entry of A:

A𝑛𝑚 =

{
≠ 0 if there is a link from node n to node m,

0 otherwise.
(17.5)

The nonzero entries of A are called the link weights, and a network is weighted if
not all of the weights are 1. The matrix A as defined in Eq. (17.5) will be referred
to as the adjacency matrix of the network, and the matrix A as defined in Eq. (17.4)
will be referred to as the unweighted adjacency matrix. Undirected networks are
represented by a symmetric adjacency matrix satisfying A = AT, where T denotes
the transpose matrix. Figure 17.2 illustrates the representation of a small network
with an adjacency matrix.

17.2.2
Node Degrees

The adjacency matrix contains all the information about the network. However,
often one has access only to limited information, such as local information about

1

2

3

4

A =

0 1 1 1

0 0 0 0

1 0 0 0

1 0 0 0

Figure 17.2 Example of an adjacency matrix for a directed network. Each node is indexed by an
integer, and the connections from (to) each node are written in the corresponding row (column)
of the matrix A.
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17.2 Description and Properties of Networks 369

a sample of nodes or links. One of the properties that can, in absence of all
other information, reveal much about the network is the number of incoming
and outgoing links per node. In terms of the adjacency matrix, the out-degree and
in-degree of node n are

kout
n =

N∑
m=1

A𝑛𝑚, kin
n =

N∑
m=1

A𝑚𝑛. (17.6)

When the network is unweighted (A𝑛𝑚 = 0 or 1), the out- and in-degrees correspond
to the number of outgoing and incoming links from and into a node. For weighted
networks, the out- and in-degrees generalize this concept and represent the total
strength of the outgoing and incoming links. Since every outgoing link from a
given node has to be the incoming link of another node, the sum of out-degrees
and in-degrees over all nodes must be the same. In fact

N∑
n=1

kout
n =

N∑
n=1

N∑
m=1

A𝑛𝑚 =
N∑

m=1

N∑
n=1

A𝑛𝑚 =
N∑

m=1

kin
m (17.7)

and the mean degree ⟨k⟩ is defined as

⟨k⟩ ≡ N−1
N∑

n=1

kout
n = N−1

N∑
m=1

kin
m . (17.8)

For some networks found in applications, the in- and out-degrees of a given node
can be vastly different. For example, the number of hyperlinks pointing to a popular
web portal can number in the billions, while the number of hyperlinks pointing to
other webpages from that web portal can be of the order of a hundred. Similarly,
the directed network of Twitter users (Twitter is a popular microblogging platform)
where a link indicates ‘‘following’’ also provides an example with nodes that often
have vastly different in-degrees and out-degrees, although in- and out-degrees are
still positively correlated in the Twitter network [26].

17.2.3
Degree Distribution

By sampling a large number of nodes from a network, one can estimate the
probability that a randomly chosen node has a given in-degree and out-degree, and
define the joint degree distribution

P(kout, kin) = probability that a randomly chosen node has out-degree kout

and in-degree kin.

In general, the out- and in-degrees are not independent variables. One can still
define the marginal distributions
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370 17 Critical Dynamics in Complex Networks

Pout(kout) =
∑
kin

P(kout, kin) = probability that a randomly chosen

node has out-degree kout, (17.9)

Pin(kin) =
∑
kout

P(kout, kin) = probability that a randomly chosen

node has in-degree k𝑖𝑛. (17.10)

If the out-degree and the in-degree at a given node are independent variables, then

P(kout, kin) = Pin(kin)Pout(kout).

As suggested by the examples mentioned above, the out-degree and in-degree
distributions are not necessarily similar. As an example of a network where
the out- and in-degree distributions are different, Braha and Bar-Yam studied
information-sharing networks, and in particular a pharmaceutical facility develop-
ment organization [27].

In addition, many real-world networks have degree distributions that are highly
heterogeneous. For example, Eguı́luz et al. [15] observed that functional magnetic
resonance imaging (fMRI) networks obtained by imaging human subjects engaged
in various tasks have degree distributions that follow approximately a power law,
that is, P(k) ≈ Ck−𝛾 , where k represents the in- or out-degree. Networks whose
degree distribution follows a power law are often referred to as scale-free networks
to indicate the absence of a typical degree, and have been the subject of extensive
study in the last decade (see, e.g., [25, 28, 29]). As discussed below, heterogeneous
degree distributions result in a different criterion for criticality than the classical
result presented in the introduction. Another factor that can modify the classical
results degree correlations, described next.

17.2.4
Degree Correlations

Two types of correlations between node degrees are often studied. The first
type, node degree correlations, denotes correlations between the out-degree and in-
degree at the same node. The presence of node degree correlations implies that
knowing information about the in-degree of a randomly chosen node provides
some knowledge of its out-degree, and vice versa. Mathematically, it means that
the joint degree distribution does not split into a product.

P(kout, kin) ≠ Pin(kin)Pout(kout)

Typically, one is interested not in the full form of the joint degree distribution,
but in knowing whether the correlation between out- and in-degrees is positive or
negative. If it is positive (negative), nodes with large out-degrees are more likely to
have large (small) in-degrees. This can be quantified by the node degree correlation
coefficient [30]:

𝜂 =
⟨kinkout⟩⟨kin⟩⟨kout⟩ =

⟨kinkout⟩⟨k⟩2
(17.11)
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17.2 Description and Properties of Networks 371

η < 1

η > 1

ρ < 1

ρ > 1

mn

mn

(b) (d)

(a) (c)

Figure 17.3 Diagram showing examples of
the types of links that one might observe in
networks with particular 𝜂 and 𝜌 values. (a)
Node in- and out-degree are anticorrelated,
(b) node in- and out-degree are correlated,

(c) in-degree at node n is anticorrelated with
out-degree at node m, and (d) in-degree
at node n is correlated with out-degree at
node m.

where ⟨•⟩ denotes an average over nodes. This coefficient is 1 when the out- and
in-degrees are independent, is larger than 1 when they are positively correlated,
and less than 1 when they are negatively correlated.

The second type of degree correlation that arises often occurs between the degrees
at the ends of a randomly chosen link, referred to as edge degree correlations. In
particular, when a link connects nodes n and m, a correlation might exist between
kin

n and kout
m , between kout

n and kout
m , and so on. Since they have the most effect on

network branching processes, this chapter will focus on those between kin
n and kout

m .
This can be quantified by the edge degree correlation coefficient [30]:

𝜌 =
⟨kin

n kout
m ⟩e⟨kin⟩e⟨kout⟩e

(17.12)

where ⟨•⟩e denotes an average over edges, ⟨x𝑛𝑚⟩e ≡
∑

n,mA𝑛𝑚x𝑛𝑚∕
∑

n,mA𝑛𝑚. As with
the node degree correlation coefficient, a value of 1 indicates no correlations, and a
value larger (smaller) than 1 indicates positive (negative) correlations.1) Figure 17.3
shows examples of the in- and out-degrees of typical nodes and edges in networks
with positive and negative correlations: in Figure 17.3a, the in-degrees and out-
degrees are negatively correlated. In Figure 17.3b, in-degrees and out-degrees are
positively correlated. In Figure 17.3c, the in-degrees and out-degrees coming in
and out of two connected nodes are negatively correlated, and in Figure 17.3d they
are positively correlated.

Just like heterogeneity in the degree distributions, node correlations can modify
the classical criterion for criticality. They affect the largest eigenvalue of the

1) A related and commonly used measure is the Pearson correlation coefficient, sometimes called
the assortativity coefficient [31]

r =
⟨(k′out

n − ⟨k′out⟩e)(k′inm − ⟨k′in⟩e)⟩e√⟨(k′out − ⟨k′out⟩e)2⟩e

√⟨(k′in − ⟨k′in⟩e)2⟩e

where k′ = k − 1 is the excess degree. Note that in this definition, the role of kout and kin is
reversed.
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372 17 Critical Dynamics in Complex Networks

adjacency matrix, which determines the properties of branching properties on
complex networks.

17.2.5
Largest Eigenvalue and the Corresponding Eigenvector

All the properties of networks discussed above, such as the degree distribution
and node correlations, are encoded in the network adjacency matrix A. While
one can develop analyses of branching processes based only on knowledge of,
for example, the degree distribution, the approach of this chapter is to follow
[24, 32, 33] and develop an analysis technique based on the adjacency matrix
A. In analyzing the propagation of avalanches in the next sections, repeated
matrix–vector multiplications using the matrix A will arise, and in such cases, the
resulting behavior is determined by the eigenvalue of A with largest magnitude
and its corresponding right and left eigenvectors 𝐮 and 𝐯 (satisfying A𝐮 = 𝜆𝐮 and
𝐯TA = 𝜆𝐯T). This eigenvalue and its eigenvectors have a dominant influence on the
properties of branching processes in networks, and it is therefore often possible
to reduce questions about how network topology affects dynamics on networks to
questions about how it affects the dominant eigenvalue 𝜆 and its eigenvectors.

The Perron–Frobenius Theorem [34] is fundamental when investigating the largest
eigenvalue of network adjacency matrices. It states that an N × N irreducible,
primitive matrix with nonnegative entries has a simple positive eigenvalue 𝜆 whose
magnitude is larger than the magnitude of all other eigenvalues. Furthermore, its
corresponding right and left eigenvectors have positive entries. The criterion of
irreducibility, in the context of branching processes in networks, means that an
avalanche has a nonzero probability to reach any node when starting from any other
node. A matrix B is primitive if there is an integer K > 0 such that BK > 0. The
adjacency matrix of complex networks is typically primitive, and the subsequent
analysis here assumes that this condition is satisfied.

While the theoretical results will be stated in terms of the largest eigenvalue
𝜆 and its eigenvectors 𝐮 and 𝐯, it will be useful to present an approximation to
these quantities that allows comparisons with the classical results mentioned in
the introduction. When degree correlations are small, the largest eigenvalue and
its eigenvectors can be approximated as [30]

𝜆 ≈ 𝜌𝜂⟨k⟩ (17.13)

un ≈ k𝑜𝑢𝑡n (17.14)

vn ≈ k𝑖𝑛n . (17.15)

Note that, using the definition of 𝜂, Eqs. 17.11 and 17.13 can be rewritten as

𝜆 =
⟨kinkout⟩⟨k⟩ 𝜌. (17.16)

One can understand these approximations for 𝜆 as follows. For random networks
without correlations, one has 𝜌 = 𝜂 = 1 and thus 𝜆 = ⟨k⟩: that is, the largest
eigenvalue represents the average degree (or, if one views the outgoing links from a
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17.3 Branching Processes in Complex Networks 373

node as branches, the branching ratio). When there are correlations, 𝜆 generalizes
the branching ratio, with positive correlations resulting in an effectively larger
branching ratio.

17.3
Branching Processes in Complex Networks

This section introduces and analyzes a model of the propagation of avalanches
in networks, using many of the descriptive quantities of the previous section.
While this section follows [24], for simplicity of exposition only the distribution of
avalanche durations is discussed in detail, while similar results for avalanche sizes
are summarized.

First, a branching process in a network is defined as follows: Consider a network
of N nodes labeled m = 1, 2,...,N. Each node m has a state x̃m = 0 or 1. The state
x̃m = 0 will be referred to as the resting state and x̃m = 1 as the excited state. At
discrete times t = 0, 1,..., the states of the nodes x̃t

m are simultaneously updated as
follows: (i) If node m is in the resting state, x̃t

m = 0, it can be excited by an excited
node n, x̃t

n = 1, with probability 0 ≤ A𝑛𝑚 < 1, so that x̃t+1
m = 1. (ii) The nodes that

are excited, x̃t
n = 1, will deterministically return to the resting state in the next

time step, x̃t+1
n = 0. The network of N nodes is therefore described by an N × N

weighted network adjacency matrix A = {A𝑛𝑚}, where A𝑛𝑚 > 0 may be thought of
as the strength of the connection from node n to node m, and A𝑛𝑚 = 0 implies that
node n does not connect to node m. It will be assumed that, given any two nodes n
and m, the probability that an excitation originating at node n is able to excite node
m (through potentially many intermediate nodes) is not zero. This is equivalent to
saying the network is strongly connected, and therefore the matrix A is irreducible.

The nodes in this network should be thought of as functional units in a coarse-
grained description of neuronal activity, where each unit comprises potentially
many individual neurons. The probabilities A𝑛𝑚 should be thought of as an
effective interaction that aggregates both excitatory and inhibitory connections.
Consequently, the effect of modifying the balance of excitation and inhibition
(as done experimentally, e.g., in [9]) is represented by a modification of the
probabilities A𝑛𝑚. These type of coarse-grained branching process models have
been used successfully to model various aspects of information processing in
neural networks (see [6, 9, 35] and other chapters in this book).

Starting from a single excited node k (x̃0
n = 1 if n = k and x̃0

n = 0 if n ≠ k), the
system is allowed to evolve according to the dynamics above until there are no more
excited nodes. The following definitions are introduced to analyze this process: (i)
An avalanche is the sequence of excitations produced by a single excited node. (ii)
The duration d of an avalanche is defined as the total number of time steps spanned
by the avalanche: if the avalanche starts with x̃0

n = 1, then

dn = min
t≥0

{x̃t
k = 0 for all k}. (17.17)
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374 17 Critical Dynamics in Complex Networks

An avalanche that continues indefinitely is said to have infinite duration. (iii) The
size x of an avalanche starting with x̃0

n = 1 is defined as the total number of nodes
excited during an avalanche, allowing nodes to be excited multiple times:

xn =
d−1∑
t=0

N∑
k=1

x̃t
k. (17.18)

Note that, by this definition, it is possible for an avalanche to have size larger than
the total size of the network. The goal is to determine the probability distributions
of these variables in terms of the matrix A. For simplicity of exposition, this chapter
will be will focused on the distribution of avalanche durations.

Since the interest is specifically in heterogeneous networks, significant differ-
ences between different nodes are expected, both in terms of their degree and
their location in the network. Therefore, the distribution of avalanche durations for
avalanches starting at a specific node n will be studied. To do this, the cumulative
distribution of avalanche durations starting at node n is defined as

cn(t) = P(dn ≤ t). (17.19)

Note that the probability distribution of avalanche durations for avalanches starting
at node n can be obtained from cn(t) by2)

P(dn = t) = cn(t) − cn(t − 1). (17.20)

By definition, cn(t) is a nondecreasing function of t which is less than or equal
to 1. Therefore, as t → ∞, cn(t) must approach a limiting value bn which, from the
definition of cn(t), corresponds to the probability that an avalanche starting at node
n has finite duration:

bn = lim
t→∞

cn(t) = P(avalanche starting at node n is finite). (17.21)

The behavior of cn(t) for large t will be investigated in order to obtain information
about the ‘‘tail’’ of the distribution of avalanche durations (i.e., the behavior of
the distribution for large t). This is illustrated in Figure 17.4. The motivation for
this approach stems from experimental results in which the statistics of long (and
large) avalanches is claimed to reveal much about the underlying network’s critical
(or noncritical) state, as discussed in the previous chapters.

While the presented framework has thus far been applicable to most networks
(it has been assumed only that the matrix A is irreducible and primitive), the
subsequent analysis will be restricted to a class of networks commonly referred to
as locally tree-like networks. These networks have the property that, for most nodes,
the nodes that can be reached in a relatively few number of steps form a network
that can be approximately described as a tree. To make this more precise, it is

2) While the size and duration of an avalanche are, in this model, discrete random variables,
terminology for continuous variables is used for the sake of self-consistency, because some of the
analytical techniques utilize a continuous extension of discrete distributions, and because many
experimental measurements presented in previous chapters are often not drawn from a discrete
distribution.
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17.3 Branching Processes in Complex Networks 375

Cn(t)

bn = P(avalanche starting at node n is finite)

Tail of distribution

t

Figure 17.4 As a cumulative density func-
tion, cn(t) is an increasing function of t. The
limiting behavior as t → ∞, that is, how fast
cn(t) approaches its limit, reveals information

about the tail of the probability distribution
of avalanche durations. The limit bn is the
probability that an avalanche generated at
node n is finite.

Figure 17.5 The neighborhood of the network around the black node has a tree-like
structure.

assumed that for most nodes n and relatively small k, the number of different
nodes reachable by paths of length k or less starting at node n, which is defined
as Nn(k), is close to the total number of paths of length k or less starting from
node n, which is defined as Pn(k). (Note that, in particular, for k = 2, this implies
that the number of bidirectional edges is small.) Figure 17.5 illustrates this for a
particular node in a small network: the number of nodes reachable from the black
node by paths of length 2 or less (gray nodes) coincides with the total number of
paths of length 2 or less starting at the black node, Pn(2) = Nn(2). In this case, if
the expected duration of the avalanches is small, avalanches starting at the dark
gray nodes can be approximately treated as independent. Many networks found in
applications are locally tree-like [36], and use of the locally tree-like approximation
has led to theoretical insights into the behavior of various dynamical processes in
networks [32, 37, 38]. Furthermore, use of the locally tree-like approximation has
been observed to yield reasonable results even for networks that are not entirely
tree-like [36]. Therefore, as a first step toward generalizing the classical results in
branching trees to networks, the locally tree-like approximation will be assumed
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376 17 Critical Dynamics in Complex Networks

hereafter. It is important to note that, even though the network is assumed to
behave locally like a tree, this approximation still captures the effect of factors such
as heterogeneous degree distributions and degree correlations.

Using the locally tree-like approximation, an equation for cn(t + 1) at node n in
terms of the variables cm(t) at other nodes m can be written down as follows:

cn(t + 1) = P(for all m, an excitation at node n does not propagate to node

m, or it does but then generates an avalanche that

lasts less than t steps). (17.22)

The left-hand side is the probability that an avalanche starting at node n lasts less
than t + 1 steps. This event is equivalent to the event that for every node m, either
the excitation at node n does not propagate to node m (with probability 1 − A𝑛𝑚) or
it propagates to node m and the avalanche that is subsequently generated at node
m lasts less than t steps (with probability A𝑛𝑚cm(t)). Since the network is assumed
to be locally tree-like, avalanches starting at nodes m are treated as independent
events, and thus the right-hand side can be written as the product

cn(t + 1) =
N∏

m=1

[(1 − A𝑛𝑚) + A𝑛𝑚cm(t)]. (17.23)

As explained above, the behavior of cn(t) for large t, when it is approaching its
limiting value bn, is of interest. This limiting value can be obtained by taking the
limit t → ∞ in Eq. 17.23, and satisfies

bn =
N∏

m=1

[(1 − A𝑛𝑚) + A𝑛𝑚bm]. (17.24)

The behavior of cn(t) as it approaches bn can be analyzed by defining the small
distance between cn and its limit bn as

fn(t) ≡ bn − cn(t). (17.25)

Inserting this quantity in Eq. 17.23, one obtains

bn − fn(t + 1) =
N∏

m=1

[(1 − A𝑛𝑚) + A𝑛𝑚bm − A𝑛𝑚fm(t)]. (17.26)

This expression can be manipulated as follows:

bn − fn(t + 1) =
N∏

m=1

[(1 − A𝑛𝑚) + A𝑛𝑚bm]
[

1 −
A𝑛𝑚 fm(t)

(1 − A𝑛𝑚) + A𝑛𝑚bm

]
(17.27)

=
N∏

m=1

[(1 − A𝑛𝑚) + A𝑛𝑚bm]
N∏

m=1

[
1 −

A𝑛𝑚 fm(t)
(1 − A𝑛𝑚) + A𝑛𝑚bm

]
(17.28)
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17.3 Branching Processes in Complex Networks 377

= bn

N∏
m=1

[
1 −

A𝑛𝑚 fm(t)
(1 − A𝑛𝑚) + A𝑛𝑚bm

]
(17.29)

= bn

N∏
m=1

[
1 −

D𝑛𝑚

bn

fm(t)
]

(17.30)

where D𝑛𝑚 is defined as

D𝑛𝑚 =
A𝑛𝑚bn

(1 − A𝑛𝑚) + A𝑛𝑚bm

. (17.31)

To determine the behavior when t is large and fn(t) is small, the right-hand side can
be expanded in powers of f keeping only linear terms, to obtain

bn − fn(t + 1) = bn

(
1 −

N∑
m=1

D𝑛𝑚

bn

fm(t) + 𝒪(f 2)

)
. (17.32)

After simplifying, to first order, fn satisfies

fn(t + 1) =
N∑

m=1

D𝑛𝑚 fm(t). (17.33)

If an N × N matrix D with entries D𝑛𝑚 and a vector 𝐟(t) = [f1(t), f2(t), … , fN(t)]T are
defined, where the superscript T denotes the transpose, the previous equation can
be written as the vector equation

𝐟(t + 1) = D𝐟(t) (17.34)

Starting from some initial time t0 where f (t0) is small, and iterating the previous
update equation t − t0 times, one has

𝐟(t) = Dt−t0 𝐟(t0). (17.35)

For large t, the action of the matrix Dt−t0 on the initial vector results in

𝐟(t) ∝ 𝜆t
D𝐮 (17.36)

where 𝜆D is the eigenvalue of D with the largest magnitude, and 𝐮 is its corre-
sponding right eigenvector.3) In terms of the quantities cn(t) = bn − fn(t), for large t
they satisfy

cn(t) ≈ bn − Cun𝜆
t
D (17.37)

where C is the proportionality constant in Eq. 17.36. This analysis is valid as long
as 𝜆D < 1, since it was assumed that fn decays to zero as t → ∞, and it was found
that fn ∝ 𝜆t

D. It turns out that one always has 𝜆D ≤ 1. The case 𝜆D = 1 must be
treated separately since this analysis would conclude that fn(t) does not decay to

3) In the particular case when D is diagonalizable and a basis of eigenvectors {𝐮i} with eigenvalues
{𝜆i} can be found, one can see this by decomposing 𝐟(t0) into eigenvectors, 𝐟(t0) =

∑
i𝛼i𝐮i.

Multiplication by Dt−t0 yields Dt−t0 𝐟(t0) =
∑

i𝛼i𝜆
t−t0

i
𝐮i. As t → ∞, this sum is dominated by the

term with the eigenvalue of largest magnitude, 𝜆D, and thus Dt−t0 𝐟(t0) ∝ 𝜆t
D𝐮. In the general case,

a similar argument can be made writing D in Jordan canonical form.
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378 17 Critical Dynamics in Complex Networks

zero (cf. Eq. 17.36). Inclusion of the second-order terms that were neglected will
confirm that fn → 0 but as a power law, fn ∝ t−2, instead of exponentially. This will
be discussed in Section 17.3.3.

17.3.1
Subcritical Regime

In the case 𝜆D < 1, Eq. 17.37 shows that cn(t) approaches its limit exponentially,
reducing the difference to it by a factor of 𝜆D in each time step. Using Eq. 17.20,
this implies that the probability of an avalanche starting at node n having duration
t is

P(dn = t) ∝ un𝜆
t
D. (17.38)

This result has two components that need to be interpreted: (i) the probability of
an avalanche having duration t is proportional to the right eigenvector entry un of
the matrix D, and (ii) when 𝜆D < 1, the probability of an avalanche having duration
t decays exponentially with t. To understand these results, one needs to determine
what 𝜆D and un represent, and, since the matrix D is defined in Eq. 17.31 in terms
of the entries of A and of bn, to know what bn is. Recall that bn is the probability
that an avalanche starting at node n has finite duration and satisfies the equation

bn =
N∏

m=1

[(1 − A𝑛𝑚) + A𝑛𝑚bm]. (17.39)

Note that bn = 1 for all n is always a solution of this equation. When bn = 1 in
Eq. 17.31, the matrix D reduces to the matrix A, and therefore 𝜆D = 𝜆, where 𝜆 is
the eigenvalue of A with largest magnitude discussed in Section 17.2.5. Since the
above argument is valid only as long as 𝜆D = 𝜆 < 1, this suggests that this solution
(i.e., bn = 1, 𝜆D = 𝜆, P(dn = t) ∝ 𝜆tvn) will be relevant only when 𝜆 < 1. Indeed, it
can be shown that this is the only solution when 𝜆 < 1 (see the Appendices of [24]).
Therefore one arrives at the following result: When 𝜆 < 1, all avalanches are finite,
and for large t the probability of an avalanche starting at node n having duration t
is proportional to 𝜆tun, where 𝜆 is the largest eigenvalue of A and 𝐮 its associated
right eigenvector.

This result will now be interpreted and contrasted with the results from uniform
branching processes and branching processes on random networks. First, consider
the case of networks without correlations, such as random Erdős–Rényi networks,
where links are placed with a fixed probability between any pair of nodes [39] (see
also [25]). For these networks, as discussed in Section 17.2.5, one can approximate

𝜆 ≈ ⟨k⟩ (17.40)

un ≈ k𝑜𝑢𝑡n . (17.41)

Noting that k𝑜𝑢𝑡n =
∑N

m=1 A𝑛𝑚 is the expected number of excited nodes produced by
an excitation in node n, the mean degree ⟨k⟩ is equivalent to the average branching
ratio 𝜎 introduced in Section 17.1. Therefore, for this type of network, 𝜆 ≈ 𝜎.
The conclusion above then can be interpreted as saying that the distribution of
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17.3 Branching Processes in Complex Networks 379

avalanche durations decays exponentially with the rate log (1∕𝜎), which agrees
with the classical result in critical branching processes in trees [3, 5]. Using
the approximation un ≈ kout

n , the second part of the result above states that the
probability of an avalanche starting at node n having duration t is proportional
to the out-degree kout

n of node n. This is very reasonable since one expects that,
everything else being equal, nodes that have more outgoing links (or, more
precisely, a larger sum of outgoing weights) should produce longer avalanches.

The results above generalize this intuitive result to more complex network
topologies that might have correlations or heterogeneous degree distributions.
For example, the largest eigenvalue of a network with a heterogeneous degree
distribution, but without degree–degree correlations, can be approximated by (see
Eq. 17.16)

𝜆 ≈ 𝜂⟨k⟩ = ⟨k𝑖𝑛k𝑜𝑢𝑡⟩⟨k⟩ . (17.42)

The largest eigenvalue 𝜆 may be interpreted as a generalization of the branching
ratio 𝜎, implying that positive node degree correlations will result in a larger
effective branching ratio. Since the distribution of avalanche durations decays as
𝜆t, positive correlations will result in longer avalanches. In general, various other
factors might affect the value of 𝜆, and the advantage of this approach is that the
study of the effect of this factor on avalanches is reduced to the study of their effect
on 𝜆.

For uncorrelated networks, the eigenvector entry un coincides with the local
branching ratio k𝑜𝑢𝑡n at node n. For more general networks, this eigenvector entry
can be interpreted as a version of the branching ratio that takes into account both
the expected number of nodes that the node n will generate and the location of these
nodes in the network. In general, two nodes n and m that have the same out-degree,
kout

n = kout
m , and can have very different values of their respective eigenvector entry,

un ≠ um. As an example, consider the networks shown in Figure 17.6, in which
all the nonzero links are assumed to have the same weight: A𝑛𝑚 = w if A𝑛𝑚 ≠ 0.
The network on the left has negative edge–degree correlations (𝜌 < 1): nodes with
many links tend to connect mostly to nodes with few links. On the other hand,
the network on the right has positive edge–degree correlations (𝜌 > 1): nodes with
many links tend to connect to each other forming a highly connected core, while
poorly connected nodes are in the periphery of the network. These two networks
were constructed with the same degree distribution, so that, if one were to calculate
the average branching ratio 𝜎 = ⟨k⟩, one would obtain 𝜎 = 39

15
w for both networks.

However, the network on the right has a larger eigenvalue 𝜆, and avalanches
are more likely to have a longer duration. Intuitively, one can imagine that an
avalanche that circulates in the highly connected core will be more likely to have a
long duration.

The networks in Figure 17.6 also serve to illustrate why the distribution of
avalanches starting at node n is proportional to the right eigenvector entry un and
not to the out-degree kout

n . Consider the two nodes marked in black in the network
on the right (one circular and the other square), and suppose that they are excited.
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380 17 Critical Dynamics in Complex Networks

ρ < 1 ρ > 1

Figure 17.6 Two networks with the same
degree distribution but with different edge
degree correlations. The network on the
left has negative edge degree correlations
(𝜌 < 1), while the network on the right has
positive edge degree correlations (𝜌 > 1).
The number of nodes reachable in a given
number of steps is different if one starts
from the black circular node or from the

black square node, even though these nodes
have same degree. The nodes reachable in
one step are colored in dark gray, while the
nodes reachable in two steps are colored in
light gray. This leads to different statistics
of avalanches generated at different nodes,
which are captured by the eigenvector entry
un corresponding to a given node.

The circular and square nodes colored in dark gray are those nodes that could be
excited in the next time step (with probability w) by the black circular and square
node, respectively, and the circular and square light gray nodes are the nodes
that could be excited after two time steps by the black circular and square node,
respectively. While the two black nodes have the same out-degree, 2w, the expected
size and duration of an avalanche starting at the black circular node should be
much larger. The reason is that the eigenvector entry for the black circular node
(0.114) is larger than that for the black square node (0.008).

The example above considered a small network, and the description was qual-
itative. The theory was tested quantitatively by simulating a large number of
avalanches on a large network. First, an Erdős–Rényi random network [39] was
constructed with N = 2 • 103 nodes by assigning a directed link between any
ordered pair of nodes with probability p = 0.01. Then, each link was assigned a
weight A𝑛𝑚 uniformly chosen at random from the interval (0, 1). By multiplying the
resulting matrix by an appropriate number, a matrix with 𝜆 = 0.95 was obtained.
Finally, links were rewired so as to decrease the edge–degree correlations (and thus
decrease 𝜆) as follows: two pairs of links n → m and j → k are chosen at random,
and replaced by two links n → k, j → m only if by doing so the degree–degree
correlations become more negative, that is, if 𝜌 decreases. By repeating this process
multiple times, 𝜌 can be decreased to a low enough value and thus a network
with negative degree–degree correlations can be constructed (see [30, 31] for more
details). Since the resulting network has degree correlations, the approximation
kout

n ∝ un is no longer valid and the prediction P(dn = t) ∝ un can be verified, and it
can be confirmed that, as argued above, it is in general an improvement over using
P(dn = t) ∝ kout

n .
Having constructed a network with degree correlations as described above,

2 × 106 avalanches were simulated, each one starting from a randomly chosen
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17.3 Branching Processes in Complex Networks 381
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Figure 17.7 Fraction of avalanches originat-
ing at node n that last longer than 30 time
steps, fn(30), versus un (see text for details
about the network used). Theory (Eq. 17.38)
predicts fn(30) ∝ un. In the inset, the same

values fn(30) are plotted against the corre-
sponding out-degree kout

n . The eigenvector
entry un does a significantly better job than
out-degree kout

n of predicting the duration of
avalanches originating at node n.

node. For each avalanche, its duration dn and its starting node n were recorded.
Figure 17.7 (from Ref. [24]) shows P(dn > 30) = fn(30) versus un for a random
sample of nodes n. As can be observed, fn(30) is well predicted by un, as the points
lie approximately on a straight line. On the other hand, using the out-degree kout

n to
predict fn(30) gives bad results: the inset shows a plot of fn(30) versus kout

n , and it is
clear that the correlation between these two variables is significantly smaller.

17.3.2
Supercritical Regime

So far, only the case 𝜆 < 1, which results in an exponential decay in the duration
of avalanches, has been discussed. The analysis of this regime was based on the
fact that bn = 1 is a solution of Eq. 17.24 toward which cn(t) approaches. When
𝜆 > 1, there exists another solution to Eq. 17.24 that satisfies bn < 1 (see the
Appendices of [24]) and toward which cn(t) converges as t → ∞. Recalling that bn

is the probability that an avalanche starting at node n is finite, a solution bn < 1
indicates that there is a positive probability of generating an infinite avalanche.
If 𝜆 is interpreted as the branching ratio generalized to complex networks, then
this conclusion is reasonable: if 𝜆 > 1, then, on average, an excited node produces
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382 17 Critical Dynamics in Complex Networks

0.6

0.5
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Subcritical
(λ < 1)

Supercritical
(λ > 1)
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λ

λ D

Figure 17.8 Largest eigenvalue of the matrix
D with entries in Eq. 17.31, 𝜆D, as a func-
tion of the largest eigenvalue of the matrix
A, 𝜆. The two eigenvalues coincide for 𝜆 < 1.

The eigenvalue 𝜆D can be interpreted as the
effective branching ratio of the avalanches
that have a finite duration.

more than one excited node in the next time step and one expects that the number
of excited nodes would increase and ultimately saturate. Since cn(t) describes the
distribution of finite avalanches, Eq. 17.23 and its analysis still hold. Again, this
is valid as long as 𝜆D < 1, since in deriving these results it was assumed that fn(t)
decays to zero with increasing t. It can be shown that, if 𝜆 > 1, then 𝜆D < 1 (see
the Appendices of [24]). The relationship between 𝜆D and 𝜆 is shown graphically
in Figure 17.8 from Ref. [24] for an Erdős–Rényi random network. Note that
when 𝜆 < 1, 𝜆D = 𝜆, so the left half of Figure 17.8 is a straight line with slope 1.
While the interpretation of 𝜆D in the subcritical regime is clear (i.e., 𝜆D = 𝜆 is the
effective branching ratio), it is not immediately clear how to interpret 𝜆D in the
supercritical regime. However, recalling that the distribution of finite avalanches
of duration t decays as 𝜆t

D, 𝜆D can be interpreted as the effective branching ratio
of the finite avalanches. Why does this effective branching ratio decrease even
as the actual branching ratio 𝜆 increases? As 𝜆 increases, finite avalanches have
a shorter duration, because long-duration avalanches are more likely to become
self-sustained. Therefore, the effective branching ratio of these shorter avalanches
is smaller. While this is an intuitive explanation, the mathematical reason is in the
derivations above.

Summarizing the results for the supercritical regime, it was found that:
When 𝜆 > 1, some avalanches have infinite duration, and for large t the probability
of an avalanche starting at node n having finite duration t is proportional to un𝜆

t
D,

where 𝜆D is the largest eigenvalue of the matrix D with entries defined in Eq. 17.31
and u its associated right eigenvector.
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17.3 Branching Processes in Complex Networks 383

17.3.3
Critical Regime

Of particular interest is the critical regime, in which the distribution of avalanche
sizes and durations obeys a power law. So far, the linear analysis of Section 17.3 has
been used to analyze the subcritical and supercritical regimes. The linear approach
was valid since 𝜆D < 1, but when 𝜆 = 1 (and thus 𝜆D = 1), the linear terms that
were kept in Eq. 17.32 seem to imply that fn(t) does not grow or decrease with
t (at least for large t). However, the terms that were neglected will be sufficient
to make fn(t) decrease, albeit at a slower rate. Such behavior is not uncommon
in the analysis of the stability of equilibria of nonlinear systems. When a linear
stability analysis is inconclusive, the equilibrium is said to be marginally stable and
it becomes necessary to determine the stability of the equilibrium by including
higher order terms in the analysis. From this standpoint, the previous analysis is
a linear stability analysis of the equilibria of the dynamical system defined by the
maps Eq. 17.23, and the critical regime corresponds to marginal stability of the
equilibrium bn = 1. As explained above, to determine the behavior of fn(t) for large
times, it is necessary to keep higher order terms in the expansion of Eq. 17.30,
reproduced here for convenience with bn = 1:

1 − fn(t + 1) =
N∏

m=1

[1 − A𝑛𝑚 fm(t)]. (17.43)

Since, as a result of the marginal stability, it is expected that fn(t) decays to zero
at a slower rate than exponentially, it is proposed that the solution fn(t) is given by a
function that varies slowly with t, and that can be extended to continuous values of
t. Under the assumption that fn(t) varies slowly, one can approximate fn(t + 1) by

fn(t + 1) ≈ fn(t) + f ′n (t). (17.44)

Substituting Eq. 17.44 into Eq. 17.43, one obtains

1 − fn(t) − f ′n (t) ≈
N∏

m=1

[1 − A𝑛𝑚 fm(t)]. (17.45)

Assuming fn(t) ≪ 1 and expanding the product to second order, one obtains, after
simplification

fn + f ′n ≈
N∑

m=1

A𝑛𝑚 fm − 1
2

N∑
m=1

∑
k≠m

A𝑛𝑚A𝑛𝑘 fm fk + 𝒪( f 3). (17.46)

The leading order terms as f → 0 are fn on the left-hand side and
∑N

m=1 A𝑛𝑚 fm on
the right-hand side, so for these to balance it is required that

fn =
N∑

m=1

A𝑛𝑚 fm (17.47)

which is the eigenvector equation 𝐟 = A𝐟 . This means that in this limit 𝐟 is
proportional to the eigenvector 𝐮 of A with eigenvalue 𝜆 = 1, implying fn(t) = Kun,
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384 17 Critical Dynamics in Complex Networks

where K is a proportionality constant. Since 𝐮 is independent of time, the constant
of proportionality must be time dependent, fn(t) = K(t)un. This argument was made
for f → 0, since the second-order terms were neglected. For finite f , it is expected
that the actual solution of Eq. 17.46 deviates from fn(t) = K(t)un by a small error, so
a reasonable ansatz for f (t) is

fn(t) = K(t)un∕⟨u⟩ + 𝜀n(t) (17.48)

where 𝜀n is an error term assumed to satisfy 𝜀n ≪ fn(t) and 𝜀′n ≪ f ′n (t). The term⟨u⟩ = ∑N
n=1 un∕N is included to make K(t) independent of the normalization of 𝐮.

Inserting this in Eq. 17.46, neglecting terms of order 𝜀′, 𝜀2, and f 𝜀, and using the
approximation

∑
m

∑
k≠mA𝑛𝑚A𝑛𝑚umuk ≈

∑
mA𝑛𝑚um

∑
kA𝑛𝑚uk = u2

n (valid when there
are many links per node), one obtains

𝜀n + K ′(t)un∕⟨u⟩ = N∑
m=1

A𝑛𝑚𝜀m − 1
2

K2(t)u2
n∕⟨u⟩2. (17.49)

Besides K(t), which has the desired unknown time dependence, the only unknown
in this equation is the error term 𝜀n. To eliminate it from the equation, both
sides of the equation are multiplied by vn, where 𝐯 is the left eigenvector of A
satisfying 𝐯TA = 𝐯T, or

∑N
n=1 A𝑛𝑚vn = vm, and summed over n. The error terms

cancel, resulting in an ordinary differential equation (ODE) for K(t),

K ′(t) = −1
2

⟨vu2⟩⟨𝑣𝑢⟩⟨u⟩K2(t) (17.50)

where the notation ⟨𝑥𝑦⟩ ≡ 1
N

∑
nxnyn is used. Solving this ODE yields

K(t) = 1

𝛽 + 1
2

⟨uv2⟩⟨𝑢𝑣⟩⟨v⟩ t

(17.51)

where 𝛽 is an integration constant. Using fn(t) ≈ K(t)un∕⟨u⟩ and cn(t) = 1 − fn(t),
one obtains

cn(t) ≈ 1 −
un∕⟨u⟩

𝛽 + 1
2

⟨uv2⟩⟨𝑢𝑣⟩⟨v⟩ t

. (17.52)

The probability density function of the duration pn(t), in the continuous time
approximation, is given by pn(t) = c′n(t), which evaluates to

pn(t) ∝
un(

𝛽 + 1
2

⟨uv2⟩⟨𝑢𝑣⟩⟨v⟩ t

)2
. (17.53)

For large t,

pn(t) ∝ unt−2. (17.54)

Therefore, when 𝜆 = 1, the distribution of avalanche durations for large t is a power
law with exponent −2. As before, the dependence of the distribution on the starting
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17.3 Branching Processes in Complex Networks 385

Table 17.1 Distribution of avalanche durations and sizes.

Regime P(dn = t|t < ∞) ∝ P(xn = x|x < ∞) ∝

𝜆 < 1 (subcritical) un𝜆
t unx−3∕2e−x∕x∗

𝜆 = 1 (critical) unt−2 unx−3∕2

𝜆 > 1 (supercritical) un𝜆
t
D unx−3∕2e−x∕x∗

node is through the right eigenvector of A corresponding to 𝜆 = 1. Thus, for the
critical regime, it is found that When 𝜆 = 1, all avalanches have finite duration,
and for large t the probability of an avalanche starting at node n having duration t
is proportional to unt−2, where 𝜆D is the largest eigenvalue of matrix D with entries
defined in Eq. 17.31 and 𝐮 its associated right eigenvector.

This concludes the analysis of the distribution of avalanche durations. An analysis
of the distribution of avalanche sizes can be carried out using similar techniques
(see [24]), with the conclusion that the distribution of avalanche sizes for large
times is a power law with exponent −3∕2 when 𝜆 = 1 and a power law multiplied
by an exponential when 𝜆 ∼ 1: pn(x) ∝ unx−3∕2e−x∕x∗

, where x∗ is a parameter that
depends on the matrix A and the vector [b1, b2, … , bN], and is proportional to
(𝜆D − 1)−2 (for details, see [24]). The results for the distribution of avalanche sizes
and durations are summarized in Table 17.1.

The predictions in the table were compared with numerical simulations of
avalanches in computer-generated networks. First, heterogeneous networks with
N = 105 nodes were generated by creating a sequence of N desired degrees chosen
randomly from a power law degree distribution P(k) ∝ k−3.5 and then connecting
pairs of nodes at random until the degree of each node reached its desired degree
(i.e., the so-called configuration model [25, 29] was used). Then, each nonzero entry
in the resulting unweighted adjacency matrix was replaced by a weight chosen
uniformly at random from (0, 1). After verifying that the resulting network was
irreducible and primitive, its largest eigenvalue was adjusted by multiplying the
matrix by a constant, obtaining the matrix A with largest eigenvalue 𝜆. (This
process was used for mathematical convenience, and it is not suggested that
brain functional networks adjust their topology in this way. The theory above is
independent of how the networks are generated.)

After creating networks as described above with 𝜆 = 0.9, 1, and 1.1, a large
number of avalanches were simulated (106 avalanches in the subcritical networks,
and 2 × 106 avalanches in the critical network) and the starting node n, the duration
dn, and the size xn of each avalanche were recorded. Figure 17.9 (from Ref. [24])
shows histograms of the avalanche durations (top panels) and sizes (bottom panels).
The symbols indicate the number of avalanches with the duration or size in the
horizontal axis, and the dashed lines show the prediction from the theory. Since the
predictions above do not specify the proportionality constant, the vertical position
in of the dashed curves in the plots is arbitrary. In general, the agreement between
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17.4 Discussion 387

the theoretical predictions and the simulations is very good. Additional quantitative
comparisons can be done (see [24]) but are not shown here.

The bottom panels of Figure 17.9 show that it might be experimentally chal-
lenging to distinguish the distributions of finite avalanche sizes near criticality.
These distributions have the form P(xn = x|x < ∞) ∝ unx−3∕2e−x∕x∗

, where x∗ is
proportional to (𝜆D − 1)−2 and, therefore, diverges at 𝜆 = 1 (see [24]). When x∕x∗ is
small enough, the term e−x∕x∗

is close to 1 and the distribution appears to be a power
law with exponent −3∕2. In the examples shown in the figure, the exponential term
would not be noticeable if one were to consider only avalanches of size less than
x = 102, and the truncated distributions would appear critical. Only when the full
range of observed avalanches is included do the distributions show the effect of
the exponential term. While this suggests that it might be hard to pinpoint exactly
the critical point in experiments, it also indicates that the regime in which the
network is effectively critical, in the sense that its behavior is indistinguishable
from the critical state for a wide range of observations, might be relatively large.
For observations restricted to avalanches of size less than 102, the effective range
of criticality extends approximately from at least 𝜆 ∼ 0.9 to ∼ 1.1. It might be
worthwhile to study systematically the robustness of functional aspects such as
dynamic range [9, 32, 33, 35] to variations from criticality.

17.4
Discussion

This chapter began with a discussion of critical branching processes in tree-like
networks. These processes are characterized by an average branching ratio 𝜎 which
characterizes the nature of the branching process as subcritical, critical, or supercrit-
ical if 𝜎 < 1, 𝜎 = 1, or 𝜎 > 1, respectively. Recent models of avalanche propagation
in neural networks [6, 9, 35] have adopted a generalization of the branching ratio
which is the average, over all nodes of the network, of the local branching ratio kout

n ,
the expected number of nodes that node n will excite. Thus, the branching ratio
𝜎 generalizes to the mean degree ⟨k⟩. In this chapter it was shown that networks
with sufficiently complex structure (such as a heterogeneous degree distribution or
degree correlations between different nodes) require further generalization. In this
case, the local branching ratio at node n is better approximated by un, the nth entry
in the right eigenvector of the matrix A. This quantity accounts for the fact that not
all nodes are equally effective at propagating excitations in a network with complex
topology. It captures not only the expected number of nodes excited by node n but
also how many nodes these will excite in turn, and so on. In short, un accounts for
differences in local network structure. Similarly, the correct generalization of the
global branching ratio in this case is given by the largest eigenvalue of the matrix
A, 𝜆. This discussion is summarized in the table below.

If the largest eigenvalue 𝜆 is used in place of 𝜎, the main results from the
theory of classical branching processes remain valid, in particular the power law
form of the distribution of avalanche sizes and durations at criticality, and also the
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388 17 Critical Dynamics in Complex Networks

Table 17.2 Generalization of branching parameters.

– Local branching ratio Global branching ratio

Uniform tree 𝜎 𝜎

Unstructured network kout
n ⟨k⟩

Complex network un 𝜆

value of the exponents in the power laws, which have been observed in various
experiments of neuronal avalanches [6–13]. In this respect, there does not seem
to be a difference between classical branching processes and those in networks.
However, it was shown that various network properties can modify the largest
eigenvalue and therefore the properties of avalanches of networks. In addition, it is
possible to find the statistics of avalanches starting at a particular node, and these
statistics can be related to the eigenvector entry of that particular node.

There were some limitations to the theory presented in this chapter. First, it
was assumed that the network is locally tree-like. While many networks found in
practice can be approximately described as locally tree-like, and a large class of
computer-generated networks are also locally tree-like, this approximation might
break down when the network has a significant number of short loops, as happens,
for example, in networks where nodes are arranged spatially and have a strong
local coupling. While it might be possible to extend these results to remove the
locally tree-like assumption (which would most certainly modify the criterion for
criticality), this is an open problem and left for future research. Another assumption
implicit in the theory was that the largest eigenvalue 𝜆 is well separated from the
next largest magnitude of the rest of the eigenvalues. While the theory, as presented
above, does not rely on this fact since it was assumed that t → ∞, in practice one
observes avalanches up to some large but finite duration. For the approximations
to be valid for finite but large t (in particular, to obtain Eq. 17.36 from Eq. 17.35) it is
required that the separation between 𝜆 and the magnitude of the other eigenvalues
is not small. This issue has been studied in [40] with the conclusion that this
separation is typically very large, except possibly for cases where the network has
strong community structure, that is, when it can be divided into groups of nodes
such that connections between nodes in the same group are more likely than
connections between nodes in different groups. While the analysis in this chapter
could perhaps be extended to account for multiple communities, here the simplest
case of one community was considered. Finally, the effect of inhibition is typically
not included explicitly in branching process models of avalanche propagation,
and it was not included in this chapter. It is assumed that decreased inhibition
(excitation) results effectively in increased (decreased) probabilities of excitation
transmission, and therefore in larger (smaller) 𝜆.

The main motivation for the analysis above was to establish a firmer theoretical
ground for the observations of criticality in neuronal avalanches in functional brain
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17.4 Discussion 389

networks. Typically, the experimentally observed critical exponents are compared
with those predicted by branching processes on tree networks. However, it is known
that anatomical and functional brain networks often have nontrivial and recurrent
structure [15–19]. The analysis presented in this chapter offers an explanation for
why the experimentally observed critical exponents match with classical branching
process theory predictions in spite of such fundamental differences in the presumed
underlying network topology. The analysis extends the class of networks for which
one can confidently claim that the observed exponents are predicted theoretically.
However, the analysis also offers a warning when interpreting the underlying
causes of criticality in brain networks. For example, classical theory would suggest
that an experimentally observed change from critical to supercritical dynamics is
caused by a change in mean degree in the network. This is potentially misleading;
the same change in dynamics could also result from changes in network topology,
such as correlations, that leave the mean degree fixed.

Beyond fundamental understanding of existing observations, this chapter offers
strategies for controlling avalanche dynamics in complex networks. For example,
to prevent large avalanches, disabling the nodes that most contribute to their
propagation would be desired. As argued in this chapter, these nodes are those
with the largest eigenvector entry un, rather than those with the largest out-degree
kout

n . The two quantities can be very different, and if one used the out-degree to
identify the node that produced the longest avalanches in the example used in
Figure 17.7, one would identify the wrong node, as the inset shows. Since there has
been tremendous progress on the identification and mapping of functional brain
networks at various levels [15–19], it is essential to understand the propagation of
activity in a network with a specific nontrivial structure. If advances in experimental
techniques allow identification of neurons or groups of neurons with large un,
these would likely be good targets to remove when attempting to prevent epileptic
seizures. Finally, applications of this work are not restricted to critical brain
dynamics, but may include other areas where branching processes in networks
occur, such as power grid failure cascades [41] and epidemic propagation on
networks [42–44], among others.

A power law distribution of avalanche sizes and durations is perhaps the most
distinctive characteristic of critical brain dynamics, but is not the reason for
criticality. As in many biological systems, the reason is likely tied to function.
Critical dynamics has been observed to result in optimized information processing
in neuronal networks [9, 10, 45]. An important example is the maximization of
dynamic range at criticality, which was predicted for random networks in [35] and
observed experimentally in [9]. Recent work by the authors [32, 33] considered
the effect of complex network topology on the dynamic range, and found that,
consistent with the results in this chapter, it is maximized when 𝜆 = 1. As more
consequences of critical dynamics for information processing in networks are
uncovered, care should be taken to understand the effect of network structure on
these processes.

The authors acknowledge useful discussions with Edward Ott, Marshall Car-
penter, and Dietmar Plenz. JGR acknowledges support from NSF under Grant
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