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A class of fast algorithms is introduced for the evaluation of discrete sums
that utilizes projections on a multiresolution analysis. The discrete sums un-
der consideration arise, for example, in the study of physical systems by means
of particle simulations requiring long-range potentials. These include gravi-
tational and electrostatic models, plasma physics, atmospheric physics, and
vortex methods in fluid dynamics. These numerical models of particle inter-
actions require the application of dense matrices which, done directly, requires
O(N?) arithmetic operations. The algorithms we develop accomplish this task
to within accuracy € in O(N) arithmetic operations.

There are two types of algorithms used today for the fast computation of
discrete sums, namely, the Method of Local Corrections and the Fast Multipole
Method. Our approach is related to both, but has its own unique features. We
describe implementations in one and two dimensions, and present theoretical
foundations for algorithms in higher dimensions.

In our approach to discrete summation problems, we construct explicit
representations of singular operators on subspaces of the multiresolution anal-
ysis. These representations provide a definition for the regularization of such
operators, as well as a practical algorithm for their computation. We present a
new multiresolution approach to the regularization of singular operators, and
show that our method coincides with the classical method, where the classical
method is applicable.
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Chapter 1

Introduction

1.1 Introductory Remarks

The study of physical systems by means of particle simulations is an important
computational tool in many fields. Examples include plasma physics, atmo-
spheric physics, N-body gravitational problems, and vortex methods in fluid
dynamics. In most of these particle models the evaluation of discrete sums
describing the pairwise interactions between particles occupies a central role,
and is often the most expensive part of the computation. Discrete sums may
also be encountered in the evaluation of integral equations obtained in the so-
lution of boundary value problems. In any event, numerical models require the
application of dense matrices which, done directly, requires an amount of work
proportional to N? for an N particle system (or N point discretization). To
overcome this computational hurdle there is a need for fast O(/N) algorithms.

In this thesis, we introduce a class of fast algorithms for the computation
of discrete sums using projections on a multiresolution analysis. (A brief survey
of existing algorithms is presented below in Section 1.3.) The algorithms are
designed to compute

9(Tm) = g K(Zm — Yn) f(yn), 1<m<M (1.1)

for real or complex numbers f and g, in a number of operations proportional
to (M + N). In the context of particle simulations the numbers f(y,) and
9(x.m,), respectively, may be interpreted as the charge carried by an individual
particle positioned at y,, and the value of the potential field generated by the
entire ensemble of N particles, sampled at the point z,,. In case z,, is also the
location of a particle we must exclude the self-interaction from the sum (which
would in general be infinite), hence the requirement x,, # y,.



As a special case of (1.1) we consider the sums

i m = Tn) [ (Tn) 1<m<N (1.2)

3:
gi

where the N sampling locations coincide with the positions of the N particles.
Indeed, there is no loss of generality in taking (1.2) as our model problem, and
this we do from now on. The particle locations {x, }_, are points in R%, where
d =1, 2,3. Numerical results for test problems in one and two dimensions are
presented below.

We develop algorithms for kernels that might be described loosely as be-
ing of potential-type. We require that interaction between particles depends
only on the distance separating them, which implies that the kernel must be
convolutional, i.e. K(z,y) = K(z — y). In addition, we allow the kernel to
be singular on the diagonal x = y, but require it to be non-oscillatory and
smooth away from the diagonal. Simple examples are K(z —y) = 1/(z — y)
and K(z —y) = 1/|z —y|.

We should point out that although the FFT diagonalizes a convolution,
this method cannot be used directly for evaluation of sums when the kernel is
singular. For such kernels, a prohibitively large number of points is needed for
discretization in order to evaluate (1.2) on an equispaced grid, especially for
non-uniform particle distributions.

In [4] algorithms have been developed for evaluating

K(xm, xn) f(z2), 1<m<N (1.3)

||M2

when this sum may be viewed as a discretization of an integral operator

o0
9(@) = [ K(x,v)f(v)dy. (14)
Our task here is to start with a sum in (1.2) that may not involve a summable
kernel, and such that interpretation as a discretization of a convergent integral
is not valid. By transferring the problem to a multiresolution analysis we
effectively regularize a singular kernel. The corresponding operator becomes
nonsingular when restricted to the subspaces of the multiresolution analysis.

Our approach offers some advantages over existing algorithms. For exam-
ple, we offer greater flexibility, since changing the algorithm to accommodate a
new kernel requires only trivial modifications, and the ability to handle a wider
class of kernels. In contrast to previous algorithms, our approach transfers the
computation into a basis. For this reason, it is more easily combined with
pseudo-spectral or wavelet-type PDE solvers.
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In our approach to discrete summation problems, we construct explicit
representations of singular operators on subspaces of the multiresolution anal-
ysis. These representations provide a definition for the regularization of such
operators, as well as a practical algorithm for their computation. We present a
new multiresolution approach to the regularization of singular operators, and
show that our method coincides with the classical method, where the classical
method is applicable.

1.2 Heuristic Considerations

By transferring the problem to a multiresolution analysis we are projecting onto
a basis consisting of translations and dilations of a single function ¢(z), called
a “scaling function.” This basis provides high order approximation for smooth
kernels. Of considerable importance as well is the fact that the scaling function
may be chosen to have compact support. This means that approximation errors
due to singularities in the kernel are localized, and their affect is not felt by basis
functions whose supports lie outside a small neighborhood of the singularity.
This allows us to split the kernel into the sum of a low frequency, or smooth
part, and a high frequency, or singular part. We note that all existing fast
summation algorithms make use of this splitting, and differ only in the manner
in which it is done.

We therefore express the original kernel K in the form

The low frequency part Kz accounts for long range, or “far-field” interactions.
In our approach, this part of the kernel is obtained by projecting the kernel
onto an appropriate subspace of the multiresolution analysis. Thus, we have

where P; denotes the projector onto a subspace of the multiresolution analysis.
The integer j is a scale parameter. The projection is a smoothed version
of the original kernel, which can be applied to a vector efficiently. Current
implementations of our algorithm use the FFT to accomplish this, but other
methods are available.

The high fequency part Kpgp is defined by the difference

It will be shown below that for any positive € we have an error estimate of the
form '
K(z—y)—Tj(z,y)| <e, if [x—y|>2%6 (1.8)

3



for some positive 0. It follows from (1.7) that |Kgp(z,y)| decays rapidly as
|z — y| increases. Therefore, this singular part of the kernel influences only the
short range, or local interactions, and is represented by a banded matrix which
can be applied to a vector in O(N) operations.

1.3 A Brief Survey of Existing Algorithms

All fast algorithms for evaluation of (1.2) make use of the splitting (1.5) in one
form or another. For example, in [21] we find the following statements, “Ewald
summation separates the Green function for a cube into a high frequency lo-
calized part and a rapidly converging Fourier series”, and “Our methods use
Ewald summation to split the potential into a high frequency localized part
and a low frequency part with separated variables.” (Ewald summation [12]
refers to the use of two different series expansions for the Green function of
the Laplacian.) With the obvious modification, these statements apply equally
well to the current work. We should point out, however, that Ewald sum-
mation is specific to the Laplacian operator, although a similar ansatz could
conceivably be applied in other cases. Once the splitting has been achieved,
the author employs a method appropriate to each part for evaluation. A fast
Gauss transform is used to evaluate the high frequency part, while an early
version of V. Rohklin’s non-equidistant fast Fourier transform [10] is used to
evaluate the low frequency part. It is interesting to note that both of these
fast transforms are based on the Fast Multipole Method [16].

The most competitive algorithm in terms of CPU requirements that has
yet appeared for fast summation problems is the Fast Multipole Method, or
FMM. In this approach, a heirarchy of boxes is first constructed that refines
the computational domain into smaller and smaller regions. The construction
is adaptive in that at each level, only those boxes that contain a number of
particles greater than a fixed parameter are subdivided. The potential due to
the particles contained within each box is then represented by a single multipole
expansion about the center of the box. The expansion for a box on a coarse
scale is obtained in an efficient manner by merging the expansions for fine scale
boxes contained within it (its “children”). Far field (low frequency) interaction
between pairs of well-separated boxes on the same scale is computed as follows:
the multipole expansion for a given box is shifted to the center of a second
box, where it is added to the existing multipole expansion for that box. The
contribution from the first box can then be distributed to each “child” of the
second box, then to each of its children, and so on down the tree to the boxes
on the finest scale. Local interactions (high frequency) are simply computed
directly.



Implicit in the FMM is the simple splitting K = Kyp + Kgyp, where

_ 0, lz—y[ <6 _ ) Kl@-y), [z—y[<0
KLF‘{K(x—w, ooyl >s M KHF—{ 0, |r-yl>0

The low frequency part is applied by a clever use of multipole expansions in a
divide and conquer strategy, taking advantage of the smoothness of the kernel
on regions removed from the origin to truncate the expansions after a few terms.
The high frequency part is applied directly. Despite its apparent simplicity,
the algorithm is not so straightforward to implement. The explicit form of
the multipole expansions and translation operators, which are responsible for
shifting the expansions from one box center to another, must be worked out
anew for each new kernel. However, when properly implemented, the FMM
provides a very efficient O (V) algorithm.

The Method of Local Corrections was introduced in [1] as a vortex method
for solving problems in fluid mechanics, though the main ideas are certainly
relevant in a more general context. This method is designed to approximate
the velocity field due to a distribution of “vortex blobs” in a fluid, and to eval-
uate this field at the center of each blob. A vortex blob is a radially symmetric
function, usually with compact support, that approximates a point vortex. In
[1] it is observed that “...the difference between the velocity field due to a point
vortex and a vortex blob located at the same point in space becomes very small
as one moves away from the center of the vortices.” (This statement should
be compared to the error estimate (1.8).) The approximate velocity is first
obtained on an equispaced grid via a fast Poisson solver (FFT), and then in-
terpolated to the centers of the vortices. The approximation is then corrected
locally, for all vortices that lie in close proximity to other vortices. The interpo-
lation is accomplished by the use of a complex-valued interpolating polynomial,
made possible by the fact that the x— and y— components of velocity are the
real and imaginary parts of a harmonic function. This is a special feature of
vortex methods, and is not likely to generalize to other applications. The cor-
rection step in this method is essentially equivalent to (1.7), and the splitting
of the kernel is achieved by means analogous to that described in Section 1.2.
However, in approximating the velocity field, a smoothed version of the original
operator is not constructed, and a finite difference method is employed instead.

In [11], a class of algorithms for particle simulations involving Poisson’s
equation is developed. These algorithms are named PPPM by the authors,
which stands for “particle-particle, particle-mesh.” The name refers to the by
now familiar splitting of the summation into low and high frequency contri-
butions. The low frequency part is evaluated on an equispaced grid, or mesh.
The values assigned to the mesh points are obtained from the charges on the
particles by use of a “charge-assignment function.” This is a piecewise con-
stant, linear, or quadratic B-spline, centered at the mesh point. The value
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assigned to the mesh point is equal to the sum of the values of the assignment
function at each particle location, for all particle locations that lie within the
support of the assignment function. Once the mesh values have been obtained,
the authors solve a finite difference approximation to the Poisson equation on
the mesh using a fast Poisson solver, and then interpolate the result back to
the particle locations using the charge assignment function. This phase of the
algorithm is called “particle-mesh.”

The result of the PM step must be corrected to account for the high fre-
quency part of the kernel, and this is done in a manner similar to the Method
of Local Corrections. It appears that the principle difference between algo-
rithms described in [1] and those in [11] is that in the former, extensive use is
made of the fact that the velocity field induced by a point vortex is harmonic
away from the source, whereas this feature does not appear in the latter, where
applications to vortex methods were not considered.

1.4 Organization of the Thesis

This thesis is organized as follows. In Chapter(2) we describe the mathemati-
cal structure of a multiresolution analysis. In an attempt to present our thesis
in a reasonably self-contained format, we have included many well known re-
sults. However, we also present material that does not seem to have appeared
previously.

Once the foundation has been established, we proceed in Chapter(3) to
describe the one-dimensional version of our algorithm. The generalization to
higher dimensions is fairly straightforward, the only additional tool utilized be-
ing singular value decomposition, and this is described in Chapter(4). In addi-
tion, numerical examples in one and two dimensions are presented in Chapters
(3) and (4), respectively.

In Chapter(5) we describe a procedure for constructing representations of
singular kernels. This representation provides a definition for the regularization
of such kernels, as well as a practical algorithm for computation. It is a unique
feature of our approach to discrete summation problems that we construct
smooth and explicit representations for a wide class of singular kernels, and we
describe this process in some detail.



Chapter 2

Multiresolution Analysis

2.1 Definition and Basic Properties

We first make some preliminary comments. Throughout this thesis, we use the
notation f to refer to the Fourier transform of a function f,

for= [ f@de, @) =g [ @ de.

—oQ

for a function f € L?>(R%). We use (-,-) to refer to the usual inner product on
L*(RY),

(f,9) = /_O:O f(z)g(z) dx .

A superscript and a subscript on a function will denote, respectively, a dilation

and a translation, _ _ .
@) =279"f27z — k),

where j € Z and k € Z*. This will sometimes also be written as f;(z). The
normalization factor 2-%/2 insures that || fZ|| = || f|| in the usual L?>(R%) norm,
IFI1P = (f, f)-

We use the shorthand MRA to refer to a multiresolution analysis, or
multiresolution approximation, of L?(R?). This consists of a nested sequence
of subspaces (see Definition(2.1.1) below), ordered as follows,

---CVQCV1CV0CV_1CV_2C---.

With this choice of notation, the sequence increases as the subscript j decreases.
To further emphasize this point, we note that

o o

NVi=Jimv;, V= limy,.

—00



In what follows, we make repeated use of Poisson’s summation formula,

i Fk)e™t = i f(&+21m). (2.1)

k=—o0 l=—

There exist many proofs of this well-known result (see e.g. [18] or [22]).

The following definition is by now standard, and is borrowed from [20,
p-21].

Definition 2.1.1 A multiresolution approximation of L2(Rd) 1S an increasing
sequence Vj,7 € Z of closed linear subspaces of LQ(Rd) with the following
properties:

ﬁ V; = {0}, Ej V; is dense in L*(R%); (2.2)
for all f € L*(RY) and all j € Z,
flz) €V, <= f(2z) € Vj_1; (2.3)
for all f € L*(R%) and all k € Z°,
fz) € Vo = f(z —k) € Vo; (2:4)
there exists a function, g(z) € Vy, such that the sequence
glr—Fk), kez* (2.5)
s a Riesz basis for the space Vj.

The sequence (2.5) is a Riesz basis if it spans V;, and there exist two
constants, co > ¢; > 0, such that for all sequences of scalars {a;} we have

2
<e)y, lag|? .
k

ey lag|® <
k

zk:akg(l"— k)

The function g(z) is normalized so that [g(z)dz = 1. It follows that the
sequence gi(x), k € Z% is a Riesz basis for the subspace Vj. The function g is
called a “scaling function”. In this thesis, we consider only real-valued scaling
functions. A given MRA may have several scaling functions.

The subspace V; may be viewed as corresponding to an equispaced grid,
after the manner of spaces of piecewise polynomial splines, where the stepsize is
27. The value assigned to the node 2k, k € Z% is the coefficient corresponding
to the basis function gj. Note that the grid spacing becomes finer as the scale
parameter 7 becomes more negative.



The following theorem shows that every MRA possesses an orthonormal
basis which, furthermore, has the same structure as the Riesz basis (2.5). Equa-
tion (2.7) is a recipe for constructing the “canonical” orthonormal basis from
a given Riesz basis. This construction will be used below (see Section 2.4.1) in
connection with Riesz bases of B-splines. The theorem and its proof may be
found in [20, pp.26-T7].

Theorem 2.1.1 Let V;,j € Z be a multiresolution approrimation of L?(R%).
Then there exist two constants, ca > ¢1 > 0, such that for almost all £ € R¢ we
have

1/2
c < (Z lg(& + 2k7r\2> <ecy. (2.6)

kez?

Further, if ¢ € L*(RY) is defined by

—-1/2
3(€) = §(¢) (Z (€ + 2/m|2> ; (2.7)

kez?

then ¢(x — k), k € Z% is an orthonormal basis for Vy. Finally, let f € Vy be
a function such that the sequence f(x — k), k € Z¢ is orthonormal. Then the
sequence is an orthonormal basis for Vi and we have f(&) = 0(5)(/3(5), where
6(¢) EdC’OO(Rd), |0(§)| = 1 almost everywhere, and 6(§ + 2kn) = 6(E), for each
keZ"

It follows that the sequence ¢/ (z), k € Z? is an orthonormal basis for the
subspace V;. We generally use the lower-case ¢ to refer to the orthonormal
scaling function for the multiresolution analysis under discussion.

2.1.1 Tensor Products of One-Dimensional MR As

The simplest method for constructing an MRA for L?(R?) is to form the tensor
product of an MRA for L?(R). For example, if the sequence ¢(x — k), k € Z is
a basis for the subspace V; of an MRA for L?(R), then we may take as a basis
for the subspace Vj of an MRA for L?(R?) the sequence

b —k)=d(x1—ki) - dwa—ka), k= (ki,... kq)eZ

where = (x1,...,24). As this construction is employed here, we restrict our
attention to development of the one-dimensional theory for the remainder of
this chapter.

However, the tensor product construction, though simple, does not ad-
dress the issue of the speed of the resulting algorithms. It is possible that, in
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the future, other approaches will be found that lead to more efficient algorithms
in higher dimensions.

At the present time, in order to achieve true separation of variables in two
dimensions, we use a singular value decomposition of the coefficient matrix, but
discussion of these details must be delayed until Chapter(4).

2.1.2 The Two-Scale Difference Equation

It is a consequence of the nesting of the subspaces of the multiresolution anal-
ysis, in particular V5 C V_1, that the scaling function ¢(z) may be written as
a linear combination of the basis functions in the next finer subspace. Thus,
we have

$x) =V2Y hpp(2z — k). (2.8)

Equation (2.8) is known as the “two-scale difference equation”. In this thesis,
we assume that the coefficients {hy} are real.
Taking the Fourier transform on both sides of (2.8), we obtain

B(&) = mo(£/2)0(£/2), (2.9)
where

mo(€) = % ; hye™*¢ . (2.10)

Equation (2.9) is the form taken by the two-scale difference equation in the
frequency domain.

Orthonormality of the sequence ¢(x — k), k € Z is equivalent to the fol-
lowing condition

[mo(€)[* + [mo (€ +m)[* =1 (2.11)

on the function mq(&) [7].

Since mo(0) = 1 (as is implied by (2.9) since ¢(0) # 0), it follows from
(2.11) that mg(m) = 0. Since my has a zero at £ = m, it is possible to write

mo(©) = (155 Fi©

where F'is a 2m-periodic function. We will see below that the number of zeroes
that my has at 7 is closely related to the order of approximation obtainable
in a given MRA (see Section 2.2). In view of this fact it should come as no
surprise that mg ordinarily has a zero of multiplicity greater than one at 7 and
so, without loss of generality, we assume that my has the following form,

mi© = (15 ree 212)

where F is a 27-periodic function, F' € L%([0, 27], and F(m) # 0.

10



2.1.3 The Autocorrelation of the Scaling Function

The autocorrelation of the orthonormal scaling function is an important func-
tion in its own right, particularly in regard to the approximation of kernels, a
topic that we take up in Section 2.3. We denote this function by the upper-case
®, where

®(z) = /_ o(z +y)d(y) dy. (2.13)
We first note that ® is interpolating in the following sense,
1 ;n=0
®(n) —{ 0 o (2.14)

forn € Z.

The autocorrelation also satisfies a two-scale difference equation. This is
most easily seen by examining the Fourier transform. Since

o) = 1), (2.15)
it follows from (2.9) that
b(&) = My(£/2)(¢/2), (2.16)
where
Mo(€) = [mo(§)[*- (2.17)

It follows immediately from (2.11) that

Mo(&) + Moy(§+m)=1. (2.18)

The following proposition (see e.g. [2]) establishes an important property
of the function ®(z), namely that it has a high number of vanishing moments.
This property is useful in that it leads to a one-point quadrature formula for
evaluating expressions of the form [ K (z)®(x — k) dzx, for functions K that are
sufficiently smooth on the support of ®(x — k) (cf. Proposition(5.3.2) below.)

Proposition 2.1.1 In an orthonormal system, the autocorrelation of the scal-
g function has vanishing moments,

o _J 1 ,m=0
/_oo:r @(x)dz-{ 0 M (2.19)

for 0 <m < 2M — 1, where M 1is the multiplicity of the zero of mg at .

11



Proof: The moments of ® are given in terms of the Fourier transform by the
formula

/ T d(x) dr = (=)™ (0)

—0o0

where @Em) denotes the mth derivative of ®. From (2.15) it follows that ®(0) =
1 since ¢(0) = 1. By differentiating both sides of (2.16) we obtain

26 (26) = 3 (’;‘) &) (€)M (6).

n=0

When & = 0, we have

3™ (0) = 3 <m> S (0) M§™ (0) . (2.20)
Differentiating (2.18), we obtain
MM©0) = -M"(r), n>o0.
The function M, has a zero of multiplicity 2M at & = m, due to the explicit

form given by (2.17) and (2.12). Thus we have M{™(0) = 0for 1 < n < 2M —1,
and using this fact in (2.20), we obtain (2.19). O

A well-known formula that relates the moments of the autocorrelation to
the moments of the scaling function is

Lemma 2.1.1 Let y,, and M,, denote the mth moment of the scaling function
and its autocorrelation, respectively. Then we have the formula

Mo, Z( ) )" o o - (2.21)

Proof:
M, = / 2B (z) d
_ / / 8(z +y)é(y) dy dz
= [ ot
= ZB(?:)( 1)”/ "(x dx/y”cb )dy,
which proves the lemma. =

12



In order to compute the moments of the scaling function, it is not neces-

sary to evaluate the defining integral,

P, = /oo 2™ ¢(x) dx .

—0o0
Instead, we have the following recursive formula
Mo = 1 ;

1 & (m
P = z<>yp_, m>1

where

I"hy.

vV, =

1
v

(2.22)

The numbers {v,,} are the (normalized) moments of the sequence {h;}, and are

easily computed when {h;} is of finite length.

The formula (2.22) is well-known and is derived as follows.

two-scale difference equation (2.8), we have

J /xmgb(x)dx
- QZhl/a:¢2x—l)d

= T (557) e

_ 21,1 ( >\/_Zl"h,l/ () do

>
55 (M

from which (2.22) easily follows.

Using the

We now consider the coefficients of the two-scale difference equation for

®. Using (2.10) we have
Mo(8) ( ) mo(€)

; hke \/_ Z hle_ZlE
Z amezm

Sl

A~ =

where
Ay = 2 z hth_m .
l

13
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Thus, the two-scale difference equation for & may be expressed in terms of the
variable = as

ﬂ@zégmﬂ@wwm. (2.25)

Setting z =n, n € Z we have
1
®(n) = 5 > a,®(2n —m).

The interpolating property (2.14) implies that as, = 20,9, where ¢ denotes
the Kronecker delta. Using (2.24) it is easy to show that a_,, = a,,, and we
use these observations to write

B(z) = B(22) + % 5 o1 [0027 — 2m+1) + 025~ 142m)] . (226)

If ® is compactly supported, as it must be if ¢ has compact support, then we
understand that only finitely many of the coefficients in (2.26) are non-zero.

2.1.4 Examples

Perhaps the simplest example of an MRA is one whose elements are piece-
wise constant on dyadic intervals. The scaling function for this MRA is the
characteristic function of the interval [0, 1),

1, 0<z<1
o) = { 0, otherwise. (2.27)

1S

Be) = [ edn= -

_ (&/f/; 1) <ezf/22 + 1)
= B(£/2)mo(£/2) -

From this expression, we can read off the trigonometric polynomial my, i.e.

1+e

which implies that hg = h; = 1/4/2, and h; = 0 otherwise. Furthermore, from
the explicit form of mg(&), we see that this function has a single zero at £ = 7.

14



The two-scale difference equation satisfied by (2.27) is

¢(z) = ¢(22) + ¢(22 — 1),
The autocorrelation of (2.27) is

14z, -1<z<0
S(z)=< 1—z, 0<z<l1
0, otherwise.

It is easily verified that

o o0
/ O(z)der =1, / z®(z)dr =0.
—0oQ0 —0o0

Example(1) is the lowest order member of both families of scaling func-
tions mentioned in this thesis, namely the central B-splines and the orthonor-
mal scaling functions with compact support constructed by Daubechies (see [7]
or [8]). Spline spaces will be described in more detail in Section 2.4. Daubechies
scaling functions satisfy the two-scale difference equation

2M -1 2M -1

o(x) =v2 Y ho(2x—1),  where Y hI=1.
=0 =0

This scaling function provides an orthonormal basis for the subspaces of an
MRA with M vanishing moments, for M = 1,2,... , where M is the multiplic-
ity of the zero at & = 7 in (2.12). The support of ¢ is the interval [0,2M — 1].
The Haar function described above corresponds to M = 1. The autocorrelation
® satisfies the two-scale difference equation

O(z) = ¢(2z) + % agm-1 [P(22 —2m + 1) + (22 — 1+ 2m)] ,  (2.28)

m=1

and is supported on the interval [1 —2M,2M — 1]. The coefficients agy,—1,1 <
m < M that appear in (2.28) are rational, and we have the following formula
from [2],

(—1)m-1 (M -1) 1?
(@m = Dasm—1 = Gr =i 4 m = 1] l(M - 1)!4M—11 - (22)
For example, when M = 2, we have
O(z) =P(22) + % (@22 — 1) + (22 + 1)]
_ % (®(20 — 3) + (22 + 3)] . (2.30)

15



These scaling functions possess good approximation properties, but are
difficult to evaluate pointwise. One method that is available for this pur-
pose is a recursion based on the two-scale difference equation. Since ¢(27k) =
V2P by (271 k — 1), it follows that the values at dyadic rationals 27k, j <
0, may be calculated if the values at all rationals of the form 27!k are known.
For j = 0, the values ¢(1),...,6(2M — 2) may be obtained by solving a
small eigenvalue problem. Since ¢ is continuous if M > 1, we have ¢(0) =
é(2M —1) =0.

After tabulating ¢(x) on a sufficiently fine grid, values at intermediate
points may be approximated by linear interpolation. The degree of differen-
tiability of these scaling functions increases linearly, and slowly, with M. For
values of M less than about ten or twelve, ¢(x) is no more than twice differen-
tiable. For this reason, it is not advisable to use a higher order interpolating
polynomial.

2.2 Multiresolution Approximation of Functions

In this section we consider the representation of functions in an MRA. It will be
shown that for smooth functions, arbitrarily high order of approximation can
be attained with error estimate that depends only on the high order derivatives.

The multiplicity of the zero at £ = 7 of the function my(§) (that appears
in the two-scale difference equation (2.9)) is the relevant parameter, and de-
termines the order of approximation of a given MRA. It is customary to refer
to this parameter as the number of vanishing moments, and this we do from
now on. The reason for this is that when the multiplicity of the zero is M, the
associated wavelet will have exactly M vanishing moments. Every MRA must
have at least one vanishing moment.

We assume without loss of generality that the scaling function ¢ either
has compact support, or has exponential decay at infinity. In the second case
¢(z) satisfies an inequality of the form

o(x)| < Ae @® zeR (2.31)

for positive constants A and .
An important result concerning approximation is contained in the follow-
ing proposition.

Proposition 2.2.1 Let ¢ be a scaling function in an MRA with M wvanish-
ing moments. Let u,, denote the mth moment of the scaling function, p,, =
[Zoox™@(x) dx. Then the following identities are satisfied,

o0

> (@ — k)" (@ — k) = i (2.32)

—00

16



for0<m<M-—1.

Due to our assumption of compact support or exponential decay at infinity,
the numbers p,, are well-defined for every integer m > 0. Before giving the
proof of the proposition, we state and prove a series of lemmas.

Lemma 2.2.1 If ¢(x) is compactly supported or satisfies (2.31), then for each
non-negative integer m there exists a constant C,, such that

o0

> |z — k|| — k)| < Cn (2.33)

k=—o0

for every real x, and the sum converges uniformly.

Proof: First assume that ¢(x) is compactly supported. Now

o0

N
> |z kMgl — k)| = lim 3 |z —k["[g(z — k)],
k=—N

k=—o0

provided that this limit exists. If the limit exists, then the limit function must
be 1-periodic, so it is sufficient to consider 0 < z < 1. Let [a, b] be the smallest
closed interval that contains the support of ¢(x). Then ¢p(x—k) =0ifz—k > b
or z — k < a, so it follows that

N k1
lim S ="l B = 3 o — ko — ).
k=—N k=Fko
where kg = —|b|, k1 = —|a], and |-| denotes the greatest integer less than

or equal to (-). Thus the sequence of partial sums converges for each z, and
as the sum involves only a finite number of terms it converges uniformly. For
0 <z <1, wehave |k| < |z —k| <|k|+1, so that

kl kl
Y.z —kMd(z — k) < gl D 1+ [E)™, (2.34)
k=ko k=ko

where ||@||lc = sup|d(z)],a < x < b. It follows that the sum is uniformly
bounded by the constant on the right-hand side of (2.34).

Next assume that ¢(z) has exponential decay at infinity, i.e. |p(x)| <
Ae 4l for some positive constants A and a. Now

o0

N
> o= o — k) = lim 3" |z — k"¢ — k)],
k=—N

k=—o00

17



provided that this limit exists, and as before it is sufficient to consider 0 < z <
1. Then |k| < |z — k| < |k| + 1 implies that

[z — k™ [¢(a — k)| < Alz — k["e " F < AL+ [k|)"e M.
Thus,
N N
> | —k["ez— k)| <A 3T (1+[k])memH, (2.35)
k=—N

k=—N

and as N — oo the sequence of partial sums on the right converges for any
non-negative integer m. It follows that the sequence of partial sums on the
left-hand side of (2.35) converges uniformly for each z, and the limit function
is uniformly bounded by the constant A Y% (1 + |k|)™e~2/*l, O

Lemma 2.2.2 If ¢(z) is compactly supported or satisfies (2.31), then z™¢(z)
is in L} (R) for each non-negative integer m, and we have the estimate

/Z 2|™|6(z)| dz < Ci, (2.36)

where the constants in (2.33) and (2.36) are identical.

Proof: Using (2.33), and the uniform convergence established by Lemma(2.2.1),
we have

T ame@)dr = Y [ lalme()] do
/. J

- k=—o0

= [ % le—krlota— B o

k=—00
1
< Cp [ dr,
0

which proves the lemma. O

Lemma 2.2.3 If ¢(x) is compactly supported or satisfies (2.81), then for each
non-negative integer m we have the identity

o0

S @ k)mos—k) = (=) 3 M @me . (2.37)

k=—00 [=—

Proof: Let m be a non-negative integer. By Lemma(2.2.2), 2™¢(z) isin L'(R),
hence we are allowed to differentiate the Fourier transform ¢(£) m times. Thus
we have

()" () = [ e (a) da,

—0o0
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where ¢ (¢) = (d/d€)™¢(&). Now
(_i)mé(m) (2l7T) — Z /kk+1 eZm’lzxm¢($) dr

= i /01 > (1 — k)" ¢(z — k) d .

k=—o0

As the series > |z — k|™|¢(z — k)| converges uniformly by Lemma(2.2.1), so
therefore does the series > _(z — k)™ ¢(z — k). Accordingly, we may reverse
the order of integration and summation to obtain

o0

A 1 .

(=3)™ 3™ (2Ur) = / iz 3 (z— k)"p(z — k) dx. (2.38)
0 k=—00

The inequality (2.33) shows that the series > (z—k)™¢(z—k) is in L'([0, 1]

and the coefficients of its Fourier series are given by (2.38). The identity (2.3

now follows.

~—

D\]

Lemma 2.2.4 Let ¢ be a scaling function in an MRA with M wvanishing mo-
ments. Then for 0 < m < M — 1 we have

$ (21 = 0 (2.39)

for all non-zero integers [.

Proof: The proof is by induction. First take m = 0. Let [ be a non-zero
integer. Then | can be expressed in the form [ = 27k, where j > 0 and k is an
odd integer. Using the two-scale difference equation (2.9) we have

~

o2lm) = o(lm)my(lm)

(27km)Ymo(27km) .

<o o

We recall that my is 27-periodic, mo(0) = 1, and my(7) = 0. Now if j > 0,
then since my(2'kn) = 1, we have

$(2m) = P(2knm)
(27 km)mo (20 k)

and so on. Iterating this equation j times we obtain

~ ~

é(2lr) = ¢p(km)mo(km) =0,
since £ is odd. This verifies (2.33) for m = 0.
19



Now assume that dA)(”) (2{m) = 0 for all non-zero integers [ and for 0 < n <
m — 1. Differentiate (2.9) m times to obtain

§0) = 35 3 () e/ e/,

m
2 n=0

Setting & = 2lm we have

o™ (2r) = imi <m>(lg(m_”)(ijw)m(()n)(ijW)

2m =\ n
1 - .
= 2—m(b(m) (2]]{371') y etc

and upon iterating this equation j times we obtain

o (m) = LY (m)%m—")(kw)mé")(kw) 0

mj
2m =\ n

since k is odd and mgn) () =0 for 0 < n < m. As this argument holds for any
m up to (M — 1) the lemma is proved. O

Proof of Proposition(2.2.1): Since ¢(z) either has compact support,
or exponential decay at infinity, the identity (2.37) holds for all integers m > 0.
In particular, we have

oo

Y. @—k)"d(z — k) = (=" i ¢ (217r)e2mile

k=—00 l=—00

for 0 <m < M—1. Since ¢(z) belongs to an MRA with M vanishing moments,
it follows by Lemma(2.2.4) that for 0 < m < M — 1, we have ¢(™ (2i7) = 0 if
[ # 0. Thus,

o0

> (@ =k)"o(z — k) = (=)™ (0)

k=—00

for 0 < m < M — 1. To complete the proof, note that (—i)™¢™(0) =

Using (2.32), we obtain the following identities,

dple—k) =1
dkdx—k) = z—p, fM>2
Zk%(x—k) = 22 —2zu + o, fM>3

20



and in general we have
S kmp(x—k) = <ZZ> 2™ (=1)" 0<m<M-—1. (2.40)
—00 n=0

Let pp(x) denote the polynomial on the right-hand side of (2.40). It is inter-
esting to note that

pL(x) = mpm_i(z), 1<m<M-1

or equivalently
X
() =/0 P (8 dt+ (=)™, m>1.

Setting po(z) = 1, we can use this iteration to construct a sequence of polyno-
mials p,,(x), m > 0 which is, in a sense, associated to the given MRA.

Since p, () has degree m, it follows that the polynomials po(x), - .., par—1(z)
are linearly independent. Since p,,(z) = X k™¢(x—k), and the series converges
uniformly, it follows that any polynomial of degree less than or equal to (M —1)
may be expressed as a combination of the functions ¢(zx — k), k € Z.

2.2.1 The Projection onto V;

The projection of a function f € L?(R) onto the subspace V; is given by

(Pif)(z) = 32(f, 6) di (@) (2.41)
where . e _
() =27 [ f@)p(27a—k)do.
The projection operator may be written explicitly as an integral operator,
(BH@) = [ Ple.y)f)dy.

where Pj(z,y) =277P(277z,277y), and
Pla,y) = > 6z — K)oy — k). (2.42)

We use the notation s, to denote the coefficient, of the basis function ¢7. Thus,

st =(f,¢1). (2.43)
21



If f € L*(R), then Y |s)|? < oco. Since the basis ¢}, k € Z is orthonormal, it
follows that

1P 1P =37 Ikl

We may also allow f to be a generalized function [3]. In this context,
we take i,k € Z to be the test functions, and V; to be the space of test
functions. Then f is a continuous linear functional that assigns a unique real
number (f,¢}) to each ¢ € V;. If f is locally summable in every bounded
interval on the line, then we have

o0

(f80) =279 [~ f()o(2 7w — k) do

— o0

as before. If > (f, ¢i)2 < 00, then we define the projection of f onto Vj to be

o0

(Pif)(@) = 2_(f, %) #i(@)
As an example, consider the d-function, d,, = §(z — z¢). For this gener-
alized function the projection is

(Pe)@) = 3 6o}l o).

Now let us consider the difference between a smooth function and its
projection onto a subspace of the multiresolution analysis.

Proposition 2.2.2 Let ¢ be a compactly supported scaling function in an
MRA with M vanishing moments. Let P;f denote the projection of a func-
tion f onto the subspace V;, given by

oo

(Pif) (@)= 3 sii(@) (2.44)

k=—o

where the coefficients are given by (2.43). For a given point x € R, let I;(x)
be the interval formed by the union of the supports of all basis functions which
are non-zero at x. Thus
Li(w) = Usuwpp (¢h),  K={keZ|gj(z)#0}.
kek

Suppose that f is at least M times continuously differentiable on I;(x). Then
we have

(Pif)(z) = f(x) + Ej(z), (2.45)

) (M)
|E;(z)| < 2MIC sup w
geryzy  M!

where
(2.46)

The constant C depends on ¢ but not on f.
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We point out that in the inequality (2.46), in all practical cases the scale
parameter j satisfies 7 < 0. Before proving the proposition we state and prove
a combinatorial lemma.

Lemma 2.2.5 Let {a,}, {b.}, and {c,} be arbitrary sequences of length M,
then we have

z_ aanln<”+m> I cmz< >an (24D

m=0

Proof: For convenience denote the left-hand side of (2.47) by Lh.s. Expanding
the summation over n we have

—14+m

0+m
Lh.s. = Qo Z ( ) mCO+m+ “tapm-1 Z ( 1 )bmcM—l—f—m-

Now regroup these terms, factoring out in turn ¢y, ¢i, etc. Since ¢y appears
only in the first term, ¢; appears only in the first and second terms, etc., we

obtain
Lhs. = ) aobo b + Daobs + ) awb
.n.s. = ¢y ano C1 0a01 1CL10

4ot M=1) b+ (M7 Nyt (M1 b
Cpm—1 0 apOpr—1 1 a10pr—2 M—1 apr—109 ¢ -

This can evidently be written in compact notation as

Lhs. = Zcmz< )am m-n s

m=0

which verifies (2.47). 0

Proof of the Proposition: We first obtain an expression for the coeffi-
cient s}, in terms of the derivatives of f. Expanding f in a Taylor series about
(27k) we have

]V[Zlf 27k) x_ij)m+ f(]\j\;('gk)(l‘—2jk)M
m=0 .

where &, lies between z and (27k). Using this expression we have

5%229/2/16 ¢(277z — k) dzx

(m) (93 ) _ _ o
9-1/2 Z (2 k)2m’ /(Q_Jx —k)"p(277z — k)dr + 27/2£fc

M—1 p(m) 9J
_ o N o ( k)
= 2723 -

m=0

QMJM + 2]/2
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where o
el = oM / fT(fk)(?_jx —kYMp(27z — k) dz. (2.48)

Now substitute this into (2.44) to obtain

M-1 _ (m) (97 )
)= > 2™,y fT(?k)MQ_]x — k) + Ej () (2.49)
m=0 k .

where we have set . '
=Y o277z — k).
k

Using the Taylor expansion for the mth derivative we can write

f(M) (gm,k)
M!

f(m)(ij) _ Mi:km f(n—l—m) (.7))

n=0

(27k — z)™ + 27k — 2)M |

n!

where &, lies between z and (27k) for each m and k. Substituting this ex-
pression into (2.49) we obtain

M-1 M—l—m f(n+m)($)

(Bif)@) = X 2Mum D 027w k) 30 = (2 - a)
+ Ej(z) (2.50)

where we have set E; = Ej 4+ E7, and
M-1
EXz)= > Fim omg Yo A (5"”“) T (20 — )M p(270x — k).

We can rearrange (2.50) to obtain

M1 M—l—m o o\ f(ndm) (o
P -l = X 2 3 (M) I

n=0

(=1)"2" py (2.51)

having also used Proposition(2.2.1). Now use Lemma(2.2.5) to transform the
right-hand side of (2.51), thus obtaining

M=1 f(m >(m
(Pif)(x) => ) gmi Z ( ) ™ Ll - (2.52)

m=0

Finally, using Lemma(2.1.1) together with Proposition(2.1.1), we have

3

( ) ,um nMn = Om,0,
n=0
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so that (2.52) reduces to

(Pf)(x) — Ej(x) = f(=).

This proves (2.45).
Now let us examine the error terms. Clearly

1B} (2)] < Cosup lei
where we have used Lemma(2.2.1). Now consider
< 2 / Ci '|2 I~ kM |6(27 — k)| do
[ ()

1Y)

; (M’(f)l

< oM+, sup L
- eeriz)  M!

§elj(z)

where we have used Lemma(2.2.2). Thus we have

. (M)
@) < 200y sup O (2.53)
gerjx)  M!
Similarly we have
- ()|
E?(z)| < 2MIC'Cyy sup 2@
B < 2vccy s 10
where C" = M1 (|| /m!)2™ . This proves (2.46). O

2.3 Multiresolution Approximation of Kernels

2.3.1 Kernels on Vj

In general, a kernel on V} is an expression of the form

S S b @),

m=—00 N=—00

where the function ¢(x) € Vj is the scaling function. In this thesis, we approx-
imate kernels of the form K(z,y) = K(x —y), and in this case the coefficients
satisfy .

Bon =t . (2.54)
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Therefore, for our purposes it is sufficient to view a kernel as an expression of

the form o

Tiay) = S 3 th ot (@)é(y),

m=—o0 N=—00
where the sequence {t/ } belongs to [*(Z). Thus, to build an approximation to
a given kernel K (z —y) on the subspace V}, it is necessary only to compute the
appropriate coefficients. Conversely, the kernel 7; is completely determined
once the coefficients {t/} are known.
We note that (2.54) does not imply that Tj(z,y) = Tj(z — y), i.e. 1} is
not a convolutional kernel. However, we do have the identity

T(z + 2k, y+ 2jk) =Tj(z,y),

which shows that T} is a “block convolution”. To state this another way, T} is
a periodic function of period 27 along any diagonal line x — y = constant.

2.3.2 Projection of a Kernel

Denote by (K f)(z) the integral operator

o

(KN@) = [ Ko —y)fy)dy.
Here we allow K to be a singular operator, and may exist only as a principle
value, or only for a certain class of functions f. Assume ¢}(z),k € Z is an
orthonormal basis for the subspace V;. The projection of a function f € L?(R)
onto the subspace V; (see Section 2.2.1) is given by

o o0

(Pif)(@) = > (f.h)dn(a) = > sidn(z).

n—=—0oo n=—oo

Apply the operator K to this projection to obtain
(KPN@) = [ K@= y)(Pi)y)dy

—00

= ¥ s Ka-ndwa

= X suKe)(@).

n—=—oo
Now project this result onto the subspace V; to obtain

o0

(RKPf)) = 3 (KPif, $1,) b7n(2)

= 3 @) S S ).

m=—00 n=—oo
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However, we also have

(REPN@) = [ Tyay)f @) dy

o

= [ S thadh@)8hv)f ) dy

= Y @) ¥t [ 60 W) dy
= 3 G Y s

m=—0Q n—=—0oo

Equating these two expressions, we obtain

oo = (K&l 81,) = [[ K@@ —y)él@)dim) dyds.  (2.59)

Using a change of variables and reversing the order of integration we can rewrite
(2.55) as

f = / K(2)®(2 7z — n) dz, (2.56)

where ® is the autocorrelation introduced in Section 2.1.3. Note also the

operator identity
Tj - PjKPj .
The following proposition establishes a bound on the difference between

a kernel K and its multiresolution approximation 7}.

Proposition 2.3.1 Let ¢ be a compactly supported scaling function in an
MRA with M wvanishing moments. Let T; denote the projection of a kernel
K onto the subspace V;, given by

T = 33 b)) (257)

where the coefficients are given by (2.56). For a given point (x,y) € R?, let
R;(z,y) be the rectangle formed by the union of the supports of all basis func-
tions which are non-zero at (x,y). Thus, if

Li(x) = U supp (), K= {keZ|gj(x) # 0}

kek
and . _
Liy)=Usuwp (8)),  L={l€Z|g](y) #0}
lec
then
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Suppose that K is at least M times continuously differentiable on R;(z,y).

Then we have
crj(xay) = K(Qﬁ - y) + E](.’E,y) 3

where

. KWMM) (¢ _
|Ej($,y)| S 2M]C sup | (6' 77)|
(Em)ER; (2,9) M!

The constant C depends on ¢ but not on K.
Proof: Using Proposition(5.3.2), we can write
th =20K(2'n) + €,

and we substitute this into (2.57) to obtain

Tiwy) = S K(2(k—1) 6@z — k)¢ 7y —1)

+ 32 ek bk (@)e] ().
ko1
Expanding K in a Taylor series about (x,y), we have

Ko - EEE

m=0

KM (& —n)

m!

ST i 1) (@)

M!

[2(k=1) = (z-p)]"

(2.58)

(2.59)

(2.60)

(2.61)

where &, lies between x and 27k, and 7, lies between y and 27[. Substituting

(2.61) into (2.60), we have

M—1 g~(m) T —
Ty = 3 @y

m=0

o 3 (M)

m)!

k k

+ Ej(z,y),
where we have put

Ej(z,y) = Y ehodi(@)el(y)

x (Z(m — K" (2 T k)) (2(2-@ 12y - o)

(2.62)

(M)(¢g, ) M. .
¢ DY k-0 - -] d@dw.
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Now use Proposition(2.2.1) to rewrite (2.62) as

M1 pe(m) (g —
Tyay) = Be,y) = ¥ 2@ =¥ mwz( ) ot

|
m=0 m.

= K-y

having also used Lemma(2.1.1), and Proposition(2.1.1). This proves (2.58).
Now consider the error terms. Taking m = M in (5.39), we have

. _ KM) (¢ _
sup el _,| < 2M*Vic,,  sup KT =)l (f' n)| i
(kJ)EKXL (§mER;(z,y) M!
Using this inequality, we have
Ej(z,y)|
< sup el_ l|<2\¢21m— )<Z|¢27 —l)
(kl)eXx L

. KO ( M
+2M7 sup —‘ Z ( )

(&mER;(z,y) =

X <; 1279 — kM p(27z — k)l) (Z 277y — 1" [p(277y — l)\)
< oM gup w(OQJFZ( )CM n n>

(&mER;(z,y) M!

which proves (2.59). The constants are those provided by Lemma(2.2.1). O

2.3.3 Trigonometric Expansion of a Kernel

The following theorem provides an efficient method for computing the value
of Tj(x,y) at a given point (z,y). As stated above (Section 2.3.1), the kernel
Tj(z,y) is not a function of the difference (z — y) alone, a fact which makes it
difficult to tabulate. However, it turns out that 7; may be represented by a
sum of functions that depend only on (z — y), and being functions of a single
variable, are easily tabulated. The proof of this exploits the fact that 7} is
periodic on a fixed diagonal x — y = constant.

The resulting series expansion (2.64) converges rapidly, and in our im-
plementation we retain terms only for [n| < 3. This high rate of convergence
follows from the rapid decay of the Fourier transform of the scaling function.

This result does not require the scaling function ¢ to belong to an or-
thonormal system.
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Theorem 2.3.1 Let ¢(z) be a scaling function for the subspace Vi, which is
continuous and has a piecewise continuous derivative. Let T;(x,y) be a kernel
on V;, which has the form

Z Z th, )l (y) (2.63)

m=—0o0 n=—0o0

where ¥ |t]|? < co. Then we have the identity,

o0

2T (203, 27y) = Y Mm@t (z — ), (2.64)
where { oo
Ih(z) = o= [ e (e — nm)da(€) de, (2.65)
= i t] ke (2.66)
and X X _
B,(6) = H(E — nm)D(E +nm). (2.67)

Furthermore, for each (z,y) € R?, the right-hand-side of (2.64) converges uni-
formly to 29T;(27z, 2y).

Example: In order to illustrate the decay of the functions &, (£), assume
that ¢(x) is the central B-spline of degree (2m — 1). Then we have

sin (§+ )1 [sin (5 - n;)rm

(I)n(g) = n
R 5

_ nr
2

which obviously decays rapidly as |n| — co.
Proof of the Theorem: We begin by rewriting (2.63) as

20T (27, 2y) Z Z —m)p(y —n). (2.68)

M=—00 N=—00

Let us restrict the point (z,y) to lie on the line z — y = z, the value of z being
fixed but arbitrary. On this line, the right-hand-side of (2.68) may be viewed
as a function of a single variable, given by

F(z) = ZZt —n®(x —m)d(z -z —n)
= Zqﬁx—z#—m)thqﬁ(x—kan)

k
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The function F'(z) is 1-periodic, and in addition is continuous and has a piece-
wise continuous derivative, due to the conditions placed on ¢(z). Hence, by
Theorem(2) on p.81 of [23], the Fourier series of F'(z) converges uniformly to
the value F'(zmod 1) for each z € R. Thus, we have

> et (2.69)

n=—oo

Now let us compute the coefficients, which must satisfy

1 .
Cp = /efzmmF(x) dx
0

1 X ,
= /0 e PN p(x —z+m) Y thd(r —k+m)dx.
m k
Making the change of variables u = x + m, we have

c, = Z/mﬂe_%m(“m o(u—z thﬁu—
. =

m Ym

— /_o:o 6727rmu¢ Zt d) u— (270)

Since, by assumption, 3 |t]|2 < oo, the series in (2.70) may be expressed in
terms of the Fourier transform as

Stiotu—k) =5 [~ e ©)a(e) de. (2.11)

21

Substituting (2.71) into (2.70) and reversing the order of integration, we obtain

1 0o . ~ 0o .
e = 5= [ _F©HE) [ eI o) dude

, 1 oo .=
— 6727rmz . % /_oo efzzﬁ # (§)¢(§)¢(€ + 2n7r) df
_ imne, % [ i€ i (€ — nm)(€ — nm)3(€ + ) d

Substituting this result back into (2.69) we have
. 1 00 e A
z) =Y einmra). 2—/ e (€ — nm)d, (€) dE . (2.72)
n T J—o0

Using the fact that z is arbitrary, we can equate the right-hand-side of (2.72)
with the left-hand-side of (2.68), which yields the result (2.64). O
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Alternatively, we can write

T (Y0, Py) = o [ eI |de)] de

™

® 1
+> =

n=1 n

/ e~ @0 (€ _ pm)Re [T 0G, (€)Y de.  (2.73)
When the functions &, (£) are real, this reduces to

DT;(00z,97y) = o [ e eV |ge) de

2T

+ i cos[nm(x + y)] - % /oo e"E@N (€ — nm) D, (€) dE. (2.74)

n=1 -

2.4 Spline MRAs

An important class of multiresolution analyses use splines as a starting point
(see e.g. [5] or [20]). In this thesis, we restrict our attention to the central B-
splines of odd degree, though splines of even degree could also be used. Integer
translates of these functions form a Riesz basis.

We denote by M~V (z) the spline that is piecewise polynomial of de-
gree (M — 1), for M = 2,4,.... By way of example, the lowest order case,
corresponding to M = 2, is the well-known “hat function”,

1—-1z|, || <1
50)(3;):{ |(l M>1. (2.75)

These functions are compactly supported, and satisfy 3M~1(z) = 0 for |z| >
M /2. In addition, they are even, and S~ has (M —2) continuous derivatives.
Higher order derivatives can also be defined, provided they are taken in the
sense of generalized functions.

The spline MRA is obtained by defining the subspaces
V; = closure of span {5](-,],\64_1” keZ}

for j € Z.

The following recursive formula provides the simplest definition for the
central B-splines,

B (z) = /_o:o BV (z —1)O)dt, m>1
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where 3(0)(z) is the characteristic function of the interval [—1/2,1/2). (Here
we allow m to be any non-negative integer.) We can also write

1/2

B™ () = Bz —t)dt, m>1.

—-1/2

Using the fact that 3™ is an (m + 1)-fold convolution of the characteristic
function x[_1/2,1/2), it is a simple exercise to compute the Fourier transform,

e = (00)" = (T2 (2.76)

Let us derive the two-scale difference equation (2.9) for the central B-
splines of odd degree. Using a trigonometric identity in (2.76), we have

G- ey = (sin &/4cos §/4>M

£/4
= MD(E/2)mo(€/2)
where
mo(€) = (cos £/2). (2.77)
We can also express my in the following form,
¢i€/2 4 o—i€/2\ M
()

. 1+ e\ M
e_’M§/2< *e ) (2.78)

mo(§) =

2

M/2
= g0 3 (e n)e™
2 k=—M/2 M/2+k

It follows that (cf. equation (2.10))

1 M2 M
I@(M—l)(x) — — Z <
Mt T \ M2+ k

)ﬁ(M_l)(Qx —k). (2.79)

Note that the function mg(¢) associated to S ~1) has M zeroes at ¢ =
7, as can be seen from (2.78). Thus the MRA generated by 3™~ has M
vanishing moments, and in accordance with Proposition(2.2.1) we have

S @ k"B Dz k) =, 0<m < M1 (2.80)

where 1, denotes the mth moment of 8™~V (z).
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2.4.1 The Battle-Lemarié Scaling Function

The scaling function for the orthonormal system in a spline MRA is known
as the Battle-Lemarié scaling function (see e.g. [8, pp.146-152]). This scaling
function is the result of applying the orthogonalization procedure (2.7) to the
B-spline. The Battle-Lemarié function is thus defined in the Fourier domain
by the equation

A(M-1) (¢ — BM=1(E)
e = e (281)
where
aM=1 Z |BM=D (g + 21m) 2. (2.82)
Using (2.76) we can write
a™M=V(¢) = i BEM=1) (g 4 2r) . (2.83)

Using Poisson’s summation formula we have

Z BEM=1) (¢ 4 21) Z BEM 1) (k)eké (2.84)

—00

and since B2M~1) (k) is nonzero for k € Z if and only if |k| < M — 1, we can
rewrite (2.83) as

M-1
aM=b(g) = BEM=D) (k)eke (2.85)

1-M

= [EMD(0) 42 2 BEM=Y () cos ke . (2.86)
For example, associated to the hat function (2.75) we have

() = YAk
4

2 1, .

— LD (g it

= 3+6(e +e7) (2.87)
2 1

= §+§cosf.

It is easily seen that 1/3 < aM(€) < 1.
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2.4.2 The Dual of the B-spline

In spite of its importance as the scaling function for the orthonormal system,
the Battle-Lemarié scaling function is difficult to work with directly. This is
due both to the fact that it is not compactly supported in the space variable
x, and to the presence of the square root in the Fourier transform (2.81). In
practice we prefer to work always with the compactly supported B-spline.

The B-spline is obviously not orthogonal to its translates. However, it is
possible to construct another scaling function v with the following property,

(Bo) = 27 [ BTz —mp(@ s~ n)da

= /_o:oﬂ($ —m)y(z —n)dx
= bmn- (2.88)

The two functions # and v form a basis known as a “biorthogonal system”, and
the two scaling functions are known as “duals” of each other. For the sake of
completeness one may consider an orthonormal scaling function to be its own
dual. It is important here that the dual may be chosen so that translates of
(B and 7 span the same subspace. This is not true of all biorthogonal systems.
(For a study of these systems, we refer the reader to [6]).

Thus, for example, the coefficients of the projection of a function f onto
the subspace Vj,

(e 9]

(Pof)(@) = > spBlz—k)

k=—o00
are given by

= [ -k ds.

Let us derive an expression for the Fourier transform of . First, we want
v € Vp. This means that

o0

v@) = > ablz—k)

k=—00

for some coefficients {c;}. Taking the Fourier transform on both sides of this
expression we obtain

7(€) = e&)B(e) . (2.89)
where ¢ denotes the formal trigonometric series
&)= > ae™.
k=—00
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Using Poisson’s summation formula, the relationship (2.88) can be expressed
in terms of the Fourier transform as

o —

> A +2m)p(E+2n) =1, ae. (2.90)

l=—00

Substituting (2.89) into (2.90), and using the fact that the B-splines form a
Riesz basis (which implies that 0 < ¢; < Y [B(€ + 2I7)|? < ¢2), we have

~

S [B(E + 21m)e(E)B(E + 24m) = 1,

l=—00

which is satisfied if we take

1
(&) = ~ . 291
O e ane 29
Using (2.82), we write ¢(§) = 1/a(&). Thus,
3(M-1)
) = S (2.92)

2.4.3 Spline Approximation of Functions and Kernels

In this section we present a practical method for the computation of coefficients
to represent functions and kernels using the compactly supported B-splines.
Our goal is to compute coefficients for representations of the form

(ij>(x)=k_z°j: sL6i(x) (2.93)
and - o
Tywy) = BEP = 3. S 606 ). (2.94)

k=—00l=—0c
For this it is necessary to compute the integrals

si = | f@ni@ada, (2.95)

#o= / K@) (2 — n)dz. (2.96)
The function I' is the autocorrelation of the dual scaling function ~.

The functions v and I' are not compactly supported in the space variable
x, and hence these integrals are difficult to evalute directly. However, they can
be approximated as follows.
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Let M be an even, positive integer and let (M — 1) be the degree of the
B-spline 3. Construct two sets of numbers {g,, }2=} and {Q,,}?;* according
to the formulae

Z (7:) (_1)HQm—n,un = { (1), Z i 8 for0<m<M-1 (297)
n=0 )

and

™ (m 1, m=0
_ n — ) < < _
Z<n>( 1) Qum—nMn {0’ o for0<m<2M-—1 (298

n=0

where p,, denotes the nth moment of the B-spline of degree (M — 1) and M,,
denotes the nth moment of its autocorrelation, i.e. the B-spline of degree
(2M —1).

Define the coeflicients

M) O (k)

51 = 29/ > - 2™ g, (2.99)
m=0 '
and M1 o m) (o
, e~ KU (27 -
=2y #zmﬁcgm (2.100)
= m!

which are to be used in the representations (2.93) and (2.94), respectively.
If derivatives are not available, then finite difference formulas may be used
instead.

We prove the following two propositions.

Proposition 2.4.1 Let 3 be the central B-spline of degree (M — 1) where M
is an even positive integer. Let P;f denote the projection of a function f onto
the subspace Vj,

o0

(Pif)@) = 3 sifi(e) (2.101)

k=—o00

where the coefficients are given by (2.99). For a given point x € R, let I;(x)
be the interval formed by the union of the supports of all basis functions which
are non-zero at x. Thus

Li@)= Uswp (8), K={keZ|pi(x)#0}.

keK

Suppose that f is at least M times continuously differentiable on I;(x). Then
we have

(Pif)(z) = f(x) + Ej(z), (2.102)
37



where

. (M)
|E;(z)| < 2™IC sup w
ten@ M

The constant C' depends on 3 but not on f.

(2.103)

Proof: Let zy be an arbitrary real number. Expand f in a Taylor series
about z, to obtain the expression for the mth derivative,

M—1-m p(n+m) (M)
f(m) (3:) _ Z f (ﬂCo) (x - iUo)n + f M[('fm) (33 o xO)M,

|
n—0 n.

where 0 < m < M — 1, and &, lies between = and zy. Set z = 27k to obtain

£ (27k) = M_zl_m FOHm (o) f (M;f!m,k)

n' (2]]€ — .’L‘o)n +
n=0 .

(2]]17 — .’L'())M

where &, lies between z, and (27k) for each m. Now use this expression
together with (2.99) to write

(Pif)(zo) = 2_j/225i5(2_j$0—k)

J .

= ; B2z — Z_

= Zﬂ(Q_jxo— S q—m{MZlmw@jk_%)n

—om! | = n!
NI A(f.m’“)@% |
M

) 2(m+n)j (_1)n

m=0 n=0
X > (277mo — k)" B(279m0 — k) + Ej(o) (2.104)
k
where we have put
M—1 () '
Ej(x) % o ! gm’“) 27k — 2)MB(2 9z — k). (2.105)
m=0 Tk

Continuing from (2.104), and using the identity (2.80), we have

M-1 M—-1-m f(n—|—m) (IO)

(Pif)eo) = Byfoo) = X am 2

i M n+m f(n—l—m) Zo m+mn)j n
= Sy (M I ey,
m=0

— m (n+m)!

2
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Now use (2.47) to transform the right-hand side of this equation, thus obtaining

Bf)an) ~ Bylan) = 3 L S5 (") 1y

m=0

= f(xo)a

where we have used (2.97). This proves (2.102).

Finally, we observe that, since 3 is compactly supported, there is a con-
stant C'3; such that

Sz — kM|8( — k)| < O,

by Lemma(2.2.1). Thus, from (2.105) we have

|Ej(z)] < (Z |qm|2mﬂ> 2Mﬂ';|2—jx —kM|p(27 — )|M

m=0 m!
- FAD )]
< 2MIC'Cy, sup |7,
Yen@ M
where C" = Y"M_1 2™i(|q,,| /m!). This verifies (2.103) . 0

Proposition 2.4.2 Let § be the central B-spline of degree (M — 1), where M
is an even positive integer. Let T; = P;KP; denote the projection of a kernel
K onto the subspace V;, given by

_Z _Zt BB () (2.106)

where the coefficients are given by (2.100). For a given point (z,y) € R?,
let Rj(z,y) be the rectangle formed by the union of the supports of all basis
functions which are non-zero at (x,y). Thus, if

= Usupp (), K={keZpi(z)+#0}

kex
and . _
=Usuwpp (8), L={l€Z|Fy) +#0}
lec
then

Rj(z,y) = Ij(z) X I;(y) .-
Suppose that K is at least M times continuously differentiable on R;(z,y).

Then we have
Ti(z,y) = K(z —y) + Ej(z,y), (2.107)
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where

: |KM (¢ — )
|Ej(z,y)| <2MIC  sup 5
! (&mER; (z,y) (M)'

The constant C' depends on 3 but not on K.

(2.108)

The proof of this proposition is similar to those for Propositions (2.4.1) and
(2.3.1), and we omit the details.

The expansions (2.97) and (2.98) may be viewed as asymptotic expansions
for the integrals in (2.95) and (2.96), respectively, obtained by straightforward
Taylor expansion. For example, formally expanding a function f about (27k)
we obtain .

f@ =3 0 iy,

|
m=0 m:

Substituting this into the integral (2.95) we have

sl = 279/ /O:O v(27x — k) ﬂ;i;o %(x — 2k dx
99/ gjo %2"@ /_O:o(zjx —k)™y(2 7z — k) dx
0i/2 Wé SR (m:é!?jk)Qmj /_ o:o &y () do

m=0
where we define ¢g,, to be the mth moment of the scaling function ~,
o
Im =/ x™y(z) dx .
-0

It is not practical to compute the moments {¢,,} directly from this expression,
because 7 is not compactly supported. However, we can determine the first M
moments as follows.

Let us define the function A to be the correlation of the B-spline and its
dual,

A) = [ Ble+y)y(y) dy.

The Fourier transform of A is then given by

Ag) =




which follows from (2.92). Comparison of this expression with (2.81) shows
that

A D02

A(&) = [o(8)]
where ¢ is the Battle-Lemarié scaling function. Thus the correlation function
A is equal to the autocorrelation of the Battle-Lemarié scaling function almost

everywhere, which by Proposition(2.1.1) must have vanishing moments. Let
A, denote the mth moment of A. Then we have

1, m=0
Am_{O, m>0

for 0 <m <2M — 1, and as in Lemma(2.1.1) we have
m m n
Am = Z ( >(_1) Am-—nln -
n—0 \"

Since the moments of the B-spline {u,} are easy to compute, (use the recur-
sive formula in equation 2.22) we can use the above two equations to obtain

{Qm}znl\ial-
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Chapter 3

The Fast Summation Algorithm
in One Dimension

In this chapter we describe our approach for problems in one dimension. Our
approach in higher dimensions is similar. Indeed, to develop an algorithm in
two dimensions, the only additional machinery used is singular value decom-
position of the coefficient matrix, but this will be discussed in Chapter(4).

3.1 General Description

1. Our goal is to compute the numbers {g,,}, where

ZK m = Tn) [ 1<m<N. (3.1)
n;ém

We assume that the kernel K is singular on the line x —y = 0, i.e.
|[K(x —y)| 200 as (x—y)—0,

but is at least M times continuously differentiable on any region that does not
contain the line x = y. Moreover, we assume that there is a “bandwidth” B
such that the Mth derivative is uniformly bounded outside the band |z —y| <
B, ie.

[KM(z —y)| < C for |z —y| > B. (3.2)

2. We choose a level of refinement (5 < 0), a multiresolution analysis
with M vanishing moments, and construct the projection of the kernel onto
the subspace V}, given by

ZZt REACEAMNY (3.3)



As discussed in Chapter(2) this construction requires only the computation of
the coefficients {#/ }, given by

tZL:/OO K()®2 9z —n)de, neZ

—0o0

where ® is the autocorrelation of the scaling function ¢. This can be done ahead
of time and the coefficients {t} are then stored in memory. This portion of
the computation is part of the initialization.

3. Using Proposition(2.3.1) together with (3.2) we have the estimate
K(z —y) —Tj(z,y)| <e for |z—y|>2B, (3.4)

for any € > 0, provided that M and j < 0 have been chosen so that C(2M7/M!) <
€. (There is some abuse of notation here, since the constants C' and B are not
necessarily identical to the constants that appear in (3.2), but this detail is not
important.)

4. The first step, which we refer to as the “low frequency approxima-
tion”, is the application of the kernel T} to the particle configuration

N
= fab(z — ). (3.5)
n=1
Thus, we compute the approximations
N
n;m
for m = 1,..., N. The most expensive part of this computation is the ap-

plication of a dense Toeplitz matrix to a vector, and is done using the FFT.
Substituting (3.3) into (3.6) we have

gfn = Z ZZk l¢k Tm ¢l($n)

3

= Z ?c Tm Zﬂc lan¢l xn - ](xmaxm),fm
n=1
= Z - J}(mmamm)fm: (37)

k

where

§=>t_s] (3.8)
!
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and v
sl= Y fudl(wn).- (3.9)
n=1

The term Tj(%m, Tm) fm is the self-interaction and must be subtracted after the
coeflicients (3.8) of the product have been computed and the sum in (3.7) has
been evaluated. Note that Tj(2,, ) is finite, as T} is a regularized version of
K.

5. Let us compare the approximations {¢7 } to the exact values {g,,}.
For a given index m, let us split the indices 1,..., N into two distinct sets,
depending on the distance between the point z,, and the points {z,}. All
indices corresponding to particles that are sufficiently removed from z,, we
place in
SI% = {n: |z, — 2| > 2'B}.

All indices corresponding to particles that are near to z,, we place in
Sim =An T, — zm| < 2/B} .
Now the approximation (3.6) can be written
gn=| 2 + 2 | T(@mwn)fa- (3.10)
nesfer  nESEOY
Comparing the above expression to the actual values (3.1) we have

‘gzn_gm| < Z |fn||TJ(xmaxn)_K($m_$n)‘
nESf,%
+ Z |fn||TJ($ma$n) — K(zm — )| - (3.11)

near
nESj,m

For particle indices contained in the index set ij, - we can use the estimate
(3.4). Thus

Z ‘fn||7}(xm>xn)_K(xm_xn)‘ < F max |Tj(xmaxn)_K(xm_l‘n)|

nESJf‘% nESJf,‘::
< Fe, (3.12)
where we have put
N
F=> |fal- (3.13)
n=1

6. We cannot, however, give a similar bound for the error in the second
sum. This is because the second sum involves particle separations which are
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small, and hence points (Z,,, z,,) which lie near the singularity of the kernel K.
The projection T cannot be expected to provide an acceptable approximation
to K in this region. The contribution to the approximation (3.10) from particles
near x,, must be corrected, and we refer to this second step of our algorithm as
the “high frequency correction”. A second operator must now be applied
that preserves the accuracy of the initial approximation for particles that are
far apart but corrects the errors due to particles that are close together.

7. The correction operator is defined by

K(xz—-y)—Ti(z,y), 0<|z—y|<2B

Cj(w,y) = { 0, otherwise . (3.14)

We update the approximation (3.10) according to the formula

N
gﬁn — 9%+ch(xm,$n)fn

n=1

= Y Ti@mz)fat Y, [Ci@m xn) + Tj(Tm, )] fa,

nester nesyer
form=1,...,N. It now follows from (3.12) and (3.14) that
|g£n - gm| < f€,

form=1,...,N.

3.2 Additional Details

Current implementations of the algorithm use B-splines as the basis functions.
This is primarily due to the simplicity of obtaining values of the B-splines
at a given point. This is not a straightforward affair for many other families
of scaling functions, since explicit expressions are not available and one must
exploit the two-scale difference equation or perhaps numerical integration of
the Fourier transform. This property of the B-splines greatly enhances their
utility in this context.

3.2.1 Low Frequency Approximation

1. We assume that the particle locations {z,}Y _, lie in the unit interval [0, 1]
and are ordered. Thus, we have

O<i<Ta<---<zTNy<1.
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2. The number of vanishing moments M corresponds to a B-spline of
degree (2m — 1). More precisely, we have M — 1 = 2m — 1, so that M must
be an even, positive integer. Once this parameter and the level of refinement
7 < 0 have been chosen, the projection of the kernel K is

= 2 S4B @H ). (3.15)

=0

where J = 277, and 3 denotes the B-spline of degree (2m —1). The coefficients
{ti} for |n| < (J — 1) are computed using the formula (2.100).

3. Note that, in anticipation of using the FFT, we have restricted the
indices in (3.15) to lie in the range 0 < k,I < 277 — 1. This is to ensure that
the dimension of the resulting matrix is a power of two, which is convenient
when using the FFT. (This is also the reason for choosing the interval [0, 1].)
However, this means that we must restrict the particle locations so that no
particles lie in the supports of the basis functions ﬂlj for i < 0orl > 277,
(If the kernel K is periodic then this restriction is not necessary.) Since the
support of 3™ is the interval [—m, m], the restriction is

2m—-1)<z <29 <+ <2y <1-—2m. (3.16)

4. The coefficients of the projection of the particle configuration (3.5) are
given by (3.9), which here takes the form

n=1

The values of the B-spline may be computed using the following recursion
formula,

(m+1)/2+=x

B (z) = BN (z +1/2) + BN (z —1/2)

(m+1)/2—x

for m > 1, where 3(%)(z) is the characteristic function of the interval [~1/2,1/2).
This formula may be found in, for example, [3]|, and a derivation of the for-
mula in a slightly different form may be found in [5]. However, for practical
implementation a significant savings in speed may be realized by setting up an
interpolation table for the B-spline.

5. Next we compute the matrix-vector product
g=S"t s, 0<k<J-1 (3.18)

using the FFT. If the kernel K is not periodic we use an FFT of length (2J).
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6. Having obtained the coefficients (3.18) we can now evaluate the ex-

pansion
J-1

g (@) =) 5.6 (z)
k=0
at the points x1,...,zy to obtain the approximations
I =9 (@m) =D 816 (zm) - (3.19)
k=0

3.2.2 High Frequency Correction

The first step is to determine, for a given index m, all those particle locations
{z,} such that |z, — z,] < 27B. However, this poses no difficulty when
the particle locations are ordered as in (3.16). Thus, for each index m, we
determine the set of indices S7¢" = {n : &, — 24| < 2/ B}. The band-width
B is determined numerically.

2. Next we compute the correction, and use it to update the approxima-
tion g7,

g, =g+ > Ci@m,zn)fn, 1<m<N. (3.20)
nespear

In order to evaluate the kernel T}(z,y), we use the series expansion established
by Theorem(2.3.1). Since we use B-splines as basis functions, the B-spline
having a real Fourier transform allows us to write the expansion in the form
(2.74). This series converges very quickly, and we typically retain only the first
four terms. Hence, we use the truncated series

VT (2x, 2y) ~ I (2) + 2cos(mw)l(z)
+ 2cos(2mw)I4(2) + 2 cos(3mw)Ii(z) (3.21)

where
Z2=r—y, w=x+y

and where

() = o [ e e+ p)Ba(e) de, (3.22)

for n > 0, with p, = 7 if n is odd and p,, = 0 if n is even. In order to avoid
computing cosines, and to optimize the evaluation of (3.21), we use a summa-
tion technique found in [14]. For example, to compute C' = 33 _, I cos(kmw),
we put r = cos(mw), and then perform the following steps,

ug = I3,
Uo = IQ+27'U3,
Uy = Il+2’f'U2—’U,3,

Cc = 10+TU1—U2.
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3. The functions &, are given in this instance by

$,(6) = A€ +nm)B(E — nr). (3.23)

Note that for n = 0, (3.23) is the autocorrelation of the B-spline. For the
B-splines, explicit expressions in terms of the space variable z can be derived
for the functions

1

T or

()= 5 [ e Eba() de.

In the Appendix B, it is shown that

2m—1 “\2m— 2m—+k
CI)n(z) = Z M [einmc + (_1)ke—in7r$] < d > ﬁ(4m_1)(2),

= (2nm)2mth dz
when the basis function in (3.23) is the B-spline of degree (2m — 1), where

4 _ (m—=1+k)!
T (= 1)k

We then rewrite (3.22) as

I(z) =Yt (2 — k). (3.24)

The functions I7(z), so defined, are easily approximated by polynomials.
Thus we build an interpolation table for each of I§(z), I{(2), I3 (z), and I3(z).

3.2.3 Complexity Analysis

Suppose a system of N particles, located at the points zi,...,zy, carrying
“charges” fi,..., fn, respectively. The level of refinement, or projection scale,
is 7 < 0, and J = 277. The basis function is the central B-spline of degree
(2mq — 1), where myg = 1,2,... .

Let |z| denote the greatest integer that is less than or equal to z.

We make the following estimates on the number of operations required by
each step of our algorithm.
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Step Procedure Complexity

1.  Project particles onto the basis: for each integer O (2mg4- N)
n=1,..., N we compute the values §/(z,) for
279 @] —ma <1 <277z + My -

2. Use the result of Step 1 to obtain the coeffi- O (2mg4- N)
cients of the projection, s] = YN | .6 (z,),
for 0<I<J -1

3.  Apply the projection of the kernel via the FEFT O (2J log, 2J)
to obtain the coefficients of the product, §f€ =
it sl for 0 < k < J—1. (If the kernel
K _1s periodic, then the matrix of coefficients
{t]._,} is a circulant, and the resulting estimate
is O(Jlog, J).)

4.  Use the result of Step 3 to obtain the low fre- O (2mg4- N)

quency approximations, ¢/ = 7=} 818 (x,),
for1<n<N.
5.  Determine the set of indices S7et" = {n : |z, — O (sjN)

T,| < 2B} for each m = 1,..., N. We assume
that S7" < s; for each m.
6. Compute the high frequency corrections and O (s;N -4 - ideg)

update the approximations obtained in Step 4,

gl gm+znesnear Ci(Xm, &) fn,for 1 <m <

N. There are four terms to be evaluated in the

series (3.21) for each point (z,z,), and each

term is approximated by an interpolating poly-

nomial of degree ideg.

Steps 1 through 4 constitue the low frequency approximation, while Steps
5 and 6 constitute the high frequency correction.

Now let us relate the parameters J and s; to the number of particles
N. Suppose that the particles are evenly spaced, with a stepsize 270, for some
integer jo < 0. Let the particle locations be given by z, = 2%n, for 0 < n <
N — 1, where N = 2770, The projection scale is j < 0, and J = 277, as above.
The inequality |z, — z,| < 2/ B (that appears in, e.g. (3.14)) becomes

T — Tn| = 2%°|m —n| < 2B,

or equivalently

N
— — | B.
Im n|<(J>

Thus, for a given index m, the number of indices n that fall into the indicated
range is approximately 2B(N/J), and we estimate s; ~ 2B(N/J), where s; is
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defined in Step 5 above. The operation count for Step 6 is now proportional

to the quantity
N2
2B | — | -4-ideg.
( J) 1deg

In order to obtain an operation count proportional to N for this step it is
necessary that J = O(N). Let us assume that the ratio (J/N) is a power
of two. We refer to this ratio as the “oversampling factor”, and assume that
(J/N)=2% ,or J =2°N, where s is an integer. The right-hand column of the
above table can now be rewritten to provide the following estimates.

Step Complexity
1. O (Zmd . N)
3.  O(2°™'Nlog,2°*!N)
4. O (2md . N)

5 O (2'=*B- N)
6 O (2*°B -ideg- N)

It is clear from the above table that in computing the low frequency
approximation it is desirable to have the parameter s as small as possible,
while in computing the high frequency correction it is desirable to have this
parameter as large as possible. The optimal value of s varies slightly with
different computer systems and implementations, but in practice we find that
s =0,1, or 2 works best.

3.3 Examples

3.3.1 The Kernel (1/z)
As our model problem in one dimension we choose the kernel
K-y =1(z-y), z#y. (3.25)

This example is closely related to the Hilbert transform,

(Hf)(z) = —%p.v- ” Mdy (3.26)

—oco T — Y

which is a bounded operator on L?*(R) (see e.g. [22]). In the context of particle
simulations, we can think of applying the integral operator with kernel function
(3.25) to a sum of delta functions

flz) = Z_:l fnb(x — ), (3.27)
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and then evaluating the result at the points zy,...,xy. Thus, the sums to be
computed are
A
n
Im = E _— (3.28)

n=1 Tm — Tn
n#m

form=1,...,N.

The kernel (3.25) is homogeneous, satisfying aK (azx) = K(z),a # 0. It
follows that the coefficients, given by

. oo (2T —
f=p. [T 2T g,
—00 X

satisfy #/ = ¢9, and hence the projection of K onto the subspace V; is a simple
rescaling of the projection onto V. That is,

(e} o0

2T(2z,2y) = To(z,y) = Y. D tsad(z—k)d(y—1),

k=—00l=—00

where

oo P _
tn:p.v./ 7@ n)dl“-

—00 X

In the tables below we present the result of timing our algorithm against
direct evaluation using the formula (3.28). In the tables, the parameter N is the
number of particles, “I1r” is the time required to compute the low frequency
approximations, “Tyr” is the time required to compute the high frequency
corrections, and “Ti,” is the total time for the algorithm. The errors are
computed according to the following formulae. Suppose that x is the “exact”
N-length vector, and x is the approximation. Then we compute the relative
errors

where

i3 = ZW Il = v il

The timings were done on 11/20/96 using a Sun Sparc-20 workstation. The
“break-even point” is estimated by linear interpolation of the data in the tables.
The particle locations {z,}Y_, are chosen randomly in (0,1), the distribution
having a fair degree of non-uniformity.

As an evaluation of performance, we remark that these results are com-
parable to performance results for the same problem reported in [9].
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‘ N ‘ TLF ‘ THF ‘ 71tot ‘ Tdir ‘ E2 ‘ Eoo

64 | 0.0036 | 0.0037 | 0.0073 | 0.0077 | 0.46860E-05 | 0.35852E-05
128 | 0.0066 | 0.0079 | 0.0145 | 0.0278 | 0.41383E-05 | 0.47034E-05
256 | 0.0138 | 0.0155 | 0.0293 | 0.1044 | 0.38780E-05 | 0.42643E-05
512 | 0.0264 | 0.0300 | 0.0564 | 0.4042 | 0.36356E-05 | 0.43642E-05
1024 | 0.0552 | 0.0591 | 0.1143 | 1.5946 | 0.33201E-05 | 0.33570E-05
2048 | 0.1089 | 0.1175 | 0.2264 | 6.3151 | 0.31335E-05 | 0.33471E-05
4096 | 0.2379 | 0.2351 | 0.4731 | 25.2104 | 0.33210E-05 | 0.31553E-05

Table 3.1: Implementation in one dimension using B-splines of degree 3, break-

even at about 64 particles.

| N Tw| Tw| Tw| Tl By | Eu

64 | 0.0085 | 0.0090 | 0.0175 | 0.0083 | 0.24752E-09 | 0.14817E-09
128 | 0.0162 | 0.0160 | 0.0322 | 0.0284 | 0.13568E-09 | 0.74756E-10
256 | 0.0291 | 0.0280 | 0.0571 | 0.1049 | 0.57723E-10 | 0.60517E-10
512 | 0.0582 | 0.0526 | 0.1108 | 0.4046 | 0.27059E-10 | 0.52330E-10
1024 | 0.1188 | 0.1016 | 0.2204 | 1.6041 | 0.14141E-10 | 0.46223E-10
2048 | 0.2515 | 0.2002 | 0.4517 | 6.3056 | 0.81066E-11 | 0.41690E-10
4096 | 0.5187 | 0.4057 | 0.9244 | 25.1213 | 0.50117E-11 | 0.38148E-10

Table 3.2: Implementation in one dimension using B-splines of degree 7, break-
even at about 150 particles.

3.3.2 FFT for Unequally Spaced Data

In this section we indicate how our algorithm could be used for fast evaluation

of the sums
N-1

Z f(xn) eQm'jzn,

n=0

~

i

— 0<j<N-1. (3.29)

The points {z,} satisfy 0 < 2o < 21 < --- < zx_1 < 1, but are otherwise arbi-
trary. Our main idea is to construct an interpolating trigonometric polynomial
of the form

(3.30)

N-1
m

g(e) — Z gm627rim0

=0

which takes the values f] at the equally spaced points §; = j/N, 0 < j < N—1.

The sums
N-—1

Z gm627rimj/N

m=0
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‘ N ‘ TLF ‘ THF ‘ thot Tdir E. 2 ‘ E 00 ‘
64 | 0.0138 | 0.0130 | 0.0268 | 0.0086 | 0.50929E-14 | 0.26622E-14
128 | 0.0261 | 0.0260 | 0.0521 | 0.0318 | 0.23669E-14 | 0.16785E-14
256 | 0.0525 | 0.0477 | 0.1002 | 0.1244 | 0.43058E-14 | 0.18982E-14
512 | 0.1111 | 0.0925 | 0.2036 | 0.4910 | 0.85681E-14 | 0.43438E-14
1024 | 0.2344 | 0.1770 | 0.4114 | 2.0113 | 0.78821E-14 | 0.25543E-14
2048 | 0.5288 | 0.3593 | 0.8881 | 8.0242 | 0.91355E-14 | 0.27125E-14
4096 | 1.0738 | 0.7384 | 1.8122 | 32.1545 | 0.11375E-13 | 0.66191E-14

Table 3.3: Implementation in one dimension using B-splines of degree 11,
break-even at about 220 particles.

can then be computed with the standard FFT. In order to determine the co-
efficients {g,,}, we invert (3.31) to get

1 N-1
Z f] —27rzmj/N
Next substitute expression (3.29) for f; to get

1N

N-1
G = z —2mimj /N Z fn 627rijzn
]: n=0

2

N—-1 1 N—-1 -
= Z fa Z e~ 2mid(m/N=an) (3.32)

where f, = f(z,). Now we have

1— e—27ri(m—Na:n)

Z —2mij(m/N—zr)

1 — e—2mi(m/N—zn)

sin [W(% Tn ]
1 — cos [QW(% z )]
—  _gimNon sin(rNz,) {cot [7'(' (% - $n>] + Z} .

Substituting this result into (3.32), we have

_2€i7TN$n ) in(m/N—zn)

sin(mr Nz, )e

N-1
=3 faK(On —x,) + iF (3.33)
for 0 <m < N — 1, where
1 —itNx :
o= —Ne msin(mNxy) f(2,), (3.34)
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F=> fn, (3.35)
and . ]
K(z —y) =cot[r(z—1y)], 0<\x—y|<§. (3.36)

This kernel is obviously 1-periodic. More important is the fact that this kernel
can be handled by our algorithm. Thus, our algorithm is used to evaluate
the sums (3.33), and once the numbers {go,...,gn 1} are known, we use a
standard FFT to compute {fo, e, fN,l}.

We remark that the derivation given above has previously been published
in [10], but of course the authors there use a different algorithm (Fast Multi-
pole) to evaluate the sums in (3.33).

3.4 Splitting over Multiple Scales

In Section 1.2 we introduced the following splitting of the kernel K,
K=T,+(K-T;). (3.37)

Here T; = P,KP; is the projection of K onto the subspace V; (cf. equations
(1.5), (1.6), and (1.7); see also Sections 2.3.1 and 2.3.2). However, in principle
there is no reason why we could not split the kernel over several scales, thus
obtaining

K = (T; = Tjy) + (Tjsa — Tjga) + - -
+ (Tjen—1 = Tjn) + Tjn + (K = 1))
n—1

= Tjrn+ D (Tiwn = Tjrwrr) + (K = Ty), (3.38)
k=0
where n > 0. Note that if n = 0, then (3.38) reduces to (3.37). Such a splitting
may be useful when the particle distribution is strongly clustered.

In (3.38), the operator T}, corresponds to the low-frequency approxi-
mation, and (K — T}) corresponds to the high-frequency correction. These
operators are applied in the same manner as described above. (Note that
(j + n) is the coarsest scale and j is the finest scale.) We now describe the
remaining operators in (3.38).

Let us define B

T,=T;~ Ty (3.39)
Since Tj : V; — Vj, and since Vj1 C V}, it follows that TJ : V; = Vj. Thus, we
rewrite (3.38) as

n—1
K =Tin+ ) Tjn+ (K —T). (3.40)
k=0

54



Now, in order to find an explicit representation for Tj, we proceed as
follows. Assume that we have constructed 7; and 7},. Then we have

o o

= 2 Y theath(@)dl(), (3.41)

m=—o0 nNn=—0oe

and
o0

Tjn(z,y)= 3 Z Ut (@) 857 (y) - (3.42)

m=—0o0 nNn=—0oC

In order to express 7}, in terms of the basis functions ¢/ ,n € Z in V;, we use
the two-scale difference equation (2.8) satisfied by the scaling function ¢(x),
which takes the general form

¢ (x) Zhl wdl (z (3.43)
Using (3.43) in (3.42), we have

Tin(z,y) = Z tﬁanZh’k IAC )Zh’l”"qﬁg(y)
1

m=—0o0nN=—0o0

= Z Z ¢£($)¢g(y)zztﬁl hi—omhi—on, -

k=—o00l=—00

Subtracting this expression from (3.41), we have

Ti(z,y) = Tyj(z,y) — g+1(:c Y)

= Z Z RACEADD (3.44)
where we have set
f = -y Zt]+ Po—omhi—on - (3.45)

Note that the coefficient t] does not depend only on the difference of indices.
However, it is not difficult to show that the coefficient matrix {t],} is a Toeplitz
n (2 x 2) blocks. In addition, this matrix is banded, since the difference on the
right-hand side of (3.45) decays quickly as the distance |k — [| from the main
diagonal increases. Due to their banded structure, it seems best to apply the
matrices TJ directly.

When the multiple scale splitting (3.40) is used, it is also necessary to
project the particle distribution Y f,d(z — x,) onto each of the subspaces
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Viy. -y Vjgn. This is done as follows. Recall that (see equation (3.9)) the
coefficients {s]} that represent the particle distribution on V; are given by

N
sl =Y fadl(xn). (3.46)
n=1

Now use (3.43) to write
41 al j+1
spo= > fadt" (wn)
n=1
N .
= > fa) hordi(zn)
n=1 l

N .
= Z hy ok Z fn¢g (an)
l n=1

= Y hiusi. (3.47)
I

Hence, the coefficients {si“} may be computed directly from the coefficients
{s]} on the next finer scale. We thus use (3.46) to obtain the projection onto
the finest subspace Vj, then use the decomposition formula (3.47) to obtain the
projection onto the coarser subspaces Vji1,..., Vji,.

3.5 Algorithm for Nonsingular Kernels

We wish to point out that if the kernel K(x — y) is globally bounded, then
the low-frequency approximation alone provides an efficient algorithm for its
application. As examples, consider

1

K(z —y) =sin[r(z — y)], K(ﬂﬁ—y)=m-

For such kernels, the estimate |K(z —y) — Tj(x, y)| < € holds for all (z,y), and
there is no need to apply the high-frequency step. In this case, the approach
outlined in Section 3.2.1 provides an algorithm of complexity O(J log, J), where
J is the number of grid points. Here J depends only on the desired accuracy
€, and is independent of the number of particles N.
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Chapter 4

The Fast Summation Algorithm
in Higher Dimensions

In this chapter, we explain how to extend our one-dimensional scheme to higher
dimensions. The algorithm has been implemented in two dimensions, and we
give details of this and also present some numerical results. As mentioned
above, there is little here beyond the use of vector notation that is not com-
pletely analogous to the one-dimensional case, except for singular value decom-
position of the coefficient matrix (this matrix is defined by equations (4.2) and
(4.3) below).

4.1 General Description

1. Our goal is to compute the numbers {g,,}, where

gm:ZK(xm_xn)fna 1<m<N.

Here we assume that the particle locations {z,} are points in R:,d=1,2,....
We assume that the line z — y = 0 is a singularity of the kernel K(z — y), i.e.

|[K(x —y)| 200 as |z—y|—0,

ox1

Qq . .
(8%1) and |a| = oy + -+ + ag, exist and are continuous on any open set not

containing this line.

but that the partial derivatives 0*K, for |a| < M, where 0% = (i)m +et

We assume that the kernel function K assigns a single real number to
each point z € R% z # 0. For vector-valued kernels, the algorithm must be
applied separately to each component.



We assume moreover the existence of a “bandwidth” B, such that all
partial derivatives 0*K, for || = M, are uniformly bounded outside the band
|z —y| < B, ie.

|0°K(z —y)| <C for |z—y|>B,

for all multi-indices a such that |a| =

2. We choose a level of refinement (j < 0), an MRA with M vanishing
moments, and construct the projection of the kernel onto the subspace Vj,

given by
= > >t (@)l (y).

kezd 174

As discussed in Section 2.1.1, the scaling function here is a tensor product of
a one-dimensional scaling function. For example,

$L(x) = 27729270 my — ki) - 92wy — ka), k= (ki,..., ks) € Z°

where © = (71, ...,24) € R% Construction of T} requires only the computation
of the coefficients {t/}, given by

t = /kd K(xy,...,2) @272 —ny)---®2 7924 — ng)dz, necZ°

where dx = dzy - - - dxg, and ®(x) is the autocorrelation of the one-dimensional
scaling function ¢(z).

3. As in the one-dimensional case, we have an estimate of the form
|K(z —y) — Tj(z,y)| <e for|z—y|>2B,

for any € > 0, for all scales such that the scale parameter 7 < 0 is sufficiently
small.

4. The low-frequency approximation is analogous to the one-dimensional
case, requiring the application of a 2d-dimensional “matrix” to a d-dimensional
“vector”. The matrix is Toeplitz in each index, and the multiplication can be
accomplished using the FFT.

5. The high-frequency correction step is also analogous to the one-
dimensional case. The only difference is that we use a singular value decom-
position of the coefficient matrix {t/,n € Z%}, in order to express the kernel
Tj(x,y) as a product of one-dimensional kernels, which greatly facilitates the
pointwise evaluation. When d = 2, this is straightforward, and will be dis-
cussed in greater detail below. For d > 3, it is still an open question whether
or not such a decomposition is feasible.
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4.2 The Fast Summation Algorithm in Two
Dimensions

1. Our goal is to compute

9(ZTm, Ym) Z K(xm — Toy Ym — Yn) [ (Tny Yn) 1<m<N. (4.1)

n;ém

In order to approximate the kernel K(z — z',y — y'), we construct the kernel
Tj(z,y. 2" y') = 3 D thowravdh(@) 0] ()81 ()0 () - (4.2)

kK" LU

The algorithm is currently implemented using central B-splines as the scaling
function. For this choice, in two dimensions, the coefficients will be computed
according to the formula

2M—1 2m] m

t,= Z — 2( )am "0y K (27k, 2°1)QmnQn - (4.3)

Formula (4.3) is the two-dimensional analogue of (2.100).
2. The first step is to compute the low-frequency approximations

N
= Z Tj(xmaymaxnayn)fn: 1<m<N (44)

n=1

form=1,..., N, and where f, = f(x,,y,). This can be written as

G = 2 3180 (2m) ] (ym) (4.5)
k1l
where . | |
§-]7€,l = Z t‘ljcfk’,l*l’ S',Z:/’l/ (46)
kU
and
) N ] )
Siﬂ’,l’ = Z fn(/ﬁ?c’ (IH)M' (yn) . (4.7)
n=1

Equation (4.6) indicates the operation of applying a four-dimensional matrix
to a two-dimensional vector, but as the matrix is a Toeplitz this can be accom-
plished using the (two-dimensional) fast Fourier transform.

3. The high-frequency correction step requires that we evaluate the kernel
Tj(z,y,2',y") at specific locations (z,y,z',y"), wherever |(z,y) — (¢, y')| < B.
To do this, we use the trigonometric expansion of the kernel obtained Section
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2.3.3. Since we are using central B-splines as basis functions, the functions
®,,(§) are real. In this case, we can write

4T (2 x, 27y, 272, 274))

= Ioo(z,2") +2 ) cos(nmw’)opn(z,2') +2 Y cos(mmw)lno(z, 2)

n=1 m=1
+ 4 i i cos(mmw) cos(nrw') [ n(2, 2') (4.8)
m=1n=1
where
Lnn(z,2") =0 // —EENE (6 ma, ) — i) D, (6) P (n) dEdn  (4.9)
and
z = x—1, d=y—1
w = x4+, w=y+vy.

4. In two dimensions, the trigonometric series # is given by

Z t], e kEFm) (4.10)

Now suppose that the singular value decomposition of the matrix {tfcl} is
known, such that

th,= Z oul v (4.11)

where u,(:) and vl(r) denote elements of the left and right singular vectors, re-

spectively. The parameter R is the numerical rank. This is determined by
truncating the SVD expansion when we have achieved the desired accuracy (as
is implied by this remark, the two sides of equation (4.11) may agree only to
within the specified accuracy e).

Using (4.11) and (4.10) in (4.9), we have

Inal?) = }z kl// R D (6), () dE dy
= Z k)®, (2 —1)

T

> 0

r=1

Z ZUZT)(I) (' =1) (4.12)
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Defining

UD(z) = S ul®,(z - k)

k
VO = S one, (2 —1),
!

we can express I, , in the form

R
Lua(z,2) =3 o, UD (2)VI(2). (4.13)

r=1

5. Substituting (4.13) into (4.8), we obtain our final expression for the
trigonometric expansion of the kernel,

R [es)
47 Tj(2jx, 2y, 21, 2jy') = Z o, {Uér) (2) +2 Z cos(mww)Ug) (z)}
r=1

m=1

X

{VO(T) (z') +2 i cos(nww')VéT)(z')} . (4.14)

n=1

Once the functions U(")(z) and V,(”)(2') have been tabulated, the cost of eval-
uating the two-dimensional kernel (4.14) is (2R) times the cost of evaluating
a one-dimensional kernel. In practice, the summations over m and n are also
truncated, and we retain terms only for m < 3 and n < 3.

4.2.1 An Example in Two Dimensions

As our model problem in two dimensions we choose the kernel

The results are shown in the table below, where N is the number of particles,
which were distributed randomly in the unit square [0, 1] x [0, 1]. The columns
marked Ty and Tgr give the times for the low-frequency approximation and
high-frequency correction, respectively, the column marked T}, gives the total
time for the algorithm, and the column marked 7j;. gives the time required to
compute the exact expressions

e fu
" n=1 (xm - xn)z + (ym - yn)2 ’
n#Em

form=1,...,N.
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The errors are computed according to the following formulae. Suppose
that x is the “exact” N-length vector, and X is the approximation. Then we
compute the relative errors

where

1 N
2 1 12 _ _
I = el Il = il

The timings were done on 10/30/96 using a Sun Sparc-20 workstation.

‘ N ‘ TLF ‘ THF ‘ 71tot ‘ Tdir ‘ E2 ‘ Eoo ‘
64 | 0.0920 | 0.0435 | 0.1355 0.0124 | 0.27021E-04 | 0.11911E-04
128 | 0.1047 | 0.1281 | 0.2328 0.0423 | 0.29654E-04 | 0.15733E-04
256 | 0.3559 | 0.1442 | 0.5001 0.1621 | 0.31086E-04 | 0.19491E-04
512 1 0.3769 | 0.4730 | 0.8499 0.6057 | 0.71012E-05 | 0.16866E-05
1024 | 1.4692 | 0.5130 | 1.9822 2.4040 | 0.99095E-06 | 0.14316E-06
2048 | 1.5518 | 1.8517 | 3.4034 9.4216 | 0.36296E-07 | 0.44216E-08
4096 | 5.4488 | 2.1030 | 7.5518 | 38.0664 | 0.25482E-05 | 0.33993E-06
8192 | 6.3597 | 7.7037 | 14.0633 | 150.1953 | 0.20096E-05 | 0.27010E-06

Table 4.1: Implementation in two dimensions using B-splines of degree 3, break-
even at about 750 particles.
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Chapter 5

Regularization of Singular
Operators

One often encounters discrete sums that do not have a direct analogue as an
integral operator. For example, the expression

©  f(y)
Kf)(z) = / d 5.1
(KR = [ 2 (1)
requires special interpretation as an operator. By contrast, the discrete sum
N
g(xm)zan)w 1<m<N (5.2)
n=1 |~7;m - $n|
n#Em

presents no difficulties. In our approach to the computation of such sums,
we construct kernels T; : V; — V;,j € Z which are approximations of the
kernel functions that appear in the summation problem. However, it is clear
that the same approximation 7; may be used to provide a definition of the
corresponding integral operator.

Thus, for example, if we have constructed a kernel 7; such that the sum

N
g (xm) = Z T](:rm,:vn)f(a:n), 1<m<N (5.3)
e
is an approximation to (5.2), then the same kernel in the expression
o
GH@ = [ Ty dy (5.4)
—0oQ
provides a meaning to the integral operator (5.1), along with a practical com-
putational algorithm.
We may therefore view the expression (5.4) as a regularization of the op-
erator (5.1). In this chapter, we investigate the construction of regularizations
for a certain class of linear operators.



5.1 Preliminary Considerations

In order to construct a kernel 7); that represents a linear operator K on the
subspace V; of a multiresolution analysis, it is necessary only to compute the
coefficients {#/ .} that appear in the expansion

Tiwy) = 3 3 thadh(@)dh(). (5.5)

m=—00 N=—00

In general, these coefficients are computed according to the formula

on = (G K6) = [ (@) (K@) do (56)

Let us assume that ' _ ' '

(60, K67) = (dmn—n, Khp) , (5.7)
which implies that the coefficient depends only on the difference of the two
indices, . _

tom = . (5.8)
Then the kernel (5.5) has the form

o0

Ty = 3 S ol (@)d(y), (5.9)

m=—0o0 n=—0oo

where

t= [ di@)(Ko)(a) da. (5.10)

So long as (5.10) is well-defined for all n € Z, there is no difficulty in
constructing the kernel (5.9). However, for many operators K that we wish to
consider, coefficients #/ as defined by (5.10) do not exist for all integers n.

This motivates the following approach. To construct the kernel (5.9), we
must produce the appropriate sequence t ,n € Z. Let ! be given by (5.10),
whenever this expression is well-defined. For those integers n for which (5.10)
fails to exist, we will propose an alternate method for assigning a value to the
functional (¢, , K¢p) = tJ.

We now give a precise definition to the class of linear operators that
will be considered in this chapter. We assume that K commutes with the
operation of translation, that is, if 7, is the translation operator defined by
(1of)(z) = f(x — a), then K satisfies 7, K = K7,. This property implies (5.7).
We consider operators that are homogeneous of some degree, and we have

th, =27 (¢, K¢y) = 27 (d(z — n) , (K¢)(x)) = 27t (5.11)
when the operator K is homogeneous of degree a.
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For operators satisfying these conditions, the projections of the corre-
sponding kernels 7} : V; — V; have the form

T)(z,y) = 2909 (2792, 277y) (5.12)

for any j € Z, where

Te)= 3 3 tmnd(z —m)o(y—n), (5.13)

m=—0o0 N=—0oC

and the coefficients are given by the functional

ln = ( 25K¢8)a (5'14)
where o
(65, K68) = [~ ola—n)(K¢)(a) do (5.15)

whenever the right-hand side of (5.15) exists.

As examples, we consider below the following integral operators with al-
gebraic singularities

©  f(y)

(Kf)(z) = [m @y dy, a>-1 (5.16)
and o
(K@) = [ %dy, a> -1 (5.17)

For a = 0, the expression (5.15) defines a bounded operator on L?(R), provided
that we consider the principle value at x = y. When suitably scaled, this
example is known as the Hilbert transform. However, for most values of «,
the operators (5.16) and (5.17) are not bounded on L?(R). It has been shown
in [2]| that the derivative operators (d/dx)®, for o = 1,2,... also satisfy the
conditions stated above, and have representations of the form (5.12).

5.2 Classical Regularization of Divergent Inte-
grals

Our task is to give a meaning to the functional (5.14) when the integral (5.15)
is divergent. To this end, we first recall how such problems have been addressed
up to now.

As an example, consider the expression

= ola)

-0 T
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where ¢ is an infinitely differentiable function with compact support, ¢ €
C$°(R). This integral converges for all test functions ¢ that vanish in a neigh-
borhood of the origin. However, the integral diverges if ¢(0) # 0. We now
ask whether it is possible to define a functional (z7!, ) such that, for all test
functions ¢ that vanish in a neighborhood of zero, the functional has the value
given by (5.18). The functional (z~!,¢) is then called a regularization of the
divergent integral (5.18) (see e.g. [13, pp.10-12]).

The functional

(m1,¢)=/€@daz+ GMder/:O@dx, (5.19)

- X —€ X

where € is any positive real number, obviously reduces to (5.18) if ¢(0) =
Moreover, since ¢(z) — ¢(0) ~ z¢'(0) as x — 0, it follows that (5.19) is well-
defined for all ¢ € C§°(R), and we may therefore consider this functional to be
a regularization of (5.18).

More generally, consider the following integrals,

< ¢(z © o) + ¢(=2) .

[ 8D g = [T HDEIED g, (5.20
. e (@) — (=)
x © ¢(x) — o(—z

. me—}-l d.’L‘ = ‘/0 W d./L' y (521)

where m = 0,1,2,.... In order to assign a meaning to the right-hand sides of

(5.20) and (5.21) for test functions ¢ that do not vanish at z = 0, the main
idea (see e.g. [13, pp.45-82]) is to replace the numerator with a function which
has enough zeroes at the origin to insure convergence of the integral. This is
accomplished by subtracting enough terms of the Taylor series expansion of
the numerator about z = 0 to leave a remainder of order greater than or equal
to that of the demoninator. (However, in so doing, we must also take care not
to destroy the convergence at 0o.) Hence, we replace (5.20) with the functional

o) = [ i oo on -2 G0 e

and we replace (5.21) with the functional

o dr m—1 (2k+1)
(z72" 7, ¢) = /O % [ﬁb(x) — ¢(—x) — 2 lg) Q(SQT_FS!)Q;%H] - (5:23)

Although the approach outlined above is a standard method for dealing
with the regularization of divergent integrals with algebraic singularities, it
does not address the issue of numerical computation of such integrals.
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In the following section, we present a method for regularization of the in-
tegral (5.15), thus providing a meaning to the functional (5.14), which utilizes
the multiresolution approach. For integral operators with algebraic singular-
ities, our approach produces the same results as the classical regularization
method, with the additional benefit of a practical scheme for computation.
Furthermore, it appears that our approach may also be applied to classes of
operators with more general types of singularities.

5.3 A Multiresolution Approach to Regular-
ization

5.3.1 Choice of the Scaling Function

Throughout this chapter, we limit our consideration to a specific family of
MRASs, namely, those belonging to the compactly supported scaling functions
constructed by I. Daubechies [7]. These scaling functions and their autocorre-
lations were introduced in Section 2.1.4.

We recall that for the MRA with M vanishing moments, the autocorre-
lation ®(z) is supported on the interval [1 — 2M,2M — 1], and also that the
coefficients {a,,} in the two-scale difference equation (2.28) for ®(z) are given
explicitly in (2.29).

5.3.2 Two-Scale Difference Equation for the Coefficients

In this section we derive the following necessary condition on the functional
(5.14),

. Rt
27 %, = ton + B D Gom1 [tan-2ma1 + ton-142m) - (5.24)
m=1

We refer to (5.24) as the two-scale difference equation. This equation is the
tool that we will exploit for the purpose of defining the coefficient ¢, when
the integral (5.15) is divergent. If a sequence ¢, ,n € Z can be found that
satisfies (5.24), and agrees with the expression (5.15) whenever it exists, then
the corresponding kernel (5.12) is our regularization of the operator K on the
subspace V;,j € Z.

Let K be a linear, homogeneous operator that commutes with translation.
Consider the expression for the coefficient

tn = (9(x — n), (K9)(x)), (5.25)
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obtained by setting j = 0 in (5.11). The scaling function ¢(z) satisfies the
two-scale difference equation

2M—-1

=V2 Y mo(2z - k),

which we rewrite as
2M—1

¢ (x Z hisn (@

(Note that the superscript indicates the scale in the MRA.) Substituting this
expression into (5.25) and using the linearity of K, we have

2M -1
(Z hk¢2n+k: Z hy K¢l )) :
Using (5.8) this becomes
2M—12M—
= Z Z (2n+kl>K¢ )
k=0 1=0

Finally, using (5.11) we obtain

2M—-12M-1

0 0
o= 203 S bl (65 1, K6))
k=0 1=0
2M—12M—1
= 2" > hphutonir—
k=0 1=0
2M—1 1
= 2¢ Z iamt2n+m,
152m
since
2M—1-m

Ay = 2 Z hlhm—H .

Noting that ag,, = 0 for m # 0, ay = 2, and ay_s,, = ag,_1, We arrive at
equation (5.24). The coefficients {ag,—1} are given by equation (2.29).

5.3.3 Multiresolution Definition of Regularized Opera-
tors

In this section we describe an algorithm which utilizes (5.24) to compute the
coefficients ¢,,, n € Z for a linear, homogeneous operator K that commutes with
translation. This algorithm may be considered as a multiresolution definition
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for the regularization of such operators. We show its consistency with the
classical definition (see Section 5.2) in Section 5.3.4.
Step 1. Assume that we have established the asymptotic condition

1
t, =F(n)+ 0O (nZ—M) , as |n| — oo (5.26)

with some function F. (We have shown in Section 5.3.5 how to find F' when K
is an integral operator.) Using (5.26), we determine all coefficients ¢,, for large
In| as follows. Given € > 0, we choose a positive integer ng, sufficiently large
to insure that |t, — F(n)| < € whenever |n| is greater than ng. Then we set

tn =F(n), for|n|>ng. (5.27)

Step 2. Next we use (5.24) to compute {t,} for 2M < |n| < ng. This
is done in reverse order, beginning with n = +nq and ending with n = +2M.
This is made possible by the fact that for |n| > 2M, the right-hand side of
(5.24) does not contain the coefficient t,,. For |n| > 2M equation (5.24) is an
expression for tn in terms of t2n—|—1—2Ma ey t2n_1, th, t2n—|—11 e ,tgn_H_QM.

Step 3. Finally, we solve the linear system defined by (5.24) to obtain
the coefficients for |n| < 2M — 1. Coefficients in this range appear on both
sides of the two-scale difference equation (5.24). This system can be written
in matrix notation as

A= AT +Db, (5.28)

where we have set A = 27 and 7 = {t; op, ..., topr 1} In (5.28), A is
a square matrix of dimension (4M — 1), and b is a vector containing the
information obtained from the asymptotic condition (5.26). The entries of b
are combinations of the known coefficients ¢, in the range |n| > 2M .

The solution of (5.28) may be written as

7=\ —-A)""b, (5.29)

provided that A = 27% is not an eigenvalue of the matrix A.

If A is an eigenvalue of A, we proceed as follows. Let V) be the invariant
subspace belonging to the eigenvalue A\, and V- the orthogonal complement.
Suppose that the dimension of V) is r. (Recall that A is a square matrix of
dimension 4M — 1.) Let S be a matrix with (4M — 1 — r) columns that are
an orthonormal basis for Vi-. If the multiplicity of \ is also 7, then the system
(5.28) has the solution

=S5\ —STAS)"'5™D, (5.30)

if and only if b is orthogonal to every eigenvector of AT belonging to A, and
moreover the vector 7 in (5.30) is the unique solution to (5.28) that satisfies
SSTr =171, ie 7 € Vi This result is proved in the Appendix A. O
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We are now in a position to give a constructive definition of the multires-
olution regularization of the operator K.

Definition 5.3.1 If the linear system (5.28) has a solution, then we obtain the
sequence t, ,n € Z by combining the solution T with the coefficients t, ,|n| >
2M computed in Steps 1 and 2. We define the kernel (5.12) corresponding to
this sequence to be the regularization of the operator K on the subspace V;.

Example 1: For M = 1, let us write out (5.28) explicitly.

t 1/2 0 0 ty (1/2)t_3 + t_s
Mot =112 1 12| to |+ 0 ,
t 0 0 1/2]| ty + (1/2)ts

where t_3,t_o,19,t3 can be determined with any desired accuracy € from the
asymptotic condition (5.26). The eigenvalues for this matrix are {1,1/2,1/2},
corresponding to aw = 0 or 1.

Example 2: For M = 2, let us write out (5.28) explicitly.

[ 1.5 -1/16 0 0 0 0 0 0 t_3
t o 9/16 0 —-1/16 0 0 0 0 t o
ty 9/16 1 9/16 0 —1/16 0 0 t

A tp | = | -1/16 0 9/16 1 9/16 0 —1/16 to
t 0 0 —1/16 0 9/16 1 9/16 t
t 0 0 0 0 —1/16 0 9/16 t
B2 0 0 0 0 0 0—1/16__t3_
[ toe+ 2 (t_7 + 1t ) |

tog+ 9t_ —1615_7
s
+ O :
_%t5
ts + 15ls — 15t7
te + 15 (t7 +t5) — 15to

where as before the coefficients ¢, for n = 44, £5, £6, £7, £9 can be deter-
mined from the asymptotic condition (5.26). The eigenvalues for this matrix
are {1,1/2,1/4,1/4,1/8,—-1/16,—1/16}, the first four of which correspond to
a=0,1,2, or 3.
Example 3: For the system of Example(1), consider A = 1. For the
matrix
1/2 0 0
A=1(1/2 1 1/2
0 0 1/2

I
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it is readly verified that an eigenvector is [0, 1,0]”, and that the projector onto
the subspace Vi is the matrix

100 10
000=00l(1)8(1)].
0 01 01

SST =

Computing the solution (5.30) we have
t_4 200 (1/2)t_s5+t_o T3+ 2t
to =100 0 0 = 0
t 00 2 to + (1/2)t3 2ty +t3

Example 4: For the system of Example(1), consider A = 1/2. This
eigenvalue has multiplicity two, and the projector onto the subspace Vit is
given by

NERE! 1/v/3
SST—(>{1 1 1]—[1/\/31[1/\/3 1/v/3 1/V3].
3 11 1/v/3

Computing the solution (5.30) for this eigenvalue we have

t_1 9 111 (1/2)t_3+1t_9
to | = <_§) 111 0
t 11

which is an equation for determining ¢_1, g, 1 -

to+ (1/2)t3
Example 5: For the system of Example(2), consider A = 1. Analogous
to Example(3), an eigenvector is [0,0,0,1,0,0,0]”, and we have

10 000 0]

ST

OO O = OO

O OO OO
SO OO
O OO OO
OO = OO
o= O OO
_— o O O O

The matrix S(I — STAS)™1ST which appears in equation (5.30) may be com-
puted explicitly, and we have S(I — STAS)~15T =

16/17 0 0 0 0 0
47/119  55/63 —8/63 1/63  1/63  2/119
256/119 128/63 128/63 0 —16/63 —16/63 —32/119
0 0 0 0 0 0
—32/119 —16/63 —16/63 0 128/63 128/63 256/119
2/119  1/63  1/63 —8/63 55/63  47/119
0 0 0 0 0 16/17

OO O oo oo

-~
[a—y



5.3.4 Classical vs Multiresolution Regularization

Consider the integral operator

00 f(y)
K = / ——=—dy,
where o = 0,1,2,... as an example. Projection of this operator onto the

subspace V; of the MRA with M vanishing moments (see Section 5.3.1) requires
evaluation of the integral

to= [ ¢ = n)(k9)() da,

—0oQ

which can also be written as

£, = /OO 2@ =n) 4, (5.31)

—0o0 plte

where ®(z) is the autocorrelation of ¢(z) (see equation (2.56)). The support
of ®(z) is the closed interval [1 — 2M,2M — 1]. Hence the integral (5.31) is
well defined whenever |n| > 2M, since for these values of n, the support of
®(x — n) does not contain the origin.

We consider a regularization of the integral (5.31) for the coefficients
tn, |n| < 2M that parallels the classical method as outlined in Section 5.2.

If « =1,3,...s0 that (1+«) is an even, positive integer, then (5.31) may
be written as

dx , (5.32)

(2 ®(z—n)+P(z+n)
t”_/o rlta

since ®(—z) = ®(x). In accordance with the classical method, we subtract
enough terms of the Taylor expansion about zero to leave a remainder of order
(1 4+ @) in the numerator. Thus, we replace (5.32) with the functional

tn, = (x_l_o‘, Oz — n))
© dx
= A rlta

The functional (5.33) is well-defined for all n, provided that ®(z) has at least
(14 «) derivatives.

A similar situation holds when (1 + «) is odd. In this case (5.31) may be

written as o ) @ )
©P(x—n) —Plr+n
t = /0 e dz, (5.34)

(@—1)/2 g(2k)
Pz —n)+P(x+n)—2 )
k=0

5 kg?) 22| (5.33)
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and the regularization of this integral is the functional
t, = (x_l_a, Oz — n))
(a—2)/2 @(2k+1)(n)

2k+1
,;;; Qk+1) " (5:35)

= /Oooxcllfa [@(m—n)—@(x+n)—2

This functional is well-defined for all n, if ®(z) has at least (1 + «) derivatives.

Lemma 5.3.1 The classical reqularization of (5.31), given by the functionals
(5.33) or (5.835), satisfies the two-scale difference equation (5.24).

Proof: From the identity

1 2M—1

O(z) = 3 > am®(2z —m),

1-2M
(see equations 2.25 and 2.28) it follows that

1 2M—1
Pztn) = = > ap®(2z+2n—m)
2, 5M
1 2M—1
3P ) = - N 4,26 (2n —m)
1-2M
provided that the kth derivative exists.
Substituting these expressions into (5.33), we have

© dr 1
n = — m|P(2x — 2n — —P(2 2n —
t /0 x1+a2;a [®(2z — 2n — m) — ®(2z + 2n — m)

LK (20 —m) Ly o

X
& @h) |
_ 2a/°° d lza [®(z — 2n — m) — ®(z + 2n — m)
B 0o glta &M TTan—m
LR @0 —m) (5"
k=0 (2k)! 2
9-a _ © dr 1 & ) o )
b = /0 x1+a_;“m[ (x —2n+m) — ®(z + 2n — m)
(a-1)/2 BCk) (2, — m) .
-2 ; T ]
k=0 (2k)
o dxr 1
-, piray 2 Om {8z =20 —m) — &z — 20+ m)} .
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Now, since a_,, = a,,, it follows that

/Ooo 0 1S {(®(2 — 20— m) — Bz — 20+ m)} = 0.

glte 2 &
Therefore, we have

w 1 o dx
2%, = igam/o x1+a[<1>(x—2n+m)—¢(x+2n—m)

(a—1)/2 (13(2k)(2n —m)

—2 (2k)!

:Ezk]
k=0

1 1
= 5 Z Omlon—m = 5 Z Omlontm -
m m

As this result is valid for all n € Z, the two-scale difference equation (5.24) is
satisfied. The procedure for (5.35) is identical. O

Proposition 5.3.1 The classical reqularization and the multiresolution regu-
larization of (5.31) produce identical results.

Proof: The coefficients t, for |n| > 2M computed in Steps 1 and 2 of the
algorithm of Section 5.3 agree with the integral expression (5.31) to within the
chosen accuracy e. In addition, the coefficients produced by (5.33) or (5.35)
satisfy the two-scale difference equation (5.24), as is shown by Lemma(5.3.1).
Therefore, the two methods produce sequences t,,n € Z that are identical (to
within €) for |n| > 2M. However, for |n| < 2M the solution of the two-scale
difference equation, once the coefficients for |n| > 2M have been specified, is
unique only up to addition of an eigenvector of the matrix A in (5.28) belonging
to the eigenvalue 27%. Thus we now consider the coefficients in this range.

Note that the vector b which appears in (5.28) is known only approxi-
mately, since the coefficients ¢,, |n| > 2M on which it depends are computed
only to precision e. Thus, b = b(e), and because of this (5.28) is a perturbed
system (the entries of A are known exactly). However, the two-scale difference
equation (5.24), viewed as an infinite matrix, has a finite condition number
(which is in fact low) that is independent of e. Hence, as ¢ — 0,b(¢) — b
where b is the exact vector. It follows that the solution of the perturbed
system 7(e) — 7, where 7 is the solution of the unperturbed system.

In the Appendix A, it is shown that the solution 7 = {t,, |n| < 2M} to
(5.28) is orthogonal to the eigenvector of A, and that it is the unique solution
which has this property. Thus, to show that the coefficients ¢, ,|n| < 2M
produced by the two methods are identical, it is sufficient to show that the
vector 7 = {t1_onr, ..., tanr—1} produced by (5.33) or (5.35) is also orthogonal
to the eigenvector of A.
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It is shown in [2] that eigenvectors of A belonging to the eigenvalues 27
are composed of the values of the ath derivative of ®(x), taken at the integers.
That is, if

v={®@ (1 -2M),..., @ 2M - 1)},
then Ay = 27%v. Furthermore, the ath derivative ®@ (z) exists and is contin-
uous if and only if 27¢ is an eigenvalue of A, and is nondegenerate.

Hence, to prove the proposition, it is necessary and sufficient to show that

2M—1
> tn®@(n) =0, (5.36)
1-2M
where the coefficients ¢, are given by (5.33) or (5.35).

Now consider the following. Since ®(—z) = ®(z), it follows that if « is
even, then ®@(—z) = ®@(z), and if « is odd, then ®®)(—z) = —®() ().
Now, from (5.31) it follows that if « is even, then t_, = —t,, and if « is odd,
then t_,, = t,. Thus (5.36) is always satisfied. 0

Remark: The fact that the classical regularization and the multiresolu-
tion regularization of (5.31) produce identical results proves that the limit of
the regularized kernel T}, as j — —o0, is independent of the basis chosen, at
least in those cases in which both methods are applicable.

Example: Consider o = 1 in (5.33). The regularization is
© dz
t, = /0 S0 —n) + 0@ +n) - 22(n)}

Since t_,, = t,, it is sufficient to consider only n > 0. Also, since ®(0) = 1,
and ®(n) = 0 if n # 0, we have

o P -1
ty = 2/ 7@)2 dx
0 z

t, = /Oocb(m_")+®(x+n)dx n>1. (5.37)
0 >

x2

We note that, in (5.37), we must choose ®(z) that belongs to an MRA with
M > 3, since for M = 1 or 2 the function ®(z) does not have a second
derivative, and the integrals in (5.37) do not converge.

To convince the reader that the classical approach (i.e. equations (5.37))
produces the same results as the algorithm of Section 5.3.3, we have computed
the coefficients t,,, for 0 < n < 5 for the MRA with M = 3. We list the values
in the table below, rounded to three digits. The column marked “Classical”
is obtained by evaluating (5.37) using quadrature formulae, and has only two
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digits of accuracy. By contrast, the column marked “MRA” is correct to the
accuracy € chosen in Step 1 of the algorithm.

Classical MRA
—5.471 —5.508
2.359 2.375
—0.058 —0.059
0.150 0.152
0.064 0.064
0.040 0.041

TR N~ OB

5.3.5 Asymptotic Condition for Integral Operators

For integral operators, the coefficients t,,,n € Z are computed according to the
formula ' © '
t) = /_Oo K(z)®(2 72 —n)dz,

where ®(z) is the autocorrelation of the scaling function. The following propo-
sition enables us to determine the coefficients {t} for all n such that (2/n) is
sufficiently removed from a singularity of the kernel K.

Proposition 5.3.2 Let ® be the autocorrelation of a compactly supported scal-
ing function in an MRA with M vanishing moments. Let I} denote the support
interval of ®(27x —n). Then

th = 9K (2n) + €l , (5.38)

where -
) ) Km

|E%| < 2(m—|—1)gcm sup | ‘(€)|
ceri !

for1 <m < 2M. The constant C,, depends on ® but not on K.

: (5.39)

Proof: Expanding K (z) in a Taylor series about the point (2/n) we have

KO0, K(e

m!

—2in)t + (x — 29n)™

1=0
where 1 < m < 2M. Substituting this expansion into (2.56), we have

m=1 (1) 2] oo , . ,
=y — n) / 279z —n)'®(2 7 —n)dz + £,

1=0
where

gl = omi /oo w(?‘% —n)"®(27z —n)dz. (5.40)

" —00 m'
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With the change of variable y = 277z — n this reduces to

—1 ;
_ m—1 ge(l) (93 oo .
6= Y T gws [* o)y 1o
1=0 : T
= 2K(2n)+¢€l,

which follows from Proposition(2.1.1), since m — 1 < 2M — 1.

Now let us consider the error term (5.40). Since the integrand vanishes
outside the support interval I, we have

. e K(m) n . .
lel] < 2"”/ |7$€)||2_7x—n|m|¢(2_7x—n)|dx
—00 m.

. K(m) . .
< 2™ sup |7'(€)| / 2772 — n|™®(277x — n)|dx
ceri !

< 20 sup B @) ,( )‘/|y| [2(y)| dy -
ecri m:

To complete the proof, set

C = [ lal"|®(x)|ds
[ [ 1almé(@ + n)llsw)| dyda
[ [l + )6 (@)l 6(v)]| dy d

S (1) Jlel ot ds [ 1166
< é (7:;’) CnnCr

where we have used Lemma(2.2.2). O

IN

IN

IN

5.4 Two-Scale Difference Equation in the Fourier
Domain
In this section we introduce an operator on the space L?([0, 27]) of 2m-periodic

functions that is an anologue of the two-scale difference equation (5.24).
Define the formal trigonometric series

&) = itnemﬁ, (5.41)
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where t,,, n € Z are the coefficients that satisfy the two-scale difference equation
(5.24). Recall the definition of the trigonometric series My(€) from equation
(2.17),

1 & ;
=1 Z A e'™
which for the MRAs under consideration (see Section 5.3.1) has the form

MO(&) — [ez§ (2m-1) +ez§(1 2m)]

Aom—

ME I ME

+ agm—1 cos[(2m — 1)&]. (5.42)

DN — [\')ll—‘
DN | .Jklr—*

1

3
H

where the coefficients ao,,_1 are given in (2.29). We show that the two-scale
difference equation (5.24) can be expressed as an operator equation. We state
this as a proposition.

Proposition 5.4.1 Define the operator My on L*([0,27]) by

(Mof)(€) = Mo(£/2)(£/2) + Mo(§/2 + m) f(£/2+ 7). (5.43)

Then
(Mot)(€) = 274(¢) (5.44)

where t(€) is the trigonometric series (5.41).

Proof: Formally multiply the two series My (&) and #(€) to obtain

n 1 in
MO (g)t(f) = Z Z € ¢ Z Omtn—m -
Now form the sum

(Mot)(€) = Mo(£/2)H(€/2) + Mo(€/2 + m)E(E/2 + )
_ % Z einé/2 Z Aot + % Z ein(&/2+m) Z Gontr—m

= 411:2 int/2 ]-+ Zamnm
= Zemgza'mthz m -

Using the fact that as, = 0 if m #0, ag = 2, and ay_9y, = aom—1, We have

(Mot) (& Zemf {th +5 Z Aom—1 [ten—2m+1 + ton— 1+2m]} (5.45)

m=1
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Comparing (5.45) to (5.24), we have
(M) (€) = D ™27ty = 27°H(¢),

which proves the proposition. O

Some relevant properties of this operator are given by the following propo-
sition.

Proposition 5.4.2 The adjoint of M, is the operator My, defined by
(Mg g)(§) = 2My(£)g(2€), (5.46)

and we also have
| Mo]| = 2. (5.47)

Proof: The adjoint is defined by the equation

(Mof,9) = (f, Myg)

where f and g are 27-periodic functions in L?([0, 27]). Using (5.43), we com-
pute

(Mof.) = [ (Mur)(€)ale) de
- | 2”[Mo(s/2> (6/2)+ Malg/2+ m) £ (€/2 + mIg(€) de
- 2/ Mo (€) £(€)g(26) d§+2/ Mo () f(€)g(2€ — 2m) de .

But since ¢ is 27-periodic, we have

2w

(Mof,g9) = 2 Mo (&) f(&)g(28) dE

= /0 7€) (M5)(©) de

which implies (5.46) (it can be seen from the explicit formula (5.42) that My(&)
is real).

To prove (5.47), we make use of the well-known fact that || M| = || M|,
and compute the norm of the adjoint, which is easier. The following proof
makes use of standard arguments, which can be found e.g. in [15, pp.55-56].

First, consider

27
IMsgl? = [ (Ms)(€)/? de
= [ ay(e)g(26) P de
< asup | M) [ lo(2e) de.
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But sup | My(€)|*> = 1, so we have
1M59l1* < 4llg]l*,

which implies that || M| < 2.
Next, we make use of the fact that My(0) = 1. Define the sequence of
functions g, (&) = v/n if |£] < 1/n,0 otherwise. Then we have

IM5al2 = [ 1(Ms,)(©)[ e
1/2n
= 0 [ [2Mo(€) P de,

1/2n

and by the continuity of M we have

| Mg gnll”> = 12Mo(0)> =4, asn — cc.
This implies that ||Mg|| > 2, and hence || M| = 2. O
Corollary 5.4.1 If X is an eigenvalue of My, then || < 2.

Proof: This follows immediately from (5.47), since |A| < || Mp]|. O
Remark: Corollary(5.4.1) shows that, if A is an eigenvalue of My, and A\ = 27,
then o > —1.

The operator M, has been considered in [6] and [19], for the eigenvalue
2% = 1, in connection with the construction of orthonormal wavelet bases.
More generally, the operator equation (5.41) has been considered in [2] for
eigenvalues 27* = 1/2,1/4, ..., corresponding to « = 1,2,..., in connection
with differential operators.

We now show that A = 1 is always an eigenvalue of the operator (5.43).
We recall equation (2.18),

Mo(&) + Mo(§+m) =1.
Comparing this to (5.43), it is easily verified that #(£) = 1 satisfies (5.44) with

27* = 1. This trigonometric polynomial corresponds to the coefficient sequence
. 1, n=0
"T10, n#0
and the corresponding kernel is
T(z,y)= > D tmad(z—m)op(y—n) =3 ¢z —n)dly —n),

which is the projector onto the subspace V; (see Section 2.2.1 and equation
(2.42)).

Our interest in the operator M, is summed up in the following proposi-
tions, the first of which is essentially a restatement of Proposition(5.4.1).
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Proposition 5.4.3 Let K be a linear, homogeneous operator that commutes
with translation. If the quantities

te=[ 6@ —n)(Ko)()de
are well-defined for every integer n, then the series f(f) = Y t,e™ satisfies the
etgenvalue equation

(Mof) () = 27(€) -

Thus, the sequence ¢, ,n € Z may be identified with a trigonometric series
£(¢), which is an eigenvector of the operator M. The question therefore arises
whether or not the regularization produced by the algorithm of Section 5.3.3
is an eigenvector of M.

Proposition 5.4.4 Let K be a linear operator that is homogeneous of degree
a and commutes with translation. Let t,,,n € Z be the regularization computed
according to the algorithm of Section 5.3.3. Let t(€) be the formal trigonometric
series Y t,e™. If 2% is not an eigenvalue of the matriz A, then t satisfies the
ergenvalue equation

(Mot) (&) = 27(€) -

If 2= 4s an eigenvalue of A, then t satisfies the equation

(Mo)(€) = 27 (&) + (&), (5.48)

where r(€) is a trigonometric polynomial, and (Myr)(§) = 2% (§). Further-

more, we have
2M—1

T(é-) = Z Tnemsa

1-2M

where the vector v = {ri_apr, ... ,Top—1} 1S given by
b— (M — A7 =r.

Thus, if the system (5.28) has a solution, then r = 0, and in place of (5.48)
we have

(Mof) () = 271(€).-

Proof: Let us define the trigonometric series o and trigonometric polynomial
T by,

o(&) = one™, Whereanz{ 0, 1n‘|<2M
and —_
T(E) = Y tne™.
1—2M
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Then (&) = o (€) + 7(£). We also define the trigonometric polynomial

2M—1

bE) = Y be™,

1-2M

where b = {by opr,...,bopsr 1} is the vector that appears in equation (5.28).
Put A\ = 27%. Then
M()U = Ao+ b,

and also
M()T = AT,

where A is the matrix that appears in (5.28). If A is not an eigenvalue of A,
then b — (Al — A)T = 0, so that A7 = A7 — b. If A is an eigenvalue of A, then
b— (A —A)T = r, where Ar = Ar (see the Appendix A), so that AT = r+A7—b.
In the first case, we have

~

Myt = Myo + Myt
(Ad+0b) + (A7 =)
Ao+ 1)

AL

In the second case, we have

Myt = Myo + Myt
= (Ao+b)+ (r+Ar—b)
= Mo+7)+7r
= M+,

which proves the proposition. O
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Appendix A

Solution of the System
A =Ax + b

In this appendix we consider solution of a linear system
Az =Ax+b, (A1)

where A is a square, diagonalizable matrix, but is otherwise arbitrary. We
assume that )\ is an eigenvalue of A (otherwise there is no difficulty). When A
is symmetric, the situation is well understood.

In the symmetric case, invariant subspaces belonging to distinct eigen-
values are orthogonal. If a symmetric matrix A has m distinct eigenvalues
Aty - -+, Am, Where m < n, and if P; is the projector onto the invariant subspace
belonging to );, then we have the operator identity

I:P1+"'+Pma
called a partition of unity. Moreover, the system
iz =Az +b (A.2)

has a solution if and only if P;b = 0, and the solution is unique up to addition
of an eigenvector of A belonging to \;.

It will be shown below that, even if A is not symmetric, a sequence of
matrices D; can be constructed that satisfies

I:D1++Dm7

the system (A.2) has a solution if and only if D;b = 0, and the solution is
unique up to addition of an eigenvector of A belonging to A;.

The matrices D; imitate the projection matrices P; in that they are idem-
potent (D? = D;), and satisfy D;z = z < z = P,xz. However, they are not
symmetric unless A is symmetric, in which case D; = P;.

In this appendix, we prove the following proposition.



Proposition A.0.5 Let A be a diagonalizable (n x n) matriz. Let Ai,..., Ay,
be the distinct eigenvalues of A, where m < n. Let V; be the invariant subspace
of A belonging to X\;. Let U; be the invariant subspace of AT belonging to ;.
Let D; be the unique (n X n) matriz that satisfies

veVie Dy=wv, (A.3)
and
Then
and there exists a unique vector x that satisfies x L V; and
A =Ax+b (A.6)

if and only iof D;b = 0. When this is the case, x is given by

where S; is a matrix whose columns form an orthonormal basis for the orthog-
onal complement of V;.

The proof of the proposition will be given below after we have established
several lemmas.

Let us choose a fixed index i from the list, s € {1,...,m}. In what follows,
our notation will be simplified if we suppress the subscript, yet keeping in mind
all the while that we are discussing a fixed eigenvalue of A, together with its
invariant subspace, etc. Thus, we understand that A= \;, V =V, and U = U,.
We also take V1 and U+ to stand for the orthogonal complements of U; and
V;, respectively, and let S = S; be a matrix whose columns are an orthonormal
basis for V*+. Then STS = I, and SS7T is the projector onto V*. In the
following lemma, we keep in mind that D = D,.

Lemma A.0.1 There exists a unique matriz D that satisfiesv € V & Dv = v,
andu L U < Du=0.

Proof: We show how to construct D. Let R be a matrix with linearly inde-
pendent columns that are a basis for V', and let L be a matrix with linearly
independent columns that are a basis for U. By definition, we have

AR = )R, LTA=\L". (A.8)

We also have the following expressions for the projectors Pr and Pp onto the
column spaces of R and L, i.e. onto V and U, respectively (see e.g. [17, p.8]),

Pr=R(R"R)'R", P,=LL"L)'L". (A.9)
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Now set
D=R(L"R) 'L, (A.10)

where the linear independence of the columns of R and L implies the exis-
tence of the inverse. We now show that the matrix in (A.10) has the required
properties.

First note that u L U if and only if LTu = 0, which is a simple consequence
of the definition of L, but this implies that v | U < Du = 0.

To show that v € V & Dv = v, we have

PrD = [R(R"R)'RTY)[R(L*R)™'L"]
= R(R"R)R'R)(L"R)™'L"
= R(L"R)™'L" =D,

and also

DPp = [R(L"R)"'L"|[R(R"R)™'R"]
= R(L"R)"'(L"R)(R"R)"'R"
= R(R"R)™'R" = Py.
Now, if Pgv = v, then P = DPg implies that v = Pgrv = DPrv = Duw.
Conversely, if Dv = v, then D = PrD implies that v = Dv = PrDv = Ppgv.
Hence, Dv =v & Prpv=v & veV.

To show that D is unique, we note that the dimension of U is equal to
the dimension of V', whence it follows that

dim(V) 4+ dim(U*) = n.

Since v € V = Dv = v and u € Ut = Du = 0, it follows that the null
space of D is U+ and the range of D is V. As we have specified its nullspace,
and specified the value it assigns to each element of its range, the matrix D is
uniquely determined. O

Lemma A.0.2 The matriz D satisfies D?> = D, and

AD=DA=AD. (A.11)

Proof: We verify directly that D is idempotent,

D? = [R(L*R) 'LT|[R(L*R) 'L"]
R(L*R)™L*R)(L*R)'L”
= R(L"R)"'L"=D.
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Next, use (A.8) to compute

AD = A[R(LR) 'L = (AR)(L"R) 'L = AR(L"R)'L" = \D,
DA = [R(L"R) 'LTJA=R(L"R) *(L"A) = R(L"R) 'A\L" = \D,

which proves (A.11). O

Lemma A.0.3 Let v be an eigenvector of A. If v belongs to A, i.e. Av = Av,
then Dv = v. Ifv belongs to any eigenvalue of A distinct from X\, then Dv = 0.

Proof: If Av = Av, then by definition of the projector Pg we have Pgrv = v.
Hence by Lemma(A.0.1) we have Dv = v. Now suppose that Av = A\gv, where
Ao # A. Then we have

D(Av) = D(X\gv) = Ao(Dv),
and also using (A.11) we have
D(Av) = (DA)v = A(Dv).
Subtracting these two equations, we obtain
0= (A= Xo)Dv,
which implies that Dv = 0, since (A — Ag) # 0. O
Lemma A.0.4 Let B = STAS. Then X is not an eigenvalue of B.

Proof: Let y be any vector with dimension equal to the rank of S. Then
(M — B)y = (M — STAS)y = ST(\ — A)Sy,
since STS = I. Let x = Sy. Then x has length n, and we have
(M —B)y= ST\ — A)x. (A.12)

Now z is a vector in the space spanned by the columns of S, which is to say
that x € V!, and if y # 0 then z # 0. But then (A — A)z does not vanish,
for if so then x € V. Thus, the right-hand side of (A.12) vanishes only when
the vector v = (A — A)x satisfies STv = 0. But this means that v L V*,
equivalently v € V| which in turn implies that x satisfies

(M — A’z =0.

However, this equation has a non-zero solution if and only if X\ is degenerate,
but as we have assumed that A is diagonalizable this is not the case. Thus
the right-hand side of (A.12) is nonzero for y # 0, and therefore A is not an
eigenvalue of B. O
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Lemma A.0.5 The following equation holds,
D=1—(M—ASM\ —STAS) s, (A.13)

Proof: Let D; = I — (A — A)S(M\ —STAS)~1ST. We show that the nullspace
and the range of D and D; are identical, and furthermore that for all z in the
range of D, we have Dx = D;x, whence it must be the case that D = D;.

It has been shown in the proof of Lemma(A.0.1) that the nullspace of D
is U+, the range of D is V,and Dx =z forallz € V.

Now consider D;. If z € V, then by definition we have STz = 0. Hence

Dz =x— (M — ASW - STAS) STz = 2.

Since C" is equal to the direct sum of the nullspace of (Al — AT) and the range
of (AI — A), it follows that the range of (\I — A) is U*. Thus for u € U+,
u # 0, there exists a unique x € V* such that u = (A\[ — A)z. Since SSTx = z,
we have
u= (M —A)SS"x,

STy = [ST(AT — A)S)S"x = (A — STAS)S" z,

and using Lemma(A.0.4) we can invert (A] — ST AS) to obtain
STy = (M - STAS) ST,
SSTr =2 =85\ - STAS)'STu.

Now we have

Diu = u— (M —A)SW\ — STAS)*STu
= u—(A[—-A)zx=0.
Since u € U+ was arbitrary, we conclude that the nullspace of D; is U, that

the range of D is V, and furthermore that Dyx = Dz for all x € V. a
Proof of the Proposition: Equations (A.3) and (A.4) have been proved
by Lemma(A.0.1).
To prove (A.5) we note that, since A is diagonalizable, there exists a basis
of eigenvectors. To simplify the notation, we assume without loss of generality
that m = n. Then for each vector x, we have

T=cv+ -+ CpUp, (A.14)

for some sequence of scalars cy, ..., c,, where Av; = \v;. Multiplying (A.14)
from the left by D;, we have

Dz = Di(civy + -+ + cpvn)
Cl(DZ"Ul) +---+ Cn(Di’Un)

= GCU;,
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since by Lemma(A.0.3) D,v; = 0 if j # ¢ and D;v; = v;. It follows that (A.14)
may be written as

r=Dix+---+ D,x,
which implies the identity (A.5).

We now investigate the solution of (A.6). First note that Lemma(A.0.4)
implies the existence of the inverse in (A.7). Write

r=b— (M — A)z. (A.15)

Now, z is a solution to (A.6) if and only if 7 = 0 in (A.15). Substituting the
expression (A.7) for z, equation (A.15) becomes

r = b—(\NI—A)x
= b— (NI — A)S;(MI — STAS;)1STh
= [I— (NI —A)S;(\I — STAS)™'STb
Diba

where we have used Lemma(A.0.5). Thus r =0 < D;b = 0.
To show that the solution z L V;, we recall that ST S; = I and compute

= Si(STS;)(\I — SFAS;)~1STh

Thus, z L V; since S;S] is the projector onto the orthogonal complement of
Vi.

Finally, if £ is any vector that satisfies £ 1 V; and \;§ = A€ + b, then we
have

NI=A)z-¢& =0
ST = A)(SiST )z =€) = 0
(NI — S/ AS)S{ (x—€) = 0

which implies that S} (z — &) = 0 since (MI — SPAS;) is nonsingular. This

means that x — & € V;, but we also have x — & L V] since both z and & are
orthogonal to V;. Therefore x — & = 0, and z is unique. O
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Appendix B

Explicit Expression for By, ()

In this appendix we derive explicit expressions for the functions

o [ A — ) B € 4 dg. (B1)

Bm’n (I) 2T

These are (Fourier transforms of) the functions &, (£) introduced in Section
2.3.3, equation (2.67), in connection with the trigonometric expansion of a
kernel. See also equation (3.23). Equation (B.1) corresponds to ®,, when the
basis function is the central B-spline 3™ (x).

It will be more convenient for the derivation to use the B-spline N,,(z),
in place of 3™ (z). This notation is used by some authors (e.g. [5]) to denote
the spline which is piecewise polynomial of degree (m — 1), and is supported
on the interval [0, m]. The relationship between N,,(z) and 3™ (z) is

B (z) = Nz +m/2).
It follows from this relationship that
N (€ = n) Ny (€ + ) = B D (¢ — n) 8D (¢ + ).
Thus, it is sufficient to prove the following proposition.

Proposition B.0.6 For m > 1, let N,,,(x) denote the spline function which is
piecewise polynomial of degree (m — 1), and which vanishes outside the interval
[0,m]. Define

1 0 N
Bino1n(@) = 5- / e TE N, (€ — ) N (€ + ni) dE (B.2)
Then, for n > 1, we have
m— m k m+k
a'mk inTT m—k _—innx d
Bo10( Z an RN Yt [e + (=)™ e ] <%> Nop (z +m),

(B.3)



where ( oy
m—14+k)!
am,k; = m . (B4)

Note that the spline Ny, (x4 m) is equal to the central B-spline of degree
(2m —1).

Example: Take m = 4. The spline Ny(z + 2) is equal to the central
B-spline 3 (). When n = 0, it is obvious that

Buy(z) = Ng(z +4) = (),

which is the autocorrelation of Ny(z). If n > 1, then using the formula (B.3),
we have Bj,(z) =

cos(nmz) d*  sin(nmz) d®  Scos(nmx) d° | 5sin(nmz) d 40 ().
8(nm)* dz*  4(nm)5 dx® 16(nm)¢ dzb 16(nm)7 dz”

Explicit expressions for the various derivatives of the central B-spline of degree
seven are listed in the following table. We only consider z > 0 since the
central B-splines are even functions. Note also that the last column is piecewise
constant, thus the seventh derivative does not exist at integer points, but since
it is multiplied by the term sin(nmz), which is zero at integer points, this does
not cause any discontinuity in the function By, (z).

Interval 4th 5th 6th 7th
0<z<1 B3 — 1027 + 3 24?2 — 20z 35z —20 35

1<z<2|—22°4182% — 28z +12 —212? + 362 — 28 —2lz +36 —21

2<z<3| Iz%-102%+28z -2  Iz2-200+428 Tz—20 7
3<z<4| —p+22* -8 +% 2P +4r-8  —z+4 -1

We now state and prove three lemmas which will be used in the derivation
of (B.3).

Lemma B.0.6 Let A denote the backward difference operator. Then we can

write . . . .
(€78 — 2 4 )memi2é = N\2me=it(@tm) (B.5)

Proof: The operator A™ is defined recursively by
Af(z) = f(z)—flz—1),
A™f(z) = A(A™f(2)) .
It follows from this that

Amf(@)= 3 (TZ) (1) flx=n).

n=0
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To prove the lemma, we use induction. First, consider
(e—zf — 24+ ei{)e—i;c{ — e—if(w—H) . 2e—if$ + e—z{(w—l)
A2e—i§(w+1) ]

(In what follows, the algebra is somewhat tedious but entirely straightforward,
and for the most part has been omitted.) Now, assume that (B.5) holds, and
compute

Nmtl
e -2+ e’g)m et

(-
— (671'5 —24 eif) AQme—ig(;H_m)
(-

) 2m om )
— 24 ezf) Z ( )(_1)ne—z§(z+m—n)

(&

n=0 n

2m 2
_ Z ( m) (_l)n [efiﬁ(w-l—m-i—lfn) — 9¢ ¥(zt+m—n) + e é(z+m—1-n)

n=0 n
_ 2mz+2 <2m + 2) (_1)ne—i§($+m+1—n)
n=0 n

_ 2m+2 _ —i&(x+m+1
A e H( ),

which establishes (B.5) for arbitrary m. O

Lemma B.0.7 Define R,,(z) =1/2™(z+1)™ , for m > 1. This function has
the partial fraction decomposition

Fon2) = (—1>m§am,k {( L, (‘Z}H)Z"“} B9

z 4 1)m—k

where ( k—1)!
m—+ kg —1)!

Proof: Defining f(z) = 1/2™, we compute

(m+k—1)(=1)
(m—1)!  zmtk’

O

Expanding R,,(z) about z = 0, we have
f(z+1)
Zm
1 & M) 4,

= z
2™ = k!

[e.e]
— Z am,k(—l)kzk_m .
k=0

Rn(z) =
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Similarly, expanding R,,(z) about z = —1, we have

Rn(z) =

The partial fraction decomposition is the sum of the singular parts of these
two expansions, which consists of the first (m — 1) terms of each expansion.
Combining these two finite sums gives (B.6). O

In (B.8), we consider the “function” F,,(z) as a formal expression only,
which will be useful later on. We do not claim that the integral converges for
all positive integers m.

Lemma B.0.8 Define

1 [oo g it
Fm(gc)=%/_oo g, m>1. (B.8)

These functions are related to the B-splines through the equation
A"Fp(z) = (=)™ Np(z), ae. (B.9)

Proof: We first note that for m = 1, the integral is well-known, and we have

Fi(z) = _—7’/ S e - Tl ion(). (B.10)
m Jo £ 2
An integration by parts yields the recurrence formula,
Fiu(z) = n:xlpm,l(x), m>2. (B.11)

We first verify that AFy(z) = —iN;(x), where Ni(z) = X[o,1). To do this, we
simply note that

1 1 1 0<zr<l1
—Asgn(z) = = [sgn(z) —sgn(z —1)] =< 1/2 ;x=0o0r1
2 2 .

0 ,otherwise

Thus, it follows that AF;(z) = —iN;y(z), for all z except x = 0 or z = 1.
In order to proceed with our induction proof, we make use of the following
recurrence formula satisfied by the B-splines (see e.g. [5, p.86]),

x m—zx
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With this in hand, assume that (B.9) holds for index m — 1, and use (B.11) to
compute

—ix

AmFm(ac) = A" Fm_l(l‘)

m-—1
—1

© L (M) e

m —

_ m__i 1 {(())xAmFm_l(x) n (T) AR (x— 1)} .

Here we have used the product formula for the backward difference operator,
as well as the fact that A"z =0, for n > 2. Now we have

?

m _ — m m—1 _

A"Fp(n) = —— (&A™ Fry(2) + mA™ Fpyy(z — 1)}

- _Z_xl [A™ T Fy (2) = A"V (3 — 1)]
m— Am lFm 1(11) - 1)
- — {xAm Yo (z) + (m — 2)A™ 'Fp_y(x — 1)}
yro m—z
= ( i) {m )+m_1Nm1($—1)}
= (=)"Nu(z),
where we have used (B.12) and our induction hypothesis. O

Proof of Proposition: Making the change of variable £ < £ + nx, and
using the formula

Nle) = (00)" = (2]

we can rewrite (B.2) as

; 1 oo (6 —1\"( e% -1 \"
mchm_ n - / —iz§ d
¢ 1n(7) o1 J oo ( i€ ) (—2(§ + 2n7r)) ¢

e (-2 e)”
o0

2r J- [—&(€ + 2nm)]™

Using Lemma(B.0.6), this equality can be written as

eimrmeil,n (.’13)

1 o A2me —i&(z+m)
o [ e
21 J—oo [—€(& + 2nm)]

= NGz +m),
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where we have put

1 foo e~iE
Gmale) = 57 /,oo [—€£(& + 2nm)]™ at-

Now, using Lemma(B.0.7), we can express the denominator of the integrand
in the form

[—5(5+12mr)1m B ((_1))mR <%>

_ m— U 1 (_1)m—k
- Z 27171' m+k {(5 + 277,7T)m7k + é‘mfk } ’

Using this equality, we can write

1 o) efi:cﬁ

m—
_ Om,k omi —k
G —Z T RS A =) ="

de .

For convenience, let us introduce the functions

F()_i/“’em&dg k> 1
kl‘_QTf —o0 fk ’ -

Then, using the easily verified identity
Ae?m’nxf(a:) — e27rinzAf(x) ,

we can write

m—1
INTT CLm’ TINT m— m
(& Bmfl,n(x) = 1;_0: W [62 + (—1) k] AQ Fm_k(aH—m). (B13)

Using Lemma(B.0.8), we have
A" Fr j(x) = A™RFATTRE = (=)™ FAT™TEN,, ()
The derivative formula N;,(z) = AN,, 1(z) is well-known, and can be applied

recursively to obtain

AN, (1) = ( d‘i>m+k Nop (2) -

Finally, substitute the last two equations into (B.13) to obtain (B.3). O
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