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Coefficients of PDE’s are often changing across many spatial or temporal scales, whereas
we might be interested in the behavior of the solution only on some relatively coarse scale.
The multiresolution strategy for reduction and homogenization provides a method for finding
an equation for the projection of the solution to a coarse scale. This equation explicitly
incorporates the fine-scale behavior of the coefficients.

We present the multiresolution strategy for reduction and homogenization of differential
equations, and apply it to linear wave equations in which the coefficients describe a layered
medium (the problem reduces to a system of ordinary differential equations in this case) and
to elliptic partial differential equations. For the layered-medium wave equations, we discuss
and compare the multiresolution approach with classical techniques. For elliptic operators,
it is known that the non-standard form has fast off-diagonal decay and the rate of decay
is controlled by the number of vanishing moments of the wavelet basis. We prove that if an
appropriate (e.g. high order) basis is used, the reduction procedure preserves the rate of decay
over any finite number of scales and, therefore, results in sparse matrices for computational
purposes. Furthermore, the reduction procedure approximately preserves small eigevenvalues
of strictly elliptic operators. We also introduce a modified reduction procedure which preserves
the small eigenvalues with greater accuracy than the usual reduction procedure and obtain

estimates for the perturbation of those eigenvalues.
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INTRODUCTION

The problem of capturing the influence of fine and intermediate scales on a coarse scale is
generally known as that of homogenization. For example, the Earth’s crust contains com-
plicated layers of rock ranging in size from sub-millimeters to meters or more in thickness,
and long-wavelength (relative to the size of the smallest layers) waves exhibit behavior on the
macroscale which is influenced by the microscale structure of the layers.

The motivation for studying problems of this kind is that, in the physical world, coarse
scales may be easier or less costly to influence and observe than fine and intermediate scales
and, in the mathematical models, solutions on coarse scales require significantly fewer oper-
ations to compute. Additionally, the parameters of interest may only be observable on the
coarse scale, but the interactions which determine the values of these parameters may occur
on many scales.

The mathematical difficulty of the homogenization problem is rooted in the fact that the
coefficients on fine and intermediate scales affect the coarse-scale behavior of the solution
in complicated, non-linear ways. Because of this, simple projection of the coefficients to the
coarse scale of interest is usually not sufficient to incorporate the fine-scale behavior. Our goal
is to write effective equations on the coarse scale which account for the fine and intermediate
scales’ influence on the coarse scale solution.

Typically, such problems were addressed by using asymptotic methods or weak limits, see
for example, [8], [24], [36], [27], [13] and references therein. The basic limitation of these
methods is that they require the fine scale behavior to be fairly well separated from the
behavior on the coarser scales, so that small parameters may be found in the problem.

Recently, a multiresolution strategy for homogenization has been proposed in [10]. Using
the notion of Multiresolution Analysis (MRA) (see Appendix A), the transition between two

adjacent scales is considered explicitly. Namely, one obtains an equation for the projection



of the solution on the coarser scale. This procedure (the so-called reduction) may then be
repeated over many scales and, thus, does not require the small parameter assumptions typical
for asymptotic methods.

The basic step of the reduction involves computing a Schur complement. (The use of the
Schur complement in multilevel methods is not new and plays a role in multigrid and domain
decomposition methods (see e.g. [18], [14], [33]). Steinberg and McCoy in [35] use the Schur
complement for multiresolution effective medium computations. Additionally, Knapek in [26]
has used the Schur complement for a multigrid-based homogenization technique. Two prob-
lems have to be addressed in order for the multiresolution strategy for homogenization to be
a practical method. First, the transition between the two scales has to be computationally
efficient. However, simply truncating the matrices, as suggested in some of the references
mentioned above, is not satisfactory since there is no control of the quality of the approxi-
mation. Second, the form of equations must be preserved so that one can use the reduction
step in a recursive manner. By the “form of the equations” we understand either algebraic
form or some alternative algebraic structure. The only requirement is that it may be used
recursively. The meaning of this remark will become clear further in this Thesis.

In [10] the multiresolution strategy for reduction and homogenization has been applied to
a system of linear ordinary differential equations. It is observed in [10] that the transition
between two consecutive scales may be achieved by eliminating variables locally and that a

certain algebraic form of the equations is preserved, thus permitting a multiscale reduction.

We briefly outline the structure of this Thesis.

In Chapter 1, we introduce the multiresolution approach and compare it to existing ap-
proaches for homogenization. The results in Section 1.4 concerning homogenization of the
acoustic equations are new.

Chapter 2 describes the multiresolution approach in the context of elliptic PDE’s. Nu-
merical as well as analytical results are presented. The results of this Chapter are new.

Chapter 3 deals with certain classes of matrices. The results of this chapter are provide a

foundation for the results in Chapter 2. The theorems in this chapter are new in that they



constitute an extension of the results obtained by P. Tchamitchian [37] and S. Jaffard [21].
Finally, Chapter 4 provides a summary of the results of this Thesis and describe directions

for future work.



CHAPTER 1

MULTIRESOLUTION REDUCTION AND HOMOGENIZATION

In this chapter, we start by introducing the homogenization problem in the classical context
and presenting some existing approaches to the problem. The classical approaches we consider
are limited in their application to PDE’s in that they require separation of fine and coarse
scales and do not permit intermediate scales in the problem. We then introduce the multireso-
lution homogenization method, which allows for coefficients which vary on intermediate scales,
and compare it to the existing classical approaches on a one-dimensional example. Since the
multiresolution homogenization scheme allows one to incorporate intermediate scales and in
this sense is more general than the classical approaches, the purpose of this comparison is
to connect the multiresolution and classical approachs in parameter regimes where both are
valid and show that classical results may be achieved using the multiresolution approach.

We demonstrate the classical techniques on a simple one-dimensional problem. In the
parameter ranges where the classical methods are valid, the multiresolution approach gives
the same results for the simple one-dimensional problem, but does not have the restrictions on
separation of scales that the classical methods have. Thus, the result of the multiresolution
method is more general in that we may apply the multiresolution technique to problems with
a wider class of coefficients. We emphasize that the one-dimensional example is meant to
provide a demonstration of the techniques we consider.

We also demonstrate this connection between the classical techniques and the multireso-
lution method for the layered-medium acoustic wave equation as well, a problem which has
been studied in great detail for many years. We find that the multiresolution approach agrees

with the classical approaches in parameter regimes where those approaches are valid.



1.1 Classical Homogenization

Homogenization in the context of differential equations refers to the problem posed by the
presence of disparate scales in coeflicients of the equation and its solutions. Computationally,
this presents a difficulty because the microstructure of the coeflicients may combine in a
non-linear fashion to produce macroscale effects on the solution.

We use the term classical homogenization to refer to a limit procedure or asymptotic
analysis of a differential equation in which the small parameter describes the size of the
features in the coefficients relative to the scale of the solution. One then considers a limit in
this small parameter, and determines the effective coefficients.

The classical techniques are in no way limited to one-dimensional problems, or differential
equations (see e.g. [24], [8]). Also, periodicity of the coefficients is not strictly required for
the classical techniques in one dimension. However, in multiple dimensions, the classical
techniques we describe become difficult or impossible to apply if periodicity of the coefficients
is not required. Therefore, we study a one-dimensional example with periodic coeflicients in
this section in order to illustrate the main idea.

We study the model problem

d d

—E(&(x)—u(x)) = f(z), a(z)>0, (1.1.1)

on the interval [0, 1] with Dirichlet boundary conditions. If the function a(z) is non-constant
and periodic with period € << 1, then the fine-scale feature-size of the coefficients d(z) may
be thought of as e. We can capture this property by considering a function a(z) to be periodic
on [0,1] and studying

d, 6 z d . _
(D) (@) = f(2), (112)

€
where we have introduced % into the coefficient a. We are essentially comparing two scales -
the e-sized fine scale of the coefficients and the fixed scale of the interval [0, 1], representing the
coarse scale of interest. For small ¢, the coefficients a(%) are highly oscillatory (the frequency
is given by %) These oscillations may introduce oscillatory components into all modes of the
operator —(%a(%)%), which means that even a right-hand side f(z) in the span of only the

lower Fourier modes will produce a solution with an oscillatory component. However, in the



homogenization problem the oscillatory component of the solution is not of interest; it is only
the gross or coarse-scale features of the solution which are. The goal is to find an effective
coefficient ag so that, as € — 0, the sequence u¢ will have a limit (in some sense) given by u°
which solves the equation

——(ag—u°) = f(x). (1.1.3)

In the following subsections, we present two typical methods for accomplishing this goal.

1.1.1 Weak Limit Method

One of the typical approaches (found in e.g. [8], [24]) to homogenization of (1.1.2) is
to consider the weak limit of the family u¢. Weak limits may be thought of as “canceling”
oscillatory components. Thus, the weak limit u® of u¢ gives the essential non-oscillatory part
of the family w€.

The goal is to find an equation of the same form as in (1.1.2) such that the solution of
this equation is the weak limit in H[0,1] of the sequence u¢ as € — 0. In this analysis, the
flow p¢, given by

. duf

)

€’ dx

pé(z) = —a( (1.1.4)

plays a role, and we consider its weak limit in L2[0, 1].

This approach may be used to find the effective coefficients in (1.1.2) in the limit € — 0
as the coefficients a(z/€) become more oscillatory. In computing the various limits which are
required in this analysis, the following Lemma from [24] is useful. For the sake of completeness

we include its proof.

Lemma 1.1.1 Let g : R™ — C be a periodic function on R™ whose period cell is a bor B
with lengths on each coordinate azis given by ly,...,1,. If g € LP(B), then g(z/€) converges

weakly to {g) in L?(Q), where Q is an arbitrary bounded domain in R™ and

1
(9) = ﬁB/g(w)dm- (1.1.5)



Proof: We may restrict the proof to the case when (2 is a dilation of the unit cube C' with
ratio s > 1. Note that if f € LP(C) and € < 1, then
x -
/If(;)lpdw =€ / [f(@)Pdz < €"([se ]+ )" (| f[P) < co()IIP) (1.1.6)
Q se~1C
where [se 1] denotes the largest integer not larger than se 1. Given 4, choose a trigonometric

polynomial w such that (w) = (g) and (|g — w|P) < 4. Then for € < 1, we see that
/|g 2\ pdr < o(@)5: (1.1.7)

Of course, for the trigonometric polynomial w, Lemma 1.1.1 is true by the Riemann-Lebesgue
Lemma. The estimate (1.1.7) shows that we may then extend the result to the function g
since g is arbitrarily well-approximated by a trigonometric polynomial.

From (1.1.2), we extract the relation

1 1
—/ = /a(f)—l(zr(m) —e)dz =0 (1.1.8)
dz €
0 0
where F(z) = [ f(z)dz and ¢, is constant in z. By Lemma 1.1.1, we determine that liII(l) Ce =
0 €—>
1
[ F(z)dz. Noting that
0
z . duf
€ — _ - — F — ].].
p@) = ~a() 2 = Fa) - e, (11.9)
and
du® T, _4
— a5V — 1.1.1
¥ = () FE) - ), (11.10)

we compute the weak limits of p® and ‘fi—’;: in L?[0,1] as

—/F(y)dy (1.1.11)
0
and )
0
=~ )F@ - [ Pu)) (1.1.12)
0

The weak limit of u¢ is given by u°(z) = didy Also, by (1.1.11), (1.1.12), we see that

o“ﬁ&

du®  dp°
w Wy (1.1.13)

0 __ /., —1\—-1
p = (a ) d.’l)’, dZL'



and, therefore, u® solves the equation

d,, ,..,4d _
_ﬁ(m Y1 —u0) = f(z). (1.1.14)

The quantity (a~')~! is known as the harmonic mean (see e.g. [3]) of the function a. This
quantity shows up quite often in everyday calculations. For example, if a particle is traveling
in the positive direction on the real line with a velocity which depends on its position only,
i.e. v =v(z) > 0, then its total travel time is given by (v™!) = fl(v(m))_lda:, and we compute
its average velocity over this interval as (v—!)~!, the spatial h;rmonic mean of its velocity.
To summarize, we use a weak limit analyis to obtain the homogenized equation (1.1.14)

as an equation on the coarse scale. This equation is a constant-coefficient equation and its

coefficients are found by computing the harmonic mean of the function a(z).

1.1.2 Asymptotic Method of Multiple Scales

The method of multiple scales (see e.g. [7] for details) presents an alternative approach
to the homogenization problem, and for (1.1.2) produces the same result as the weak limit
method of the previous subsection.

The first step of the multiple-scales method is to identity the variables associated with
different powers of the small parameter € and treat them as independent variables. There are
two scales present in the problem (1.1.2), identified with z and £. We consider the variable

z

z as is and define a new variable y = Z which represents the fine-scale variable. We look for

solutions of (1.1.2) of the form

ut(z,y) = u®(2) + eu'(z,y). (1.1.15)
We see that £ = £ + L. Thus,
fagu@) = (5 () + 5 ()
b (g + o (o)) + 5 () ou'D)
4 elaly)(pe)u) (11.16)
= flz) (1.1.17)



We now collect terms in powers of e. The first term on the right-hand side of (1.1.16) must

be zero since f has no e ! term. This yields

o (awgan) == (a0 (@) (11.18)

We may consider this as an equation for u! with periodic boundary conditions and with the

right-hand side having z as a parameter. Solutions of (1.1.18) satisfy the equation

d
ul(z,y) = N(y) -, (1.1.19)
where NV is a solution of
d d d
— —N)=—— . 1.1.2
(a0 ) =~ -a(y) (1.1.20)
We write (1.1.20) as
d d
— 1+—N))=0. 1.1.21
L@+ 2N) =0 (1:1.21)
We also see that
u€ = ul(z) + eN(y)%uO. (1.1.22)

a(g + - (s (gu)) + 5 () grun ) = (1.1.23)

du°

dx?

(a(y) + 2 )N W) + a(y)d%N(y)) .

To determine the homogenized operator, we average the right-hand side of (1.1.23) over y to

obtain:
d?*u® dN(y), d*u®
—_— = —_. 1.1.24
w T = () +al) T Y (1124)

The solution of (1.1.20) is given by

N(y) = (@)™ /y a(z) tdz, (1.1.25)

0

so we see that
ag = (a(y) —a(y) + (@ )™") = (a™")~". (1.1.26)

This is of course the same as the result of subsection 1.1.1.



1.2 Multiresolution Reduction

In contrast to the classical approach to the homogenization problem, the multiresolution
approach uses the algebraic transformation between scales provided by the multiresolution
analysis to solve for the fine-scale behavior and explicitly eliminate it from the equation. This
approach has the advantage that the coefficients may vary on arbitrarily many scales. The
chain of subspaces

...cVyCcVyCcVgCV 1CV . C... (1.2.1)

defines the hierarchy of scales that the multiresolution scheme uses. This chain of subspaces
is defined in such a way that the space V; is “finer” than the space V11, in the sense that (1)
all of V44 is contained in V, and (2) the component of V; which is not in V44 consists of
functions which resolve features on a scale finer than any function in V;; may resolve. The
difference between succesive spaces in this chain is captured by the so-called wavelet space
W11, defined to be the orthogonal complement of V;;; in V;. An orthogonal basis for
the wavelet space W1 is constructed which has vanishing moments, i.e. the basis elements
are L2-orthogonal to low-degree polynomials (see Appendix A for details). The existence of
orthogonal wavelet bases with vanishing moments distiguishes the multiresolution approach
from typical multi-scale discretizations provided by finite-element or hierarchical bases (see
[5] for a description). If we are considering a multiresolution analysis defined on a bounded
domain, then the hierarchy of scales defined by (1.2.1) has a coarsest scale (which we may

call Vy), and we write instead
VoCV_i1CV_yC... (122)

For more details, see Appendix A.

The multiresolution strategy for the reduction and homogenization of linear problems has
been proposed in [10]. Let us briefly review here the reduction procedure (in its general form).
Consider a bounded linear operator S; : V; — V. Since V; is spanned by translations of
the function ¢(27z — k), we know that the operator S; may be written as a matrix. If the

multiresolution analysis is defined on a bounded domain, then this matrix is finite; otherwise

10



it is an infinite matrix which we consider as an operator on /2. Let us consider the equation

The decomposition V; = V.1 & W, allows us to split the operator S; into four pieces
J Jj+ J+ J
(recall that W, is called the wavelet space and is the “detail” or fine-scale component of

V) and write

As; Bs, oY (1.2.4)
Cs;, Ts; Sy sf
where we have
As, W= W, (1.2.5)
Bs, :Vjui—= W;n (1.2.6)
Cs, W1 — Vg (1.2.7)
Ts, :Vi— Vi, (1.2.8)

and d,,d; € W1, s;,5f € Vi1 are the L2-orthogonal projections of z and f onto the
W11 and V4, spaces. The projection s, is thus the coarse-scale component of the solution
z, and d, is its fine-scale component.

Formally eliminating d, from (1.2.4) by substituting d, = Agjl (df — Bs; s;) yields
(Ts, — Cs;AgBs;)s; = s; — Cs; Agd;. (1.2.9)
We call (1.2.9) the reduced equation, and the operator
Rs; = Ts; — Cs; Ag, Bs;, (1.2.10)

the one-step reduction of the operator S;, also known as the Schur complement (see [31]) of

As. Bg.
the block-matrix S S

Cs,

J

Ts,

Note that the solution s; of the reduced equation is exactly P;;12, where P;; is the
projection onto V41 and z is the solution of (1.2.3)). Note that the reduced equation is not

the same as the averaged equation, which is given by

Ts, 3, = 5. (1.2.11)

11



Once we have obtained the reduced equation, it may formally be reduced again to produce
an equation on V2, and the solution of this equation is just the V s-component of the
solution of (1.2.3). Likewise, we may reduce these equations recursively n times (assuming
that if the multiresolution analysis is on a bounded domain, then j + n < 0) to produce an
equation on Vj,, the solution of which is the projection of the solution of (1.2.3) on V.

We note that in the finite-dimensional case, if we are considering a multiresolution analysis
defined on a domain in R, the reduced equation (1.2.9) has half as many unknowns as the
original equation (1.2.3). If the domain is in R?, then the reduced equation has one-fourth
as many unknowns as the original equation. Reduction, therefore, preserves the coarse-scale

behavior of solutions while reducing the number of unknowns.

1.3 Multiresolution Homogenization of Linear ODE’s

In order to iterate the reduction step over many scales, we need to preserve the form of the
equation as a way of deriving a recurrence relation. In (1.2.3) and (1.2.9), both S; and Rs;
are matrices, and thus the procedure may be repeated. However, just identifying the matrix
structure is usually not sufficient. In particular, even though the typical matrix A for ODE’s
and PDE’s is sparse, the Agjl term may become dense, changing the equation from a local one
to a global one. It is important to know under what, if any, circumstances the local nature
of the differential operator may be (approximately) preserved. Furthermore, if the equation
is of the form of

-V - (a(x)Vu(x)) = f(z) (1.3.1)

or some other variable-coeflicient differential equation, we may wish to know if the reduction
procedure preserves this form, so that we may find effective coefficients of the equation on
the coarse scale. This process is the basic goal of homogenization techniques, and it extracts
information from the reduced equation based on the form of the original equation. Thus,
within the multiresolution approach, reduction and homogenization are closely related but
have different goals: homogenization attempts to find effective equations and their coeflicients

on the coarse scale, whereas reduction merely finds a coarse-scale version of a given system

12



of equations.
In this Section we describe the MRA homogenization procedure of [10] as applied to linear
ODE’s, and give an example of the the procedure applied to the one-dimensional version of

(1.3.1).

1.3.1 The Homogenization Procedure
The MRA homogenization procedure is applied to systems of ODE’s which may be written
in the form

Bz +g+A=K(Az +p). (1.3.2)

In particular, we consider equations of the form

t

I+ B(1)=(t) +q(t) + A = /(A(S)w(S) +p(s))ds, t€(0,1) (1.3.3)

on L?(0,1), where B(t) and A(t) are n x n matrix-valued functions, p(t) and q(t) are vector-

valued forcing terms, and z(t) is the solution vector. As a differential equation this is written

as
d
7 (@ +B®)z(t) +a(t)) = At)z(?) + p(t) (1.3.4)
with the initial conditions (I + B(0))z(0) = —q(0) — X.
On Vj, j <0, the projection of equation (1.3.3) is written as
Bjz; +¢; + A =K;(Ajz; + pj), (1.3.5)
or
Sj.’lfj = fj (136)
where
S]‘ = B]' — K]‘A]‘, fj = ijj — q]' — /\, (Ej = Pja:j. (137)

After one step of reduction, our goal is to have an equation on V;; of the form

BY) 2y +af) + 3 = K (A7) ef) + 7)), (1.3.8)

13



where 53521 = P, 12. We use the notation Bl(j ) to indicate that the equation is first projected

to scale V, and then the reduction procedure is applied ! — j times to obtain an equation on
V. In (1.3.8), this notation therefore indicates that the equation in (1.3.8) was obtained by
reducing an equation of the same form on V; one time to produce an equation on the coarser
scale V1.

This allows one to establish a recurrence relation for ¥ = j,5 + 1,...,0 between the

operators and forcing terms chj ), Ag), pzj), and q,gj) on Vy and the operators and forcing

terms B,(cﬁ)_l, Agcjll, pscjll, and q,(fll on Viii. It turns out that this task of finding the
recurrence relations is simplified significantly if one uses a multiresolution analysis whose
basis functions have non-overlapping support. We use the Haar basis, but a multiwavelet
basis may be used if higher order elements are needed (see [2]).

In the Haar basis, the operators B;, A;, and K; derived from equations of the form of
(1.3.3) have a simple form. Each of these is an (N;n) x (N;n) matrix, where N; = 27 is the
number of unknowns on the scale V;, and n is the number of equations in the original system
(1.3.2). Furthermore, B; and A; are both block-diagonal matrices. The diagonal blocks of
B; and A; are n x n matrices. There are therefore N; diagonal blocks, each of which is an
n x n matrix. For A; and Bj, we denote their i-th diagonal blocks by (B;); and (A4;);. The
reader should not confuse the indices j and 7 with the indices for the entries of these matrices.

The matrices are given by the Haar coefficients of the n X n matrix-valued functions B(x)

and A(z) on the scale V;. We write

B, = diag{I + (B;);}=2' 1, (1.3.9)
A; = diag{(4;): 1125, (1.3.10)
and
1T 0 0 0
| S 0
Kj=6| 1 1 3I -- (1.3.11)
T - 1 i

14



where §; = 277, Iis the nxn identity matrix, and (B;); and (A4;); are the i-th Haar coefficients

on scale V; of the n x n matrix-valued functions B(z) and A(z).

For equation (1.3.3), the recursion relations are given by

(A9L): = (Sa)— (DA F(Dn)i+ 2 ()0
B = (Sn)- % s

W) = Si-5

@) = (S)i—2

where

5

2
5 (492 + (4012101
5 (492 = (4901
5 (B2 + (B
5 (B2~ (B )ainr)

((pij) )2i + (p,(cj) )2i+1

)
((pij) )2i - ,(cj) )2i+1)
)
)

-l

ﬁ ((ql(gj))m + (q,(cj))%-}-l

1 . .
7 ((ql(f))m — ()21

)
I+ (SB): + Ek(DA)i.

(1.3.12)

(1.3.14)

(1.3.15)

(1.3.16)
(1.3.17)
(1.3.18)
(1.3.19)

(1.3.20)
(1.3.21)
(1.3.22)
(1.3.23)

(1.3.24)

Note that the recurrence relations are local and can be carried out over many scales as needed

(assuming the existence of F~1 at each scale).

Starting with equation (1.3.5) on V_; and reducing j times yields on Vg
B(()j)x(()j) + q(()j) +A= KO(A((]j)x((]j) +p(()j))7

where to compute B((Jj), A((Jj ), p((Jj)

(4)

, and g;"’ we use the recurrence relations j times.

(1.3.25)

Multiresolution homogenization is formulated as follows. First, we consider the limit of
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(1.3.25) as j — —oc:
Byl o A —KoAS T )

This amounts to eliminating infinitely many fine scales from the equation. We call the matrices
B{ ) and A the reduced coefficients of the equation (1.3.3).
We then look for the operators and forcing terms B"(t), A(t), ¢"(t), and p"(t) with

certain desired qualities (e.g. constant values) such that the equation,
t
(T + Bh (D) (t) + ¢"(t) + A = / (AP (s)z(s) + p(s))ds, € (0,1), (13.27)
0

when subject to the same reduction and limit procedure as (1.3.3), yields on Vj the same
equation as in (1.3.26).
For (1.3.3), we usually require that A" B" pP and ¢" be constant. The results of

homogenization in this case are summarized as follows:

Proposition 1.3.1 Given the equation (1.3.3), if the limits which determine the matrices
B((foo) and A((foo) exist, then there exist constant matrices B", A* and forcing terms p", ¢",

such that the reduced coefficients and forcing terms of (1.3.27) are given by B(()_OO),A(()_OO),

p((]_oo), q(()_oo). The homogenized coefficients B" and A" and forcing terms p" and ¢" are
defined by
Ar = Al (1.3.28)
B = ARAT' 1 (1.3.29)
o= py ™ (1.3.30)
— 1. - .
@ = ¢ +a- A = Afexp(4 - I)~tAM~Iph, (1.3.31)
where
-1
A=log(I+ (I+ By — %Ah) AM). (1.3.32)

Proof: Following [10], we see that for constant coefficients the recurrence relations (1.3.12)
and (1.3.13) simplify to
A, = A (1.3.33)

h
Bk+1

2
Bl + %AQ(I + Bt AR (1.3.34)
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Likewise, the recurrence relations for the forcing terms simplify to

Piyi = i (1.3.35)
d _
b = g~ 5 AT+ BY p (1.3.36)

Since the term A" is unchanged by reduction, it is clear that A" = Aé_oo). Similarly p" is
unchanged by reduction, so p" = p(()_oo). The situation for B" and ¢" is more complicated.
We solve for them analytically using the solution of (1.3.27).

Consider the case p((foo) = 0. Clearly, then, it is the case that ¢" = q((foo). The solution
of (1.3.27) is therefore given by

z(t) = — exp(At)q, (1.3.37)

where A = (T4 B")1 A", G = (I4+ B")~'(¢" + )\). The average of this solution must also solve
(1.3.26) since (1.3.26) by definition is an equation for the average value of the solution. The

average value of z(t) in (1.3.37) on the interval [0, 1] is given by

1
(x) = —/exp(jt)dt = (I—exp(4)A~'q. (1.3.38)
0
The solution to (1.3.26) is given by
— 00 1 —0Q)\ — — 0o
x5 = —~(I+ Bj—o0) = 2AT) 7 (g5 + ). (1.3.39)

The right-hand sides of (1.3.38) and (1.3.39) are shown in [10] to be equal for all \; setting
A = 0 and solving for B" yields the solution given in the statement of the proposition. O

The case when p(()_oo) # 0 proceeds similarly. We leave out the details of this case since
our primary interest lies in the coefficients and not the forcing terms. Interested readers may
see [10] for the complete proof.

Solutions of (1.3.27) have the same “average” or coarse-scale behavior as solutions of
(1.3.3). Again, the details may be found in [10]. The main point is that this homogenization
procedure allows for coefficients which vary on arbitrarily many intermediate scales. This is

in contrast to the classical homogenization examples described in the previous Section, which

did not allow for intermediate scales.
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As formulated above, the multiresolution approach to homogenization requires the compu-
tation of A(()_OO) and B(()_OO), i.e. a limit over infinitely many scales. In practice, the multires-
olution reduction algorithm is applied numerically over only finitely many scales. The typical

~/) and B((fJ) terms until finer approximations vary by

practice is to compute successive A(()
less than some specified tolerance, and use these matrices as approximations to A((foo) and
B,

Besides establishing the general framework for multiresolution reduction and homogeniza-
tion, it is observed in [10] that, for systems of linear ordinary differential equations, using
the Haar basis (or a multiwavelet basis) provides a technical advantage. Since the functions
of the Haar basis on a fixed scale do not have overlapping supports, the recurrence relations
for the operators and forcing terms in the equation may be written as local relations and
solved explicitly. Thus, for ODE’s, an explicit local reduction and homogenization procedure
is possible.

In the remainder of this section we consider the relationship between the multiresolu-

tion approach and the classical techniques. We demonstrate the connection with the one-

dimensional example problem from Section 1.1.

1.3.2 An Example: MRA Homogenization of Second-Order Ordinary Differen-
tial Equations
Since multiresolution homogenization is a novel approach to the homogenization problem,
we would like to place the multiresolution method in the proper context by comparing it to
the existing methods described in Section 1.1.
We describe A. Gilbert’s [19] demonstration of MRA homogenization applied to the equa-
tion

4 (ae) tu(a)) = f(), (13.40)

z € [0,1], with initial conditions at = 0.

Gilbert establishes a connection between the method of [8] and the multiresolution ho-
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mogenization strategy of [10]. Equation (1.3.40) may be written as a first-order system,

(1.3.41)
#ru(z) = a(z) "' v(z)
By writing (1.3.41) in an integral form, we have
u(z) ~ u(0) _ / 0 a(t)™! u(t) N 0 a. (13.42)
v(x) v(0) o 0 0 v(t) —f(®)
0 a(x)™! u(0)
Thus, in the notation of (1.3.3), B(z) = 0, A(x) = , A= — , and
0 0 v(0)
0
q(t) = 0,p(t) =
—f(?)

Using the reduction procedure in the Haar basis for a system of linear differential equations
(as in [10]), the goal is to find constant B*, A* ph and g" such that

v(z)

dt, (1.3.43)

after reduction to the scale Vg will be the same as (1.3.42) reduced to that scale. This is
accomplished by solving the recursion relations between the operators in the reduced equations
explicitly, element-by-element in each matrix. This is possible to do because of the non-
overlapping supports of the Haar basis functions on a fixed scale. The result of [19] for the

coefficients A" and B" is that

0 0 0 M, —2M
B" = , Ab = ! 2, (1.3.44)

0 0 0 0

where
Fo1 [ 1/2
M= | — 1.3.4
: /a(t / (1.3.45)
0 0

Similar expressions for p" and ¢ can be found. Note that we have p® = ¢" = 0if f(z) =0

identically. Furthermore, in general B" and A" do not depend on p and q.
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As a first-order system of ordinary differential equations, the homogenized equation yields

Lu(z) = (My — 2M,)v(z)

(1.3.46)

The result is somewhat different than the classical result. We trace this difference to the
fact that the multiresolution homogenization procedure allows the coefficients a(z) to vary
on arbitrarily many scales, whereas the classical approach in Section 1.1 allows only for
coefficients of the form a(z/€). In the multiresolution context this amounts to restricting
the coefficients to an asymptotically fine scale. Let us apply the same limit in Section 1.1
to the coefficients in the multiresolution approach. We start with coefficients of the form
a(z/€). Applying the multiresolution homogenization scheme to the elliptic equation with
these coefficients yields two terms, Mj(e) and Ms(e). If we take the limit as € — 0, from

Lemma 1.1.1 we find that

e—0
and
lim Mp(e) = 0 (1.3.48)

Thus, the factor My is present in the multiresolution context but not present in the classical
context, and it is zero when the limit found in the classical approach is applied to the result
of the multiresolution approach.

For the purposes of Chapter 2, we note here that Gilbert’s results depend on the local
solvability of the recurrence equations, a property that does not appear to hold for multi-
dimensional elliptic problems. It is our observation that, for partial differential equations,
the loss of locality (in solving for the variables in W ; in terms of the variables in V) is
a generic situation and the one-dimensional case is special due to the ability to express the
problem using a first-order system of ordinary differential equations.

If the explicit locality of reduction cannot be achieved for partial differential equations,
then one might as well consider the general scheme outlined in [10] where high order wavelets
are used (since the Haar basis offers no special advantage). In fact, it turns out that in

elliptic problems , only by using high order wavelets can we achieve approximate locality of
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the reduction procedure, and the order of the wavelets has important implications for the

eigenvalue problem as well. We study these issues in Chapter 2.

1.4 Homogenization of Acoustic Wave Equations

The linear acoustic equations in a layered medium present an ideal model problem for com-
parison. These equations have been studied extensively for more than fifty years, allowing
the multiresolution method for homogenization to be firmly placed in context and compared
with existing approaches.

These equations essentially form a subset of the full linear equations of small motions
of an elastic solid, in the sense that the wave solutions of the acoustic equations may be
thought of as P-wave solutions of the elasticity equations. A wide variety of phenomena can
be observed in the motion of waves through layered media, including dispersion, attenuation,
and long-wavelength anisotropy. For a complete discussion of the existing approaches to these
phenomena, see e.g. [11], [4], [29], [30], and references therein.

The general linear acoustic equations are given by

p(x)vy(x,t) + Vp(x,t) =0
(1.4.1)
SeeerPe(x, 1) + V- u(x,t) =0,
where p(x,t) is pressure, v(x,t) is particle velocity, p(x) is density, and ¢(x) is sound speed.
Assume that the medium varies only in the vertical direction, i.e. that p(x) = p(z3), c(x) =

¢(x3). We write (1.4.1) in component form:

p(s) ZoM (x,1) + 52-p(x,t) = 0
plzs) Zv® (x,1) + 52p(x,t) = 0
(1.4.2)
p(xs) Zo® (x,1) + g2=p(x,1) = 0
7/}@3;(“)2 2p(x,t) + a%v(l) (x,t) + 6%v(z’)(x,t) + 8%71(3) (x,t) = 0.
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To reduce (1.4.2) to an ODE, assume its solutions are of the form

plzs,t) = (e WIE1mmir2)p(g;)
(1.4.3)

v(i) (x?” t) — (e—z'wt—z'gla:l—igzu)ﬁ(z’) (1.3)

In other words, we consider the ¢, 1, and x5 variables in the Fourier domain. By substituting
(1.4.3) into (1.4.2), we derive two algebraic equations and two ordinary differential equations;
substituting the solutions of the algebraic equations in the ODE’s yields a 2 x 2 linear system
of ODE’s. We normalize the z3 variable via z = 72 to obtain

d | P 0 p(x) p(z)

. = thw , (1.4.4)
L 13(3)(3;)

1 2 ~(3
@e@? ~ p@ O o) (z)

where n? = ﬁw%gg The equation (1.4.4) defines a family of ODE’s parameterized by n and w.

The parameter w is the temporal frequency of the solution in the form of (1.4.3). The
parameter 7 is related to the angle relative to the horizontal of plane wave solutions of the
homogeneous acoustic equations. To see this, note that if p and ¢ are constant, then we have

solutions (in p) of the form

) = et rm)te g mihe(E e (1.4.5)

By substituting (1.4.5) into (1.4.3), we find that p is given by superpositions of

p(x,t) = eii(“tﬁlzlﬂﬂﬁ‘”v F—nPes) (1.4.6)
and
p(x,t) = E“wtﬁlzﬁ&zz_w \Y% c%_nhs). (1.4.7)

The solution (1.4.6) is constant for values of ¢ and (x1,x2,x3) such that
1
—wt = (§1,&2,w 2 n?) - (z1,72,23) +d (1.4.8)

for some constant d. For fixed ¢ and d, the points (z1,xs,x3) which satisfy (1.4.8) form a plane
in R®. Thus, solutions p given by (1.4.6) are plane waves propagating with angle  relative to

the horizontal given by sin?(#) = ¢?>n. Similarly we see that (1.4.7) is a plane-wave solution
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propagating with the same angle 6 but in the opposite direction. For plane waves propagating
with vertical incidence, we set 7 = 0. In the case of a non-constant medium, such solutions are
referred to (see e.g. [29]) as “pseudo plane-wave” solutions, the idea being that in a layered
medium, the solution forms a plane wave locally inside each layer.

Now that we have introduced the notation and written the acoustic equations as a system
of ODE’s, we apply the multiresolution homogenization technique to this system and compare

the results to existing approaches.

1.4.1 Multiresolution Homogenization of the Acoustic Equations

The homogenization procedure of [10] expects an integral equation of the form

(I + B(2))u(z) = / A(s)u(s)ds. (1.4.9)
0
: 0 p(x) , :
If we set B(z) = 0, and A(z) = ihw ) then by integrating on
[
@@ om0

both sides of (1.4.4) we may write it in the form of (1.4.9). Each value of w and 7 defines
a different A(z) and, thus, for each value of w and 1 we must apply the homogenization
procedure separately.

When we apply multiresolution homogenization to the equation (1.4.4), we derive in the

general case an equation of the form

g | P Caren | P (1.4.10)

das 0 (z3) 09 (aa)
The matrices B" and A" depend not only on w and 5, but also on the functions p(z) and
c(z). However, we write A*(w,n) and B*(w,n) to emphasize that, even for a given medium
defined by fixed functions p(z) and ¢(z), the homogenized matrices A* and B"* may in general
be dependent on w and 7.
Multiplying both sides of (1.4.10) by (I + B"(w,n)) ! yields

A

N SR Y , (1.4.11)

“\ 00 o) ()
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where K"(w,n) = (I + B"(w,n)) 'A"w,n) = A(w,n) (see (1.3.32)). The matrix K"(w,n)
therefore may be considered as the homogenized coefficients of the ODE (1.4.4) with parame-
ters w and n. For constant p and ¢, the homogenization procedure (by construction) produces
the original coefficients (1.4.4) as the homogenized coefficients.

In the case when p and ¢ are not constant, the situation is more complicated. In this
discussion, we consider only the case when 7 = 0, which implies vertical propagation of plane
waves. We write A"(w,n) = A"(w) and B"(w,n) = B"(w). The matrix K"(w) in general has
non-zero elements on the diagonal, which means that the equation is not of the form of the
acoustic equations with the layered-medium assumption. Thus, the effective medium is not an
acoustic medium. The eigenvalues A; and Ay of this matrix can still be used to extract some
information about the medium, however. In particular, if \; = Ay = i\, then the medium

permits wave solutions of the form

p(x ) )
(@) =eMe) 4 e ¢y, (1.4.12)
) (x)
which may be written as
t ) .
Plo1, 32, %3,1) = eiWttazs)e, 4 it Res)g,, (1.4.13)

v®) (z1, 29, 3, 1)
These solutions are pressure/particle-velocity waves propagating with velocity % The
effective velocity of this medium is therefore given by %

If the eigenvalues A1 and Ay are not pure imaginary, then the solutions of the homogenized
ODE (1.4.11) may exhibit exponential growth or decay. Exponential decay of the solution
as x3 grows means that the plane wave solutions decay as they propagate downwards. Ex-
ponential growth of the solution as x3 grows means that the plane wave solutions decay as
they propagate upwards. If the eigenvalues A; and Ay have non-zero imaginary part but are
not complex conjugates of one another, then there are two different effective velocities of
the medium. We show, however, that if the eigenvalues A\; and Ay have non-zero imaginary
part, then they are always complex conjugates. This result is summarized in the following

proposition:
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Proposition 1.4.1 The matriz K"(w,n) which results from multiresolution homogenization

applied to (1.4.4) has eigenvalues A1, Ay such that Ay = Aa.

. 0
Proof: The first part of this proof uses induction. Note that, for any j, (BJ(J ))l =
0 0
) 0 ihwpy ) )
and (AjJ ) = . Thus, these matrices both have purely real diag-

ihe (& —n%)
onals and purely imaginary off-diagonals. Assume that (Afcj))l and (B,gj))l have this same
form. For 2 x 2 matrices, it is clear that sums, products, and inverses of such matrices also
have this form. So, by (1.3.12) and (1.3.13) we see that that (Agzl)l and (B,(izl)l have this
form as well. Therefore, A((]_OO) and B(()_oo) have purely real diagonals and purely imaginary
off-diagonals.
From (1.3.28), we see that A" = A(()_OO). By equation (1.3.32), it is clear that the matrix

exp(A) =T+ I+ B((foo) — 2)~1 A" has purely real diagonal elements and purely imaginary

off-diagonal elements. The characteristic polynomial of any 2 x 2 matrix of this form has
all real coefficients, so it must be the case that, if the eigenvalues of exp(A4) have non-zero
imaginary part, then they are complex conjugates. The eigenvalues of A are given by the
logarithm of the eigenvalues of exp(A) and are therefore complex conjugates as well.O

Now consider homogenization of the acoustic equations when the medium consists of two
distinct layers, inside each of which the medium is constant. We denote the width of the
interval by h and the densities and sound speeds in each layer by pg, p1 and ¢y, c;. In this
situation, it is possible to derive an analytic formula for the homogenized matrix K"(w). In
the next subsection, we describe a technique for finding this exact formula for the homogenized
matrix K" (w).

The imaginary part of the eigenvalues A\(w) of K”(w) define the dispersion relation of
the homogenized medium. These two eigenvalues are always complex conjugates if they have
non-zero imaginary part, so we may define the dispersion relation in terms of a single value
k(w), which is the absolute value of the imaginary part of Ax(w). Using the formula derived

in the next subsection results in a rather long and complicated formula for k(w) which we

will not display here. Such a formula is, of course, not necessary for computational purposes;

25



we derive it only to show that the multiresolution approach may be used to derive an exact

formula for the dispersion relation.

1.4.2 Multiresolution Homogenization of a Two-Layer Medium

Although the multiresolution homogenization scheme is meant as a numerical procedure,
we derive an exact formula for the homogenization procedure applied to a two-layer medium.
This demonstrates that the multiresolution approach may be used to find an exact formula
for the dispersion relation in a simple case.

We start with the ODE

d%a(z) = iwM (2)i(z) (1.4.14)

on the interval [0,1]. We assume that the medium consists of two uniform layers, so the

matrix Mz is defined as

Mz

(1.4.15)

By integrating (1.4.14) on both sides and setting B(z) = 0, A(z) = iwM(z), we may write
(1.4.14) in the form of (1.3.3). The MRA homogenization procedure then may be applied; it
yields matrices B", A" which depend on w, My, and M;. The resulting equation of the form
(1.3.27) may be written as

dilza(z) = K"a(z) (1.4.16)
by setting K" = (I + Bh)~t Ak,

To derive the exact formula for K", first consider equation (1.4.14) in each layer separately.
Denote by A;?, B;.‘ the matrices obtained by applying the homogenization procedure to layer j
(where j = 0,1). Since the coefficients are constant inside each layer, we have by construction
Bl'=B; =0, Al=A;=iwM; (1.4.17)

J

By using (1.3.28), (1.3.29), and (1.3.32), we can find (A§‘°°))j and (B§_°°))j in terms of A,
and BJ

A =45, B = G (e =D+ 51) -1 (1418)
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To compute K", we use the formula
EUVEUR TS S
emeﬂ)=I+—<L+Bé >__§Ag >> Ag®

As defined, A§ ° and B{~

J — oo. The matrices A(()fj) and B((fj) are defined in terms of (AngH)) j an

(via the recurrence relations (1.3.12) and (1.3.13)) as

BS =85 — EDA — (DB — iSA)F_l(DB + iSA%
and
AGD =S4~ DAF (D + S0),
where
Sa = 5 (A7) + (a0,
Da = 5 (457 - (a7),)
Sp = % (B0 + (B ))
Dy - %((B£7J+1))0 _ J+1) 1)
F = I+Sg+ 1DA-

4

(1.4.19)

*) are computed by finding the limits of A(()fJ) and B((fJ) as

d (B,

(1.4.20)

(1.4.21)

(1.4.22)
(1.4.23)
(1.4.24)
(1.4.25)

(1.4.26)

Because (A{77*Y); and (B{"7*"); converge element-by-element to (4{7°%); and (B{™°)

as J = oo, we may pass the limit in J through (1.4.20) and (1.4.21) to obtain

B~ =gt — %D;l — (D5 — %SQ)F*I(DE + ESQ)

and

A =84 — DY F (Dl + ESA),
where

Sio= 5 (A0 + (A7)

Dy = 5 (A - (40),)

S = 3 (BT + (B))

Dy = 5 (B - (B))

F = 1+sg+li

(1.4.27)

(1.4.28)

(1.4.29)
(1.4.30)
(1.4.31)
(1.4.32)

(1.4.33)



This series of steps is summarized in the following theorem:

Theorem 1.4.1 The homogenized matriz K" for the two-layer wave equation given by (1.4.14)
is defined by
- 1 (o))
K" =log (I + (I + B — 5Af, °°)> AO—°°> , (1.4.34)

where BS™°°) and AS ) are defined by (1.4.27)-(1.4.33).

Thus, equations (1.4.27)-(1.4.33), together with equation (1.4.19), completely define the
steps necessary to compute an exact formula for K”. For any given equation, the matrix K"
may be a very complicated expression. However, the purpose of deriving this exact formula
is not for computation but rather to demonstrate that the multiresolution approach can be
used to compute analytic rather than numeric results, if desired. Towards this end, we will
also compute the first few terms in the small w expansion of K" in a more general form in
terms of the matrices My and M;.

First, we compute (B{™°); and (A4{7°); in terms of M, and M;. We see that if A =

iwM , then
1 W
exp §A —I = exp EM -1 (1.4.35)
= i—wM—w—2M2—iw—3M3+(’)(w4) (1.4.36)
T2 8 48 o
: 2
- W Y 3
= 2M(I+24M o7 T OWw )). (1.4.37)
Thus,
(exp (£4) -1 I+i2M “’2M2+0(w3) NENE (1.4.38)
X — — = — —_ — — 4.
P2 1 2
= (1-imye (2L M? + Ow?®)) =M ~1.(1.4.39)
4 24 16 e

Therefore, by (1.4.18), we have
B = 1y A)—D i) 1o e 4 4.4
(B 7)j =545 ((exp {545 ) —D7 + 1) —T=—"2Mj + O’ (1.4.40)

and of course

(AN, = iwM;. (1.4.41)



This leads to

Sy =wSa
Dy =wDy
Sl = w?Sp
D'y = w?’Dp
We have
F=1+Sz+
and, thus,

1 -
F—lzl—ZwDAw?(

Using (1.4.27) and (1.4.28), we derive

B{

1
4

w(i(My = My))

w?(

w?(

1
96
1
96

Dy =1+

1
16

(Mg + M7)) + O(w*)

(Mg -

1 -
ZwDA + w2Sp

M?)) + O(w?).

(DA)2 — 53) + (’)(w3).

_ _ 1 _
- —EDA + (S + E(SAF)WQ +Ow?)

and

45 = w8a—wDA®T— 2 Da+O(w?) WDy + = 54)

Finally, after some more algebra, this yields

exp(K") =

and thus

K" = w8, + W (fs —

ng — %DASA + (9(&13).

| =

o) 1o _
I+ (I+B{ - §A§] )Lz A7)

2
I+wSy+ %S‘i + faw® + O(wh)

S%) + Ow?)

(1.4.42)
(1.4.43)
(1.4.44)

(1.4.45)

(1.4.46)

(1.4.47)

= W28 — %DA — (W*Dp - %5/1)(1 _ %DA +0W?)) (W Dp + %SA)

(1.4.48)

(1.4.49)

(1.4.50)

(1.4.51)

(1.4.52)

(1.4.53)

The term f3 is left unexpanded because it is rather complicated. The formula (1.4.53) does not

necessarily tell us that the eigenvalues of K" have an asymptotic expansion in w of the same

form. This will depend on the particular form of the matrices involved. We do immediately
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see, however, that the leading order behavior in w of K" may be found simply by averaging
Mo and M;.

Also, since the multiresolution homogenization procedure gives the same result for all
values of the initial conditions, we may extend the exact-homogenization formula for the two-
layer problem to a periodically layered medium with two distinct, repeated layers of equal size.
In the case where we have many non-periodic layers of equal size, the leading order behavior
in w of K* may be found simply by averaging M over all the layers. This can be seen by

starting with the two-layer asymptotic expansion and applying the formula recursively.

1.4.3 Comparison to Existing Theory

In this subsection, we give a brief description of existing methods for computing the
dispersion relation for layered media, then compare them with the multiresolution approach.

Many techniques exist for studying qualitative behavior of solutions to the layered-medium
acoustic equations. These techniques range from asymptotic expansions for small w (see e.g.
[11], [29], [30]) to exact solutions for periodic two-layer media (Floquet theory, see e.g. [12]).
As we showed above, such results may be obtained from the multiresolution approach as well.

However, the multiresolution approach is intended as a numerical procedure for computing
the homogenized coefficients of an equation which may have many layers. The methods
described in e.g. [11], [29], and [30] may not be practically applied when there are many
layers or frequency bands that we wish to study.

The only alternative we are aware of that may achieve the same result as the multiresolu-
tion method is to use the fact that, in the case of ODE’s, there is a “preferred direction.” For
this preferred direction, an exact solution may be obtained by using propagator matrices for
each layer (see e.g. [1] for a description of this technique). Once such a solution is computed,
one can easily obtain its projection on all scales.

The multiresolution homogenization method simply finds an equation on each scale which
has as its solution the projection of the exact solution to that scale. Thus, multiresolution

homogenization and other exact techniques, such as Floquet theory or the propagator matrix
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technique, will give the same results for a periodic layered medium in one dimension. In this
context, the multiresolution approach may be viewed as an alternative to computing the exact
solution directly.

As far as we are aware, the propagator matrix technique has not been generalized to fully
two or three dimensional problems. The multiresolution approach, on the other hand, does
generalize to higher dimensional problems. This generalization is the subject of study in

Chapter 2.
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CHAPTER 2

REDUCTION OF ELLIPTIC PARTIAL DIFFERENTIAL
EQUATIONS

In this chapter, we apply the multiresolution reduction procedure of Section 1.2 to matrices
which arise as projections of linear partial differential equations into a multiresolution analysis.

Let S be the linear operator on L?(R?%) (d = 1,2) given by a PDE with appropriate
boundary conditions. We formulate the conditions and prove our results in terms of the
matrix S;, which is the projection of the operator S onto a space V; of the multiresolution
analysis (where V; is some sufficiently fine scale). We comment where appropriate on the
connection between properties of the matrix S; and properties of the operator S. Thus, our
results are proved for infinite matrices representing the operator restricted to a finite (but
arbitrary) number of scales.

In Section 2.1, we start by showing that matrices S; which are a projection of the second
derivative —f—:z into the multiresolution analysis have their form preserved under the reduc-
tion procedure, in the sense that the matrix Rs; (see (1.2.10)) is an approximation to the
second derivative of the same order as the matrix S;. We also describe the results of [17],
which show that matrices in discrete divergence form have this divergence form preserved (in
a certain sense) under the reduction procedure if the Haar basis is used as the multiresolution
analysis.

In Section 2.2, which contains the main results of this Thesis, we are concerned primarily
with second-order elliptic operators which have a sparse approximation in the wavelet basis.
However, some of the results are applicable to a wider class of operators.

In order to clarify the discussion, let us explain the use of the terms “elliptic” and “sparse”

here. We use the term “second-order elliptic operator to mean”
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e a symmetric partial differential operator of the form —V(a(x)V), where a(x) > 0
or, more generally,

e a symmetric second-order elliptic pseudodifferential operator (see [32] for details), i.e.
a symmetric pseudodifferential operator with a symbol a(x, &) of order 2 which satisfies

the condition that there exists an € > 0 such that |a(z, £)| > €|¢|?.

The term “sparse” is used in this Thesis in a somewhat non-traditional fashion. Namely,
let us define, for an operator T, the restriction of T to a “banded form” Tpg, with a finite
bandwidth B. The bandwidth B typically refers to the number of non-zero elements per row.
We say that the operator T has a sparse approximation if for any € > 0 there is a bandwidth
B such that ||T — Tg|| < €, where |||| is some operator norm (usually the [* operator norm).
This definition is used primarily for infinite matrices T; in the case of a finite matrix T, the
bandwidth B should be made reasonably small compared to the size of the matrix, if possible.
If the A, B, and C are the blocks of the non-standard form of the operator S (see [9] or
Appendix A for a description) and have a sufficient rate of decay away from the diagonal,
then for practical purposes elements smaller than a given threshold may be set to zero. After
this thresholding procedure, the matrices are sparse in the traditional sense, in that there are
few non-zero elements.

We now summarize the results of Section 2.2. We show first that the spectral bounds
of symmetric and positive matrices S; are preserved under the reduction procedure. We
then show that the reduction procedure applied to the non-standard form of an operator
(which has a sparse approximation) preserves the rate of off-diagonal decay in the matrices
of the non-standard form. This means simply that, for practical purposes, the sparsity of the
matrices is preserved under the reduction procedure. We then describe the results of [20],
which show that, for such sparse matrices, the reduction procedure may be performed in a
numerically efficient manner. Next, we show that, if S; is the projection of a second-order
elliptic operator with a compact inverse, then the small eigenvalues of the reduced matrix
Rs; are good approximations to the small eigenvalues of the matrix S;. Finally, we give some

numerical examples which demonstrate the eigenvalue results in practice for second-order
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elliptic operators in one and two dimensions.

2.1 Preservation of Form Under Reduction

As we demonstrated in Chapter 1, the multiresolution strategy for homogenization of ODE’s
preserves an explicit form of the equations under the reduction procedure, provided a basis
with non-overlapping supports is used for the reduction step.
In this section we consider second-order elliptic operators, and in particular operators of
the form
-V - (a(x)V) (2.1.1)
on L?(R!) and L?(R?). We would like to find out whether the form of the matrix S;, which
is the projection of the operator (2.1.1) into a multiresolution analysis, is preserved under

reduction. This would provide us with an analogy to the recursion relation for the coefficients

in the multiresolution homogenization scheme for ODE’s.

2.1.1 Reduction of Differential and Convolution Operators

For matrices S; which are projections of operators on L?(R), the reduction procedure
simplifies greatly if the matrix S; is a convolution matrix. We show that if S; is a convolution
matrix which approximates the second derivative to some order, then the reduced matrix Rs;
is a convolution matrix as well, and approximates the second derivative to the same order as
S;.

Let S; be a bounded convolution matrix on V; C L?(R). There are two ways to represent
application of this operator to an element = of V;. The first is simply to perform matrix-vector

multiplication, (S;x)r = >(S;) (k) Zi- The second is to form two 2m-periodic functions
1

5i(€) =D (8;)0me™ (2.1.2)
nez
#(€) =) wne
nez

and then consider their product s;(£)Z(£). The coefficient of e**¢ in this product is exactly

(Sjz)k. Thus, as is well known, we have a way to represent application of convolution matrices
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as multiplication by a function in the Fourier domain. Furthermore, if a convolution has an
inverse then we may represent application of its inverse as division by a function in the Fourier
domain.

The As;,Bs;,Cs;, and Ts; blocks are also convolution operators, and we use the repre-

sentation
tj(20) = |mo(§)*s;(§) +Im1(&)[*s; (€ +m)
a;(26) = [m1(§)s;(€) + Imo(&)*s;(§ + )
b;(26) ma (€)mo(€)s;(€) +mu (€ + m)mo (€ + 7)s;(€ + )

cj(2) = mo(§)mi(€)s;(§) +mo(€ +m)mi (£ + m)s;(§ + ),

(2.1.3)

where the functions mg and m; are the filters associated with the multiresolution analy-
sis. (For a description and review of their properties, see Section A.l of the Appendix
and also [15]). We see that, in the Fourier domain, the analogue of the formula Rg;, =

Ts, — Cs; Aglesj may be written as

b (§)c;(§)
OB (2.1.4)

We desire 7;(£) to be bounded on [—7, 7], so we must choose the discretization S; in such a

<

(&) =1;(8) -

way that either

a;() #0 (2.1.5)
or
b (€)e;(€)

for all £ € [—m, ).

The condition a;(§) # 0 for £ € [—m,n] is not unreasonable for a projection of —j—; on
L?(R). (In fact, this condition is analagous to the ellipticity condition for pseudodifferential
symbols; see [32] and the introduction to this Chapter for a description). Note that [m4(£)|? =
1 — |mo(€)|? and mo(0) = 1. Thus, if S; is constructed so that s;(§) = 0 = £ = 0 and s;(¢&)

is real and positive for 0 < £ < 7, —7 < & < 0, we see that

a;(€) = |m1(€/2)*s;(£/2) + Imo(€/2)*s;(€/2+7/2) > 0 (2.1.7)
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for all £ € [—m, ).

Additionally, we see that if S; is symmetric and positive, then s;(£) is real and non-
negative. For the second-derivative operator, then, in order to ensure the existence of Agjl,
we construct S; so that it is symmetric and positive, and 0 is an element of the spectrum of
S; only if s;(£) is non-zero everywhere except at £ = 0.

Now, assume that we have constructed S; as a discretization of —% in such a way that

we assure the existence of Agjl (as above). We use properties of mg and m; (see Appendix A)

to arrive at

a;26) T [ma(©)Psi (€) + mo@)PsE + 1)

(In fact the above equation holds for any s;(§) as long as Agjl exists.)

r5(26) = t;(2¢) — 20 (20) 53(€)s;(€+ ) (2.18)

We summarize our results as

Proposition 2.1.1 Let V; and Vi1 be successive subspaces of a multiresolution analysis
with m — 1 vanishing moments. Suppose S; is a symmetric and positive convolution matriz
on V; C L*(R) such that s;(€) (as defined by (2.1.2)) is non-zero everywhere except at
&=0,and
1
85(6) ~ ﬁf +0(¢7) (2.1.9)
(h;)
for £ € 1 (where 2 < ¢ < 2m). Then Rs; is a symmetric and positive convolution operator
on Vi1 C L2(R) such that r;(£) is non-zero everywhere except at £ = 0, and
1
(hj+1)?

is the step-size of the discretization.

r;(€) ~ &+ 089, (2.1.10)

27
k

where hy, = 5%

Proof: We already have that Rs; is a convolution matrix. If S; is symmetric then it is clear
that s;(§) is an even function about £ = 0. Therefore, sj(—% —7) = sj(% +7) = sj(g — )
since s; is 27 periodic. Since |mg(£)|* and |my(€)|* are both even functions, it is clear that

r;(€) is an even function as well. We may write the entry (Rs;)o,» in terms of the function
r;(£) as
1 ; 1
(Rs, ok = 5- / ri(§)e M de = — / 7 (€) cos(k&)dE, (2.1.11)
™ 2n

-7
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from which we deduce

(Rs,)o._x = % / r;(—€) cos(—ke)dE = % / ri(€) cos(kE)dE = (Rs, oy  (2.1.12)

Therefore, Rg; is a symmetric convolution operator. Using (2.1.8), we see that r;(§) # 0
except at £ = 0.

Furthermore, if we are using wavelets with m — 1 vanishing moments, then for small £ we

know that
Imo(§)]> ~ 1+ 0(&™) (2.1.13)
and
im1(&)]> ~ O(E*™). (2.1.14)
We can rewrite (2.1.8) as
r(2g) = ———1©

Ima (€ ek + Imo (&)

Assuming £ < 1 gives us

5;(£) . .
ri(26) ~ 0@ (0@ 1 0ET) £ 1+ 0E™) ~ 5;(€) + O(£7) (2.1.15)
which yields
13 (&) ~ sj(g) +0(&) ~ ﬁ% +0(&%) ~ (hjﬁé +0(&"). (2.1.16)

The proof of Proposition 2.1.1 is therefore complete. O

Thus, we see that for the second derivative operator in one dimension, the reduction
procedure preserves the “form” of projection S; of this operator in the sense that the reduced
operator Rg; is symmetric and positive, and it approximates the second derivative to the

same order as the matrix S;.

2.1.2 Preservation of Divergence Form
M. Dorobantu and B. Engquist in [17] study the multiresolution reduction procedure

applied to projections of operators of the form

-V - (a(x)V). (2.1.17)

37



In one dimension, this operator may be written in the Haar basis as
S; = —h; ?Adiag(a;)A_, (2.1.18)

where h; is the step-size on scale V;, A, is the standard forward-difference operator whose
stencil is (—1,1), and A_ = A%. The operator diag(a;) represents multiplication by the
function a and in the case of the Haar basis is simply a diagonal matrix whose entries are the
coefficients of the vector a; = Pja(x) in the Haar basis. The form (2.1.18) is called discrete
divergence form.

In the Haar basis, the operators A and A_ have a relatively simple decomposition, given
by the following:

Ar, Ba, 1| M -—-Ay

+

, (2.1.19)

Ca, Ta, 2 Ay Ay

+
where M is convolution with the stencil (—3, —1). Also, the operator diag(a;) is decomposed

as
A i . B i . dia, Sa dia, da
diag(a;) diag(aj) _ g( ) g( ) : (2.1‘20)
Cdiag(a,-) Tdiag(aj) diag(da) dia‘g(sa)
where s, and d, are vectors given by (s,)r = M and (dy)x = W This
simple structure in the Haar basis can be exploited so that Rg; is written in a simpler form.

In [17] this form is given by
Rs, = (hjy1) ?AyHA_. (2.1.21)

The operator H is called the homogenized coefficient matrix. It is in general not a diagonal
matrix and so does not directly represent a multiplication operator in the Haar basis. Its

general form is given by

H = 2(diag(s,)+diag(d,))+(diag(se) +diag(de)) (A- +M*) Ag | (M —A ) (diag(s,) +diag(da)),
(2.1.22)

where

1
As; = E(Aeriag(sa)A_ — Mdiag(s,) M* + Aydiag(d,) M* — Mdiag(d,)A_. (2.1.23)
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The analysis in [17] does not make it clear if in general the homogenized coefficient matrix H
has a form more particular than that given by (2.1.22). Numerical experiments in [17] indicate
that H has a faster rate of decay in the entries away from the diagonal than the matrix Rs;,
which may have quite slow decay. When H has this property, it may be truncated and
compressed more effectively than Rs;. Additionally, since the matrix H is not diagonal, it
does not appear that the form given by (2.1.21) may be used to find a recursion relation for
H across many scales.

However, we may say more about H if we make some restrictions on the coefficients, as is

done in [17]. The analysis of [17] yields:

Proposition 2.1.2 Suppose a(z) = a + a(z), where a(x) € W41, the finest wavelet space
in the domain of S;, and a(x) has constant amplitude such that |a(z)| < a. Then, for any
function v(x) € L([0,1]) such that v(z) has a continuous and bounded fourth derivative, we
have

IR, (Py0(z)) — gy A A (Pj0(@) oo < OB o ) e (2.1.24)

J

where o = {(a=)~! is the harmonic average of a(z) on [0,1].
We do not prove this proposition here; for the complete proof, see [17].

The basic idea of this proposition is that, for highly oscillatory coefficients which are
resolved only by the finest scale of V;, the reduction procedure applied to projections of
operators of the form —-4(a(z)-L) yields the same result as classical homogenization, plus a
small perturbation term. (Given the results of Section 1.3, this is not unexpected.) We note
that this is the case even if the oscillatory part of a(z) is set to zero (i.e. a(z) is a constant).
This corresponds with our analysis of the previous section for purely differential operators.

Of perhaps more interest in the analysis of [17] is the observation that the divergence form
in two dimensions is preserved as well. In particular, if we have the operator S; on V; defined

by
1
S, = ——
T (hy)?

where A%, A” | A% and AY are the forward and backward difference operators in the z and

(AZATDAT + AT ACDA_ + AY ACDAT 4 AV APDAY) (2.1.25)

39



y directions with stencils (—1,1) and (1, —1), then the reduced operator Rs; has the form

1
T (h)?

The matrices H(%) are the homogenized coefficient matrices. No comment is made in [17] on

Rs AT HODAT £ AT HCDA_ + AYHEYAT + AYHPDAY).  (2.1.26)

the form or structure of these matrices, unlike for the one-dimensional case. It is important
that a form such as (2.1.26) may be extracted from Rs;, where S; is in the discrete divergence
form of (2.1.25). However, without insight into properties of the matrices H () this form
may not be exploited to yield a recursion relation over many scales. Additionally, the proof
in [17] that this form is preserved relies heavily on special properties of A} and A_ in the
Haar basis.

It does not appear that forms such as (2.1.25) are preserved when the reduction procedure
is performed using higher order wavelets. Even for Haar wavelets, the form does not give
insight into any other properties which may be preserved over more than one scale of reduction.
In the next section of this chapter, we investigate which properies of such operators are
preserved under reduction, and how the order of wavelets used in the reduction procedure

influences these properties.

2.2 Multiresolution Reduction of Elliptic Equations Using High Order Wavelets

The use of high order wavelets to perform multiresolution reduction is desirable for two distinct
reasons which we will explore in this section, namely, the sparsity of reduced operators and
the preservation of small eigenvalues.

We show that, under the reduction procedure, the rate of the off-diagonal decay of the A,
B, and C blocks of the reduced operators remains the same. Also, the spectral bounds are
preserved as well as (approximately) small eigenvalues and the corresponding eigenvectors. We
introduce a modified reduction procedure which better approximates the small eigenvalues.
The accuracy of the approximation of small eigenvalues as well as the number of eigenvalues
which are preserved with a given accuracy strongly depends on the order of wavelets (and
some other properties of the basis).

We briefly consider computational issues since, in (1.2.9), computing the matrix Agjl may
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appear to present some computational difficulty. Using an algorithm from [20], the operator

Rs; may be computed without computing Agjl directly.

2.2.1 Preservation of Spectral Bounds

An important observation made in [16] is that the reduction procedure preserves the lower
bound of the spectrum. The proof is very simple and we present a slightly more general
result here, using some relations from [31]. This result is well-known in the field of domain-

decomposition methods, where the Schur complement plays a prominent role.

Theorem 2.2.1 (Preservation of spectral bounds) Let S; be a self-adjoint

positive-definite operator on Vj,
m||z|* < (Sjz,z) < M ||z||?, (2.2.1)

for allz € V;, where 0 <m < M < oo.
Then
Rs; = jo (2.2.2)

and

m|z|* < (Rs,z,2) < M ||, (2.2.3)
for allz € V.

Proof: Note that, using (A.2.2), we can write

Cs, =P;118;Qj+1 = (Qj+18;P;11)" = Bg, (2.2.4)
TSJ. - Pj—‘,-lSij—‘,-l == (P_]—‘,-lSij—i-l)* == ng, (225)
and
As; = Q;1+18;Q 11 = (Q;+15;Qj+1)" = Ag,. (2:2.6)
Therefore, we have
jo = ng — (Bg]AngBsJ)* = Tsj - Bg] Aglesj = st. (227)
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As. Bg,
Since S; is positive definite, so is ’ | and, thus, it follows that Ag; is positive

By T,

definite and Agjl exists. Let us consider the operator

1
” I —Ag'Bg,
0 I
Then we have
- As;, Bsg; 7 — As;, 0 7
B’éj Ts; 0 Rs;
and
Ags. Bs. 0 0
(Rs;z,z) = | Z* ! W/ ,
Bg, Ts; z x
For the lower bound we obtain
Ag. Bag, 0 0
(Rs;z,2) = ! |z ,Z
ng Ts; T x
_ 2.2.8)
> m(|A5 Bs,zl? + llo]) (
> mlz|*

If M < oo, then to estimate the upper bound, we use Rs; + ng Agles ; = T's; and positive

definiteness of Agjl to obtain

(RSjmJZ-) < (TSjmam)'
. ; Bs; .
Since satisfies the same spectral bounds as S;, we have
Bs, Ts;
(Ts,2,2) < M [lo]2.

This completes the proof.00

We note that since we have made no assumptions (other than orthogonality) about the

multiresolution analysis, the properties (2.2.3) and (2.2.2) do not depend on dimension or the

choice of wavelet basis.
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The estimate of (2.2.3) raises the important question of whether it is possible (and under
which conditions) to have exactly or approximately the lower eigenvalues of S; as eigenvalues

of Rs;. We will consider these questions in Section 2.2.4 below.

2.2.2 Rate of Off-diagonal Decay and Sparsity of Reduced Operators

In this section, we show that, for matrices whose A, B, and C blocks have a certain
rate of decay in the magnitude of their entries away from the diagonal, the reduction scheme
preserves the rate of the off-diagonal decay in the A, B, and C blocks of the reduced matrix
over any finite number of scales. This rate is affected by the number of vanishing moments
of the wavelet function.

As shown in [9], the elliptic operators considered in this chapter (and their Green’s func-
tions) are compressible in wavelet bases. Recall that by compressible we mean that the A,
B, and C blocks of its non-standard form have fast decay away in the magnitude of their
entries away from the diagonal. In fact the result of this subsection is valid for projections of
operators from a wider class than just elliptic operators.

We represent the operators A, B;, C;, T; by the matrices o/, 37,~7, s/, where

o = [ [Kayieeie sy, :29)
e = [ [ K@@, (2.2.10)
e = [ [K@)sim@im sy, (2.2.11)
st = [ [KG@)sim@o @y, (2.2.12)

and K (x,y) is the kernel of a Calderén-Zygmund or a pseudo-differential operator S. We

assume that K satisfies the conditions

1
< - 2.
|K(z,y)] < Pl (2.2.13)
C
10} K (z,y)| + |0, K (z,y)] < m (2.2.14)

We also assume either that the kernel K defines a bounded operator on L2, or that, if it

defines an unbounded operator, then the kernel K satisfies a weaker condition (called the
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“weak cancellation condition”)

/ K(x,y)dzdy| < C|I, (2.2.15)

x I

for all dyadic intervals I. Under these conditions, we have (see [9])

Theorem 2.2.2 If the wavelet basis has M wvanishing moments, then, for any kernel K
satisfying the conditions (2.2.13), (2.2.14), and (2.2.15), the matrices o, 37, ¥7 satisfy the
estimate

o |+ 1B + v | < Chy B =)™, (2.2.16)
for all integer k, 1.

This theorem has a straightforward higher dimensional analogue.
Bi-infinite matrices {mpy }r, ez which satisfy estimates of the form (2.2.16) fit into the

more general class of matrices which decay away from the diagonal according to the estimate
|mii| < C(L+ |k —=1])7", (2.2.17)

where r > 1 is a parameter and C is a constant. The following elegant theorem dealing
with the algebra of invertible matrices {mp }r1cz has been communicated to us by Ph.

Tchamitchian. This theorem is an enhancement of the result presented in [37] (following

[21)).

Theorem 2.2.3 If the matriz {mp }ricz is invertible on 1%, then
Imp | <C'(1+[k—=1)" (2.2.18)

The proof uses relations between commutators of an unbounded operator X on [? defined by
X (yr) = {kyr} and operators M = {my }xicz and M ! = {m;j}k,lez; it is quite elaborate
and we refer to [37] for details.

We prove a two dimensional analogue of this theorem in Chapter 3. Although in higher
dimensions, the object S; and its blocks are actually tensors, we refer to them as matrices.

We state it here:
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Theorem 2.2.4 If a matriz {myr 11 ek ivez satisfies
Imi | <CQA+|k—FK|+1=1])"2" (2.2.19)
(where a € Z,a > 2) and if the matriz is invertible on 12, then
My gl <C"(L+ |k =K+ 1 =1)7>" (2.2.20)

See Figure 2.1 for an example of such a matrix after truncation of elements below a given
threshold. Matrices which satisfy (2.2.19) also form an algebra under multiplication; for a
proof of this see Chapter 3.

We use Theorems 2.2.3 and 2.2.4 to show that, at all stages of the reduction procedure
in both one and two dimensions, the matrices representing the A, B, and C blocks of the
reduced operators (1.2.10) satisfy the same off-diagonal decay estimate (2.2.16) as the blocks
of the non-standard form in Theorem 2.2.2 and its two-dimensional analogue. In other words,
the reduction procedure preserves sparsity for a wide class of operators. In this sense, the
form (or structure) is preserved under the reduction procedure which allows us to apply it
over a finite number of scales. The following theorem applies to the one-dimensional case,

but analagous results for two dimensions can be proved using Theorem 2.2.4.

Theorem 2.2.5 (Preservation of structure over finitely many scales) Assume that

the operator S and the wavelet basis satisfy the conditions of Theorem 2.2.2. Let R; be the
reduced operator on some scale j, where reduction started at some scale n, n < j, n,j € Z,
and let Ar;, Br; and Cgr; be its blocks. Then the bi-infinite matrices a™, B and 4™

representing these blocks satisfy

T TJ rJ n,j —-M-1
lagezl + 1Bl + lgl < Ch” L+ 1k = 1)) ) (2.2.21)

for all integers k, 1.

Proof: Our starting point is the operator S,, and its blocks, Ag, , Bs,, Cg, and Ts, = S;41-
Matrices representing these blocks satisfy the estimate of Theorem 2.2.2. Since S,, is positive

definite, so is Ag, (see Section 2.2.1) and, thus, Agj exists and, according to Theorem 2.2.3,
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satisfies the estimate in (2.2.16). Since Bg, and Cg, satisfy the same estimate (2.2.16), the

product Cg, Ag: Bg, satisfies it as well. The reduced operator R, +1,
R,41 =Rs, =Ts, - Cs, Ag' Bs,, (2.2.22)
consists of the difference of two terms,
Ryi1=Sp+1— Fpaa, (2.2.23)

where

Fn41 = Cs, Ag' Bs,. (2.2.24)

The operator S, ;1 is the projection on the scale n + 1 of the operator S and the operator

F,11 has fast decay and satisfies the estimate (2.2.16). The blocks Ag Br..., Cr

n+1) n+1)

and Tgr, _, of the operator R,, {1 may be written as a difference of the corresponding blocks

n+1
of these two terms. Theorem 2.2.2 guarantees that the contribution from S, ; has the proper
decay. On the other hand, the contributions from F,; have at least the same rate of decay

as F,,41 itself since the blocks are obtained by a wavelet transform.

We prove Theorem 2.2.5 by induction, assuming that on some scale j we have

where S; is the projection on the scale j of the kernel K and F; satisfies the estimate in
(2.2.16). The induction step is a repeat of the considerations above with the additional use
of Theorem 2.2.1 (preservation of spectral bounds) in order to ensure the invertibility of the

AR, block.OO

Remark 1. There are (more narrow) classes of operators for which the rate of the off-diagonal
decay is faster than that in Theorems 2.2.2 and 2.2.5. For example, if we consider strictly

elliptic pseudo-differential operators of order n with symbols satisfying
1000 (,€)| < Cla, B)|€[" 117,

then the rate of the off-diagonal decay is faster than that in (2.2.16), namely (using a wavelet

basis with all vanishing moments),

o, |+ 18], + | < Cm 29 (L4 [k — 1), (2.2.26)
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for all integer k, [ and m. Matrices {mp }r ez which are invertible on [? and which satisfy

for all integer m the inequality
Imi gl < Co(1+ [k —1))"™, (2.2.27)

form an algebra (see [37]). We may thus repeat the above considerations to prove a version of

Theorem 2.2.5 with the decay condition replaced by a decay condition of the form of (2.2.27).

Remark 2. Tt is clear that Theorem 2.2.5 may be viewed as a combination of the results of
Tchamitchian [37] and Beylkin-Coifman-Rokhlin [9]. We conjecture that (for a narrower class
of operators) this theorem can be extended to reduction over an infinite number of scales,
thus showing that the constant C}\L,I’j does not depend on n — j. Such an extension requires
more precise estimates to replace (2.2.18) and (2.2.20). In particular, in both estimates, the
constants on the right-hand side need to be bounded more precisely; currently, they are merely

shown to be finite.

2.2.3 A Fast Method for Computing the Reduced Operator

In practical application of the reduction procedure (1.2.9), one of the critical issues is the
cost of computing the reduced operator (1.2.10). The sparsity of the operators involved in the
reduction is assured by Theorem 2.2.5, but an algorithm for computing the reduced matrix
is still needed. It turns out that a multiresolution LU decomposition algorithm may be used
for this purpose [20]. The multiresolution LU decomposition is performed with respect to the
product of non-standard forms rather than the ordinary matrix product. It has complexity
O(N) for a fixed relative error € and provides a direct solver for linear systems written using
the non-standard form.

The algorithm in [20] provides an alternative to the computation of Agjl by noting that

the decomposition

As
Cs

= ’ (2.2.28)

implies that
RS]- = TS,- =+ CSst..

J

(2.2.29)
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N

Figure 2.1: Rg; after truncation of entries smaller than 0.02 * [|Rs; [|co- S; is the projection

of —V-(a(z,y)V) on the unit square with periodic boundary conditions into the multiwavelet

basis with two vanishing moments. The space V; has 5184 total unknowns.

48



In the one-dimensional case, if As; is banded with bandwidth m, then its LU-factors will
also be banded with bandwidth m, so they may be computed in O(Nm?). If Bg; is also
banded with this same bandwidth, then we may solve for fisj in O(Nm?); and similarly for
Cs ;- For fixed relative accuracy € (and, hence, fixed bandwidth m), this leads directly to the
O(N) procedure for computing R, via the sparse incomplete block LU decomposition given
by (2.2.28).

The two-dimensional case is more complicated. Each of the blocks on the left-hand side
of (2.2.28) will in general exhibit a multi-banded structure, as seen in Figure 2.1. Thus, one
may expect the LU-factors of Ag; to fill in between the bands. Indeed, this is the case, but
the fill-in which occurs is observed in practice to be fill-in with rapid decay, so that truncating
to a given accuracy as we compute the LU factors results in a fast method for computing the
reduction (as in the one-dimensional case).

There are many details involved in the description of the multiresolution LU decomposi-
tion, and we refer to [20] for a full treatment of them. We note finally that, by virtue of this

algorithm the reduction procedure requires O(N) operations.

2.2.4 Eigenvalues and Eigenvectors of the Reduced Operators

In this section, we further investigate the relations between the spectra of the opera-
tors S; and Rs;. In Section 2.2.1, we established relations between the spectral bounds of
these operators. Here, we consider relations between the small eigenvalues and corresponding
eigenvectors of the operators S; and Rs;.

We view S; as the projection of a positive definite self-adjoint elliptic operators with a
compact inverse; this class includes variable-coefficient elliptic operators. For such an op-
erator S, the spectrum consists of isolated eigenvalues with finite multiplicity and the only

accumulating point is at infinity. The eigenvalues may be ordered according to
0<X <A <A

The eigenvectors of such operators form an orthonormal basis in the Hilbert space #H, and

each eigenspace is a finite-dimensional subspace. Heuristically, e.g. in numerical literature,
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it is always assumed for elliptic operators that the eigenvectors which correspond to small
eigenvalues are less oscillatory than those which correspond to large eigenvalues and the
number of oscillations increases as A, — 00. For example, such statements typically form the
basis for the heuristic justification of multigrid methods. There are many other examples of
theorems where this property is a subject of consideration, see e.g. [23]. Here we formulate a
simple, general proposition capturing this property for the purposes of this chapter.
Definition. Let S be a subspace of the Hilbert space H. We will say that the subspace V,,
of MRA is an e-approximating subspace for S if any function in S may be approximated by
functions from V,, with relative error e.

We denote by S; the span of eigenvectors of T which correspond to all eigenvalues Ag,
Ak < A;. Clearly,

80C81 cSC...

Proposition 2.2.1 For any € there exists a monotone sequence k; > 0, k; € Z, such that the
subspaces Vi, of the MRA,

Vko chl CszC---

are each e-approximating subspaces for Sj.

Proof: The proof of this proposition is straightforward; since each §; is finite-dimensional,
we need only approximate each function in the basis of S; by a function in some (sufficiently
fine) space V,, to accuracy e. Since there are finitely many basis functions we may choose a
finest V,, to approximate all of them with relative error €.00

This proposition captures the relationship between larger eigenvalues and more oscillatory
eigenfunctions in the sense that the eigenfunctions corresponding to larger eigenvalues may
require a finer space in the multiresolution analysis to be resolved to accuracy e.

In [28] a similar but stronger statement is made for a narrower class of operators; in e.g.
[23] this topic is approached in terms of nodal lines of eigenfunctions.

As stated above, the proposition is quite meaningless for practical purposes. By choosing
a fine enough scale, we always may use the MRA to approximate any finite-dimensional space

to any accuracy €. The only point of the proposition is that the MRA may be used to
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approximate the eigenspaces in a natural sequence, proceeding from less oscillatory to more
oscillatory. For practical purposes, however, we have to construct the MRA very carefully
if we want to achieve this property for the first few scales that are involved. For example,
it is clear that in order to have good approximating properties, the basis functions of the
MRA have to satisfy the boundary conditions. For the same reasons, in choosing an MRA
for equations where the coefficients have singularities, it makes good sense to incorporate
appropriate singularities into the basis.

We now illustrate our approach by a simple example. Suppose that A > 0 is an eigenvalue
and z an eigenvector of the self-adjoint positive definite operator S;, x € V; and Qj112 =0

(in other words, z € V;41). Then we have
Sz = Az, (2.2.30)
and Q;1z = 0 implies that P;, o = z, so that
Ts,z2=P;11S;Pj112=P; 1Sz =P 1Az = \x (2.2.31)

and
Rs,z = Ts;z—Bj Ag'Bs,x

i
= M= B3 A5 QnSPina (2.2.39)
= Ar-— /\B’éjAglejJrlm
= Az
In other words, eigenvectors of S; which are exactly represented on the subspace V;1 will
be preserved (with the same eigenvalue) under the reduction step.

The condition Q412 = 0 is certainly too stringent for a general elliptic operator. However,
the e-approximating property of the MRA guarantees that we can attain ||Q;i1z| < € if
we consider the eigenvalue problem on a fine enough scale. If we accept that eigenvectors x
corresponding to small eigenvalues are not very oscillatory, then the e-approximating property
may be achieved by a relatively coarse scale in the MRA. More precisely, we will show if
the MRA is chosen so that a set of eigenvectors may be well approximated at some coarse

scale, then, up to that scale, the eigenvalues corresponding to these eigenvectors will not be

significantly affected by the reduction procedure.
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Given the eigenvalue problem

As;

! = , (2.2.33)
Bg Ts. ) S

j J
we use the same approach as in deriving (1.2.9). Solving for d in terms of s and assuming

that (Ag; — AI)~! exists, we obtain
(Ts; — B§,(As; — AI)"'Bg;)s = As. (2.2.34)
The existence of
G(\) = (Ag, - A (2.2.35)

is assured if we consider (2.2.34) for A smaller than the lower bound of Asg;.
We now consider approximations of the left-hand side of (2.2.34) and the accuracy of

solutions based on these approximations. We will use the following simple lemma.

Lemma 2.2.1 For a normal matrix M, if
Mz = Az + &, (2.2.36)

then there exists an eigenvalue A of M such that

A —Am| < el (2.2.37)

]l

Proof: The proof is straightforward. Let G = M — AL. Then there is a singular value og of
G such that

Gy}
oo = inf (G GWYT Gl _ lIEl (2.2.38)
lyllzo |yl llzll |

Since G is normal, it is diagonalizable by a unitary matrix Q. Therefore, the singular values
of G are given by the absolute values of its eigenvalues. Since at least one singular value of
G satisfies (2.2.38), the estimate (2.2.37) follows.O
From (2.2.33), it is clear that
d=—-G())Bsg;s. (2.2.39)

We rewrite (2.2.34) as
Ts; s =As+Bg,d. (2.2.40)
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Using
G(\) — G(0) = AG(N)G(0), (2.2.41)

where G(0) = Agjl, we obtain from (2.2.40) that
(Ts, — B, Ag Bs;)s = As + AB§ Ag'd, (2.2.42)

or

Rs;s = As + AB§ Agd. (2.2.43)

Applying (2.2.41) one more time, we obtain from (2.2.43) that
_ * —2 2 @ —2
Rs,s = A (1+B3,A5’Bs, ) s+ X By Ag”d. (2.2.44)

We approximate the eigenvalue problems in (2.2.40), (2.2.43), and (2.2.44) by

Ts;s = As, (2.2.45)
Rs;s = As, (2.2.46)

and
Rs,s =\ (1+Bj Ag?Bs, ) 5. (2.2.47)

The last equation gives rise to what we call the modified reduction procedure. As in the
case (2.2.46), we would like to iterate the modified reduction procedure over many scales for
(2.2.47) so that this form is preserved. To this end, we factor the operator I + ngAngsj

by using the Cholesky decomposition and obtaining

I+B§; A5 Bs; = Ls; L. (2.2.48)
We rewrite (2.2.47) as
Lg, Rs; (Lg,) 'z = Xz (2.2.49)
where
z=Lg;s, (2.2.50)
and define
Ys, = Lg, Rs,(Lg,) " (2.2.51)
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The equations (2.2.48), (2.2.50), and (2.2.51) represent the modified reduction procedure. The
operator Ys; is self-adjoint and positive definite; to iterate the modified reduction procedure
we compute the A, B, and C blocks of the operator Ys; and obtain (2.2.47) on the next
scale. Note that, in the modified reduction procedure, we have to keep track of the projections
of the eigenvector since at each step they are modified via (2.2.50).

We now use Lemma, 2.2.1 to estimate the accuracy of the approximations given by (2.2.45),
(2.2.46), and (2.2.47). The lemma allows us to use the size of the neglected terms to bound
the perturbation of the eigenvalues. For the term neglected in the approximation of (2.2.40)
given by (2.2.45), we have

1B, dllz < |[Bs, ll2lld].- (2:2.52)

By introducing the spectral bounds of the operator As;,,
my |lz)|* < (As; z, ) < My |||,
for (2.2.46) we obtain the estimate

. . A
IABS, Agldllz < — 1B, |z Ild]l>- (2.2.53)
LUIN

For the term neglected in (2.2.47), we follow the above considerations for the modified reduc-
tion procedure. After multiplying by ngl on the left and substituting (2.2.50) in (2.2.44), we
have

Ys; 2 = Az + X’ Lg, Bg, Ag7d, (2.2.54)
to which Lemma 2.2.1 may be applied. Let Zs, = I + ngAgszsj. The lower spectral
bound of Zs; is clearly bounded below by one (since Bg, Angsj is positive definite), so
||Z§j%||2 < 1. Furthermore, there exists a unitary Q such that Zéj = Q'Ls;, where Lg; is

1
the Cholesky factor of Zs;; thus, ngl =Zg Q" and
1
ILs, ll2 < 1Zg} |2 < 1. (2.2.55)

This yields (from (2.2.54))

J

2

Clox A A

IA? Lg Bg, Ag2dlls < (m—> IBs; |2 [Id]l2- (2.2.56)
A

Lemma 2.2.1 in conjunction with (2.2.52), (2.2.53), and (2.2.56) yields the following result.
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Theorem 2.2.6 Given an eigenvector x of S; such that Sjz = Az, ||z|2 = 1, d = Qj112,
and ||d||3 << %, there ezist real AT, Ar, and Ay which solve (2.2.45), (2.2.46), and (2.2.47),

respectively, such that

At = Al < CallBs,l2[ld]l2 (2.2.57)
A
AR = Al < Cal[Bs,l2]ld]2 (—]> (2.2.58)
ma
A 2
Ay =Al < Cul[Bs;l2/ld]] (—,) ; (2.2.59)
ma

where 1 < Cy < /2.

We may now identify two factors that affect the estimate: ||d||2 and the ratio A /mf,‘&. In
order for ||d||2 to be small, we have to assume that the eigenvector of the problem in (2.2.33)
has a small projection on the subspace W;,i. If the subspace Vi is e-approximating
for the subspace of eigenvectors, then ||d||2 < € and the perturbation of the corresponding
eigenvalues is small. The eigenvalue problem (2.2.45) is merely the projection of the original
eigenvalue problem to the next coarsest scale, and reflects the current practice in setting
up eigenvalue problems. The estimate (2.2.52) simply shows that it is safe to project the
eigenvalue problem to a coarser scale as long as the eigenvectors are represented on that scale
to the desired accuracy.

The reduction and modified reduction procedures improve the eigenvalue estimate with
the additional factor A/ mf&. This ratio is small (in a generic situation) since the operator Ag;
is typically well-conditioned (see Table 2.1) and captures the “high-frequency” component of
the operator S;. Thus, for the lower frequency modes with smaller eigenvalues, we expect
that m? >> X. We show later in numerical examples that this factor makes a significant
difference.

Of great importance is the fact that all of the considerations in this section are independent
of dimension; the guarantee of the e-approximating property in arbitrary dimensions provides
this. However, in higher dimensions, the consideration of optimizing the MRA for a given

operator becomes the chief practical difficulty.
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Remark. In Section 2.2.3, we outlined an O(N) procedure for computing the reduced oper-
ator to relative accuracy e. For small eigenvalues, however, it might be necessary to maintain
absolute rather than relative accuracy while performing the reduction. This puts an additional
computational burden on the reduction procedure in the case of ill-conditioned operators.
In particular, if we compute Ag ; and Cs ;= ]:’)gj to some absolute accuracy d, and from

this compute Rg_, it is clear (from (2.2.29)) that
IR, - Rs, || < 3Cs, I (2.2.60)

In the worst case, the eigenvalues of R’Sj will approximate the eigenvalues of Rs; with ac-
curacy no better than § ||Csj || (see e.g. [25]). For a typical second-order elliptic operator S,
the norms of each of the blocks Ag; and Cs; = Bg, behave like (’)(hf) (where h; is the
step size of the discretization). Furthermore, in the Cholesky decomposition, the norm of the
lower triangular factor is equal to the square root of the norm of the matrix. Therefore, if
we compute the LU factorization defined in Section 2.2.3 to absolute accuracy d, then the
resulting matrix Rlsj approximates Rs; to absolute accuracy 5hj_1, as can easily be seen from
(2.2.60).

In other words, to compute Rlsj so that its eigenvalues approximate the small eigenvalues of
Rs; with absolute accuracy e, it is necessary to compute the multiresolution LU decomposition
with working precision €-h;. For a given accuracy 4§, the bandwidth m of matrices which satisfy

(2.2.16) (or its two-dimensional analogue) is given by m ~ (C8)~ %, where M is the number
of vanishing moments of the wavelet basis (see e.g. [9] for details). Thus, as h; decreases (and
the scale becomes finer) it is necessary to keep a wider band in the LU decomposition. This
thickening of the band as the scale becomes finer means that, for the purposes of eigenvalue
computations with fixed absolute accuracy, the reduction procedure is O(N 1+ﬁ) rather than
O(N).

This estimate is obtained if we choose the number of vanishing moments M based on the
desired accuracy e. A typical choice is M ~ —log(e). With this choice we have the bandwidth

m ~ (e '(h;j)~?)™. For matrices with bandwidth m in n dimensions (where n=1,2) the

multiresolution LU decomposition requires O(Nm?") operations. But h; = N —=, S0 we see
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Table 2.1: Condition numbers and lower bounds of As;.

N || k(A) ma,; k(S;)

256 6.18 | 1.4577 x 10° || 1.16 x 102

1024 || 8.06 | 5.0363 x 10° || 6.26 x 102

2304 || 10.48 | 1.0043 x 10* || 1.53 x 103

4096 || 11.66 | 1.5948 x 10* || 2.86 x 103

5184 || 13.06 | 1.9077 x 10* || 3.66 x 103

Table 2.1: Condition numbers and lower bounds for the A-block of the operator —V -
(a(z,y)V) on the unit square with periodic boundary conditions. Here, N is the number
of unknowns in the two-dimensional spatial grid. Multiwavelets with two vanishing moments
are used, and the coefficients a(z,y) are set to a(z,y) = 2 + cos(167z) cos(167y), which pro-
vides a moderate amount of oscillation in the coefficients. The condition number depends only
weakly on the scale, unlike the condition number of the original matrix (denoted in the table
as £(S;)), which for second-order elliptic operators scales as h™2 (where h is the step-size of

the discretization). Note that m A; also scales as h2.

that the multiresolution LU decompositon requires O(NN#ir) = O(N'+3r) operations to
compute the matrix R'sj so that its eigenvalues approximate the eigenvalues of Rs; to absolute
accuracy €. This means, for example, that when M = 2, the computational complexity could
be O(N?), which is as bad as computing the Cholesky decomposition exactly. However, we

see in Table 2.2 that in practice, even with M = 2 things may be better than this.

2.2.5 Numerical Experiments
In this section, we present preliminary results of numerical experiments. The goal of these
experiments is to study the influence of the number of vanishing moments of the wavelet bases
and the effect of using different reduction procedures on the preservation of small eigenvalues.
d d

In our first example, we consider the operator 8 = f-a(z)z on [0,1] with periodic

boundary conditions and its discretization Sg = DMDT, where D is a fifth-order forward-
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Table 2.2: Run times for the sparse versus full reduction procedure.

N Texact Téhj ||st - ISJ-HOO

576 5.21 4.33 3.3x1073

1296 51.69 25.54 41x 1073

2304 287.52 66.04 49x1073

3600 || 18.3 min* | 121.67 52x 103

5184 || 54.6 min* | 195.74 59x 1073

9216 5.1 hrs* | 417.47 7.8 x 1073*

16384 || 28.7 hrs* | 901.21 1

Table 2.2: Run times for exact versus truncated computation of Rg; for various scales. The
operator S; is the projection of —V - (a(z,y)V) on the unit square with periodic boundary
conditions to a space V; in an MRA on the unit square. Multiwavelets with two vanishing
moments are used. Here, N is the number of unknowns in the two-dimensional spatial grid for
the scale. Texact 1S the computation time in seconds (except where noted) required to compute
Rs; exactly using no truncation in the Cholesky decomposition. Ty, is the computation time
in seconds required to compute R, using a truncation threshold of eh;, where € = 0.001 and
hj is the step-size for the scale. The * indicates estimated figures. ||Rs; — Rg,[lo is the
absolute error between the two versions of Rs,. The error for the last row (indicated by the
1) was not computed due to memory constraints for the exact computation. All computations

were performed on an SGI 02 175 Mhz workstation.
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difference approximation to the first derivative, M is a diagonal matrix with uniform samples

1

of a(z) on the diagonal, and the step size h = 55;.

Although we could have computed the
proper projection of this operator, we prefer to use the finite difference discretization in our
experiments since we have in mind using our method as a linear algebra tool and want to
demonstrate robustness.

We examine eigenvalues of the reduced operators for an a(z) which is pseudo-random
(and, hence, highly-oscillatory). The first reduction technique is simply to consider the T
block of Sg on the coarse scale. The second is to use the reduced operator Rg, (1.2.10).
Finally, we consider the modified reduced operator defined by (2.2.49). Figure 2.2 compares
the performance of these three techniques after one reduction step using compactly supported
wavelets with 12 vanishing moments. Experiments clearly show the advantages of using the
reduced and modified reduced operators.

In Figures 2.3 and 2.4, we perform reduction over 4 scales so that the reduced matrix is
of size 64 x 64 (the original matrix is of size 1024 x 1024), and we compare the 64 smallest
eigenvalues of the original matrix with eigenvalues of the reduced 64 x 64 matrix. The three
curves correspond to using compactly supported wavelets with different number of vanishing
moments. Figure 2.3 was obtained by using the reduced operator Rs; after four steps of
reduction. Figure 2.4 demonstrates the performance of the modified reduction procedure.
For some regimes of the spectrum, we observe that, as expected, increasing the number of
vanishing moments increases the accuracy of the approximation.

Our second example illustrates some preliminary two-dimensional results. We consider the
operator S = —V - (a(z,y)V) on the unit square with periodic boundary conditions; we define
a(z,y) = 2+ cos(32rz). We discretize this operator in a multiwavelet basis (see [2]) with two
vanishing moments, on an interval grid of size 32 by 32. (This results in 4096 unknowns for
the fine-scale problem.) Figure 2.5 shows the relative error for the three techniques after one

step of reduction, which reduces the number of unknowns to 1024.
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CHAPTER 3

CLASSES OF MATRICES

In practice, one of the chief benefits of using wavelets for numerical analysis of differential
and integral equations is that the matrix representations of the operators have sparse approx-
imations. The structure of these sparse approximations typically takes the form of fast decay
in the magnitude of the elements away from the diagonal, so that most of the elements of
the matrix may be truncated to zero. For matrices of finite size, it is impossible to quantify
the rate of decay of the elements away from the diagonal for a class of matrices since such a
statement is inherently a limit statement. Statements about the rate of decay apply only to
the infinite-dimensional (which we also call bi-infinite) matrices. In this chapter, we consider
several classes of bi-infinite matrices, and prove some results which were used in Chapter 2.
As the experimental results of Chapter 2 demonstrate, the decay rate for matrices of finite

size is sufficient to render the algorithms presented in that chapter useful in practice.

3.1 Preliminary Considerations

In this chapter, we consider bounded linear operators on Ly(Z¢). If d = 1 these operators
are represented as infinite-dimensional matrices with two indices; for arbritrary d, they are
infinite-dimensional matrices with 2d indices. We represent such an operator M by a matrix
{mx,1}, where k and 1 are multi-indices with d elements each. (We use indices in bold face
to denote multi-indices; otherwise we assume they are scalars.) In the case d = 1, k and 1 are

simply integer indices. If d = 2, then they are each a pair of indices, and we may write

Mk, = Mkl ,ks,lo- (3.1.1)
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where the number my is the k,1 entry of the matrix M. We may also denote this entry
by (M), so that we may write (M;Ma) for the k,1 entry of the matrix defined by the
matrix-matrix product of M; and Ms.

In the following sections, we study matrices which have various types of decay in the
magnitude of the elements as one moves away from the diagonal. We define the distance
between multi-indices in terms of the absolute values of the differences of their components,
ie.

d
k=11 =" |kn —In. (3.1.2)

n=1
As defined above, |k—1]| satisfies the triangle inequality, as well as other properties of the usual
notion of distance. The diagonal of a matrix is defined by [k —1| = 0, or k = 1. Operations on
matrices and vectors, such as transposes and multiplication, are defined using this notation

in the usual way, for example: M* = {my,1}* = {mix}.

3.2 Matrices with Exponential Decay

If d = 1, we define (following [37] and [22]) the class of matrices X with exponential decay

away from the diagonal as follows:
X = {{M = mk,l}k,lez| there exists C(M),C s.t. |mk,l| < C(M)e_ﬁ(‘k_ll)}. (321)

This class is closed under addition and multiplication. Additionally, it is shown in [37] and
[22] that if M € X and M~! exists on [? then M € X.
For the purposes extending (3.2.1) to d = 2, we define the class X of bounded linear

operators on [2 by
X = {{mk,l}k,lez2| there exists C(M), € s.t. |muc| < C’(M)e*'k’l'}. (3.2.2)

Unless stated otherwise, we assume for the rest of this section that d = 2 and use X to denote
the class defined by (3.2.2).

We define the space I?, 1 < p < 00, to be the set of all sequences {zx }yeza such that

lelp = | D lmf? | < o0 (3.2.3)



for 1 <p < o0, and

[#llc = sup |zk| < oo. (3.2.4)
kezd

Similarly, for a linear transformation S with domain [ and range /9, we define

ISllp,g = sup ISz||;- We note that ||S||2,2 < oo provides a uniform bound on the
z€IP ||z p=1
elements of the matrix S, since

o=

1(S)g 1l

)

(3.2.5)

IA
g
@
£
S

A

< sup Z Z (S)k,l.Z'] (326)

lell2=1 \ yeza \1c24

= [ISll2,2 (3.2.7)

We will prove that each element in the class X defines a bounded operator on I and [*°,
that this class is closed under addition and multiplication, and that if M € X and M~! is a
bounded operator on [2 then M~! € X.

At this point, we state two important theorems from [34] which will be useful in our
considerations. Note that we define the convolution of two sequences = and y as

(zxyh = z Z1-kYk- (3.2.8)
keZd

The sequence which bounds the rows of matrices in the class X is denoted by E(¢) =

{em M }eza

Theorem 3.2.1 (Young’s Inequality) If f € IP and g € I", then

£ glla < 17 1lollgll- (3.2.9)

whenever £ = % + % - 1.

Theorem 3.2.2 (M. Riesz Convexity Theorem) For a linear operator T, if | T

pig <

oo fori=0,1, and if 1/pt = (1 —t)/po +t/p1, 1/qe = (1 —t)/qo + t/q1 with 0 <t <1, then

ITllpe.ae < 1T llpggo 1T 115, (3.2.10)

Po,qo0
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We start by showing the following:
Lemma 3.2.1 If M € X, then M is a bounded operator on I* and >,
Proof: Via Young’s Inequality, we see that

M]]1,1

sup [[Mzl|,
llzll=1

= sup Z ka,lxl

”zlll:lkEZQ 1€Z2
< C(M) sup Z z € ()xe—1]|]
lzll1=1 ycz21c22
= CM) sup ||E(e) *z|x

llzll1=1

CM)[IE(@)h < oo

IN

A similar proof shows the result for |M||so,00-0
If d = 1, it was shown in [37] and [22] that the class X is an algebra under matrix-matrix

multiplication. We show the same for X if d = 2, following the proof of [22] very closely.

Lemma 3.2.2 If M; € X and My € X, then MMy € X. Additionally, if the k,1 entry of
M; is denoted by ml((i’)l, and satisfies |ml(f,)1| < Cie=il%=1 for i = 1,2, and €; < €, then the

k,1 entry of the product M3 = MM, satisfies
Im&)] < CLCy Aeerlk1, (3.2.11)
where A = A(ex — €1).

Proof: To prove (3.2.11), consider the product element-by-element:

mAl = 1> mimY)] (3.2.12)
jez?
< Y Imilim{Y)] (3.2.13)
jez2
< CiCy Y emarlkilgmeil (3.2.14)
jez?
< 0105 Z e—€1(Ik=1[=1=]) p—e2]i—1| (3.2.15)
jez2
= C1Cyem N Y~ em(eme)i-l (3.2.16)
jez?
= C1CyA(ey — € et U (3.2.17)
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where A(e) = ‘22 e Ul < co. Thus the function A(e) depends only on ¢, and ,furthermore,
A(e) > 1. We Jseefz that if €1 < €2, then (3.2.11) implies that M1Ms € X. If €; = €2 we note
that we may always adjust €; so that it is smaller than es. Thus, for any values of €1,€ > 0,
we have MM, € X.0O

It is shown in [37] and [22] if d = 1, then invertible elements of the class X have inverses

which are elements of X'. We use Lemma 3.2.2 to prove that the same is true if d = 2. Our

proof follows that of [37] and [22] very closely.
Theorem 3.2.3 If M € X, and M is invertible on 12, then M~! € X.

Proof: First, consider the case where M = I — U and ||U||2,2 < 1. Then we have M~!
oo

U™. We denote the k,1 entry of U” by (u("))k,l. Since U € X, we write |(u(1))k,1|
n=0

Ce <%l Using Lemma 3.2.2 and noting that |[(uM))| < Ce k1 < Ce 5lk-1 we

IA

estimate
@™ )| < C”A(g)"‘le‘%"‘“‘. (3.2.18)
Since A > 1, we then estimate
N N N
ST U] = D @] < D40y ek (3.2.19)
n=0 n=0 n=0
For the remainder, we write
- - U5
Uz < Y UJg,— 22— (3.2.20)
n§+1 ng\;ﬂ 221 = U2,
Since we have
N
1— (AC)N+!
d o) = ————, (3.2.21)
= 1- AC

and the norm ||U"||5,2 provides a uniform bound on the elements of the matrix U™, we obtain

[e) N o)
(Z U") < DU+ ( > U”) (3.2.22)
n=0 k,l n=0 n=N+1 k’l
1— (AN oy ot
= 1-AC 1= U2, ( )
_ N+ log(AC) | log(||U||2,2)(N+1)
_ 1-e emEkl L T T (3.2.24)
1-AC 1= U]z,
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In order to obtain exponential decay in |k — 1| on the right-hand side of this expression, we

have to choose an N which depends on |k — 1| in such a way that
(N + 1) log(AC) — §|k —1 < —€k—1|, (3.2.25)
for some € > 0, and also that

log([Ull22) (N + 1) < —€/[k — 1. (3.2.26)

e log(IlUlz3)
2 log(AC)+log([U[155)’

If we choose €' = then we see that

6’ % - e'
= 3.2.27
log([Ull73) ~ log(AC) (3.2.27)
which means that
€I % — el 1
< + 3.2.28
log(|U[l,3) ~ log(AC) * [k —1] (3.2.28)
and, therefore,
€ £ _¢
ey K U< gy k-1 + 1 (3.2.29)
og(UT; 0 ™~V < Togtacy™ !

We may always choose a non-negative integer IV so that N + 1 fits in between the lower and
upper bounds of the inequality (3.2.29), which implies that N + 1 satisfies the inequalities
(3.2.25) and (3.2.26).

Therefore, under the assumption that M = I-U and ||U||2,2 < 1,i.e. M is a perturbation
of the identity, we have shown that M—! € X. Following the proof in [37], the extension to the
general case is simple. First we show that the theorem is true for symmetric positive-definite
operators. If L € X is symmetric and positive definite, then there exist constants 4, B > 0
such that

Allz|lz < (Lz, z) < Bllz|l2, (3.2.30)

for all € I2. Thus, it follows that

B+ A B-A
|IL — ( 5 ) I||2,2 < —5 (3.2.31)
from which we can deduce
A+ B
L= ( *2" ) 1I-U), (3.2.32)



where ||U||22 < % < 1. Thus, if L € X is symmetric and positive-definite, it may be
written as a scalar multiple of a perturbation of the identity, for which Theorem 3.2.3 has
been proved.

Now, we see that if M € X has a bounded inverse on {2 and L = MM?*, then we have

L' € X, which implies (using Lemma 3.2.2) that M—! = (M*M)~!M* € X. O

3.3 Matrices with Polynomial Decay

In this section we consider bi-infinite matrices with polynomial decay in the magnitude of the
elements away from the diagonal. We follow the techniques and results of [37] and [21] very
closely, and extend the results of those papers from the case d = 1 to the case d = 2.

The class Z,, a > 0, is defined in [37] as follows:
To = {{mui}rez| there exists C(M) s.t. [myy| < C(M)(L+ |k —1))7"7*}. (3.3.1)

It is shown that this class is closed under addition and multiplication, and that if M € 7, and
M is invertible on 12, then M! € T, for all positive real a. For matrices which are the blocks
of a non-standard form of a Calderon-Zygmund operator, the parameter « is the number of
vanishing moments of the wavelet basis (see [9]).

If d = 2, we define the analogue of Z, (which we also denote by Z,) as:
Zo = {{mx,}x 1cz2| there exists C(M) s.t. |mi;| < C(M)(1+ |k —1))"2*}. (3.3.2)

The goal is to show that the class Z, is closed under multiplication, and that if M € 7,
and M is invertible on [? then M~! € Z,. This result is essential in showing the result of

Chapter 2 that the reduction procedure preserves sparsity.
Theorem 3.3.1 If a > 0, the class I, is closed under multiplication and addition.

Proof: It is obvious that 7, is closed under addition. For multiplication, we write

|(MiMo)wy| = Z ml(({;mug;l) (3.3.3)
jez?
N—2—a . —2—a
< GG Y (A+[k—j) T+ i-1) (3.3.4)
jez?
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= CiC Y (1+|k=1—j) > >+ > (3.3.5)

jez?

We set k = k — 1 and split Z? into two sets:
Ry = {j € Z*|m(k.j) > m(j,0)} (3.3.6)

and

Ry =Z*\ Ry, (3.3.7)

where m is the usual euclidean distance m(p,q) = v/(p1 — ¢1)?> + (p2 — ¢2)2. We note that
%|p —q| <m(p,q) < |p — q|, which implies that
A+p—a) > <L +mp,q) > * <251+ p—q|) > (3.3.8)
Additionally, it is clear that if j € Ry, then
m(0,k) < m(0,j) +m(k,j) < 2m(k,j), (3.3.9)
S0, for the sum over R;, we may write
D A+k=i) TP AN T < CAHK) T D (14T < C'(1+[k)) TP (3.3.10)
JERy JER:
for |k| large enough.
We note that j € R» implies that m(j,0) > m(1~<,j), from which we deduce m(j — k, —1~<) >
m(0,j — 1~<), which means that k — j € R;. For the sum over R», we write
DA+ k—jh)PrA+ DT = YA+ T+ k=i <O+ k)T
j€Ry JER
(3.3.11)
for |1~<| large enough, where j' = k — j.

We arrive at the inequality
|(Mi M) < C(1+ [k —1))" 2= (3.3.12)

Thus the operator M; M, is an element of Z,.00
Now, our goal is to prove that if & € Z, a > 2 and M € [? has a bounded inverse on 2,
then M~! € [2. At the time of writing, we do not have a proof for all positive real a. The

condition a > 2 restricts us to using wavelets with at least two vanishing moments.
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Theorem 3.3.2 If M € 1,, a € Z, a > 2 and M is invertible on [%, then M~! € 7.

The rest of this chapter is devoted to the proof of this theorem. The proof is quite involved
and requires a number of steps.

First, define the unbounded operators Xi ({ck}) = {kick}, and Xo({ck}) = {k2cx}. Note
that the commutator [X;, M] can be written as the matrix (k; — [;)mu,1, and that the order
n commutator of X; with M, defined by

(X5, Ml = [Xo, X, ..., [Xi, [Xi, M]] -] (3.3.13)

~-
n commutators

may be written as the matrix (k; — l;)"mu,1. Additionally, we see that if S € Z, then
[Xi,S]m € Zo—m.

Now, we note that, given a bounded linear operator S : I' — [°°, the norm ||S||1,00 of this
operator provides a uniform bound on the magnitudes of the elements of the matrix which

represents the operator:

[Sllh,o = sup |87 (3.3.14)
llzlli=1
= sup sup Z [s1, kK] (3.3.15)
||x[|1=116Z2k€Z2
> sup |s gl (3.3.16)
1€z
> |811‘(| (3317)

for any E,i
Thus, if the commutator [X;,M~']s,,, i = 1,2 is a bounded linear operator from ' to
[*°, then

ki = 1i*+* iy | < 111Xi, Ma-rallo0 (3.3.18)
for ¢ = 1,2. It is easily shown that
(1Bl + 127 < 29(|k|7 + [2]7), (3.3.19)
so, by adding together (3.3.18) for i = 1 and i = 2, we obtain

27— )Pl < (b =B P e = Bl (3.3.20)

IA

11X, M]24all1,c0- (3.3.21)
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Since ([k —1])2*® < (1 + |k — 1|)?**, we may divide both sides of the above inequality by

(1+ |k —1])2** to obtain

macal < C(M,0)(1+ [k —1)7*7, (3.3.22)
which implies that M~! € Z,. In order to complete the proof of Theorem 3.3.2, we need to
show that

Proposition 3.3.1 If M € T, is invertible on 12 and o € Z, a > 2, then the commutator

[X;, M]a1q is a bounded linear operator from I* to [™.
Proof: The proof of this proposition hinges on the following:

Proposition 3.3.2 If M € 7, is invertible on 12 and o > 2, then M is invertible on [P,

1<p< 0.

We prove Proposition 3.3.2 at the end of this chapter.
The proof of Proposition 3.3.1 also requires the following lemma (based on a lemma from

[37)).
Lemma 3.3.1 If A is a bounded linear operator on 12 such that

lax| < C(1+k—-1)"° s€(0,2], (3.3.23)
and 11—) - % > 1— 3, then A is continuous from I? to 19.

Proof: We define the sequence P(v) by (P(v))x = (1+ |k|)™". Suppose z € I? and ||z||, = 1.
Then
[Azlly < C|[P(s) * zlly < ClIP(s)ll- |zl (3.3.24)

if - =3+ 5 —1 (by Young’s inequality). But [|[P(s)|, < oo iff sr > 2,s0if > — 2 > 1~ we
can choose an r such that sr > 2 and % =14 % —1.0
Now, we continue with the proof of Proposition 3.3.1. We use the commutators of X; with

M~! to obtain all but the last two degrees of decay in the entries of M~!. We make use of

the commutator identities

[X;,M™ '] = -M[X;, MM (3.3.25)
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and

[Xi, [Xi, M) = M1 (—[X, [X3, M]] — 2[X;, M]M ' [X;, M))M ! (3.3.26)

and their higher-order analogues. That is, [X;,M '], is a sum of products of M ' and
commutators of X; and M of order no greater than a (see [37], [6]). By Lemma 3.3.1, it is
clear that each of these commutators is a bounded linear operator from [P to [P*€ for any p > 1,
€ > 0, so we may string together these commutators with M~!, which by Proposition 3.3.2 is
bounded on all [P spaces, in any combination of products to obtain a bounded linear operator
from I! to [°°. This implies that M~! € Z,_,.

We obtain the last two degrees of decay using a bootstrapping proof following [37]. The

following lemma provides the first step:
Lemma 3.3.2 fM€Z, (a€Z,a>2)and M ! € T\, o, where 0 <y <1, then

[Xi; M_l]a = _M_l([xi: M]a+[xi: M]a—lM_l [Xz; M]+[Xza M]M_l [Xz; M]a—1+Ka)M_1
(3.3.27)

where K, € Z,.

Proof: First, consider the case where o = 2. We see that the identity (3.3.26) implies that
K, = 0 and so the result is trivially true.
Now consider the case where a > 2. which we prove in this case by induction. As the first

step in the proof, consider the identity

X, M~ '; = M (—[X;,M] - [X;, M_M~![X;,M] — [X;, M]M~[X;,M],
+ A[X;, MM [X;, M]M [X;, M] (3.3.28)

- Z[Xza [XiJM]Mil[xiaM]])Mila
and set
K; = 4[Xi, M]M_l[xi, M]M_I[Xi, M] - 2[X,~, [Xi, M]M_I[Xi, M]] (3.3.29)

Note that M~! ¢ To-24~, and [X;,M] € Z, ;. Since Z,, forms a multiplicative algebra if

n > 0, and a > 2, it is clear that any combination of products of these terms is an element
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of Z,_24. The commutator of X; with any element of Z,_24, is an element of Z,_3,, so
from this we see that K3 € Zo_34.

Now, assume that

[X;, M™'], = -M([X;, M],,+[X;, M|, 1M [X;, M]+[X;, MM~} [X;, M],,_1 +K,,)M ™!

(3.3.30)
where K,, € Zy_pn4~y and n is an integer strictly less than . We wish to show that
[X;, M 1],,41 has this same form and Kni1 € Zo_(nt1)44-

By the definition of the commutator, we have
[Xz', M_l]n+1 = X,[X,, M_l]n - [Xz, M_l]nxi, (3331)
which leads us to the relation

[Xi M 1 = M7= [X;,M]nt1 (3.3.32)
—[X;, M],M~[X;, M]

- [X;, MM '[X;,M], + K, )M !

where

Knpi = [Xi Mo M™HXG, MM X, M] (3.3.33)
+ 2[X;, MM~ [X;, M],_i M~} [Xi, M] (3.3.34)
+ [Xi, MM [X;, MM '[X;,M],, 4 (3.3.35)

+ =X [Xi, Mo MY XG, M) = [X, [Xi, MIM ™LX, M],_1] (3.3.36)

+ MM 'K,M ' X;]M. (3.3.37)

It remains to show that Kyny11 € Ty (ny1)44- Since [X;,M],_1 € Za_pnq1, it is clear that
each of the three terms (3.3.33), (3.3.34), and (3.3.35) is an element of Z4_,,4+1. Additionally,
we see that the term (3.3.36) is an element of Z, ,,. The last term, (3.3.37), is an element
of Zy—nty—1 since K,, € Ty 4, and M~ € T, 5. Thus, we have shown that K, ;1 €
To—(n+1)4+ for n < a. In particular, we may set n = a — 1 to obtain K, € Z,, and we have

completed the proof of Lemma 3.3.2.0
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In the next step of the bootstrap proof of Proposition 3.3.1, we use Lemma 3.3.2. The

technique we use is a slight extension of that of [37].

Lemma 3.3.3 M€Z, (a€Z,a>2)and M~ € Z,y,_2, where 0 < v < 1, then the

matriz whose k,1 element is defined by
ki = L)% |my | (3.3.38)
is a bounded linear operator from I' to 1™ if 3 <2 and 3 < 2+ 1.

Proof: We note that |k; — ;|***|m; 1| = |ki — 1i] ([Xi, M~"]a)k,1. We use equation (3.3.27)

to break the right-hand side of this equation into three parts:
|k — 1P (M~ X, M] oM™, (3.3.39)

|ki — LiP (M X, Mo i M™HX;, M] + [X;, MIM™HX, Moo My, (3.3.40)

and

ki — LIP (MK M)y, (3.3.41)

Consider the matrices whose k,1 element is defined by one of these three expressions.
The matrices defined by (3.3.39) and (3.3.41) require some care. In both cases we make
use of the inequality

k=1 <C(k—pl°+Ip—da° +¢—1°) (3.3.42)

for 0 < 8 < 2. Using this inequality, we see that (3.3.39) yields

ks — 1:]° Z |m1:,i)||(pz’ - Qi)amp,q”m;,ﬂ <D Z (ap,q + bp,q + cp.a) (3.3.43)
P.q P;a
where
ap,q = |ki — @il ’lmi || (pi — 4:)*mp,qllmgjl, (3.3.44)
bp.a = [mi pllpi — ¢i|*+ [mp.qlm3l, (3.3.45)
and
Cp.a = My Lll(Di — @) *mp glli — 1:]°|Im . (3.3.46)
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We show (under certain restrictions on ) that each of the matrices A = {E ap7q}, B =
P

{Z bp,q}, and C =< > cp,q} is a bounded linear operator from I! to [*°. Thus, we may
p.a P.a
use the inequality (3.3.43) to show that the matrix defined by (3.3.39) is a bounded linear
operator from I' to {°.

Each of the three matrices A, B, and C is a product of three of the following matrices.

The matrix defined by
e |my | is bounded on I* and I°°.

o |ki — pil®lmy | is an element of 7o 54 s and therefore (1) is bounded from I' to
Imif (a+v-p0) > %, by Young’s inequality; and (2) is bounded from " to I°° if

% >2— (a+v— f), again by Young’s inequality.
e |pi — ¢i|P*t%|mp 4| is an element of 7 s and if B < 2 it is bounded from I* to 1.
® |pi — qi|*|mp q| is an element of Zy and so is bounded from I” to ["*¢ for any € > 0.

Therefore, we see that the matrix A is bounded from I' to [* if there exists an r > 1 such
that % >2— (a+~v— /). Since @ > 2, we can only guarantee this if % > %;7 Since r > 1,
this implies that we require 8 < 2 + v. Likewise, the matrix C is bounded from I! to [*® if
there exists an r > 1 such that % < a+y—p. Since v > 0, we can guarantee this if 8 < a+1.
Since a > 2, this is already covered by the condition for the matrix A. Additionally, the
matrix B is bounded from ' to {* for any 3 < 2.

Therefore, we have shown that the matrix defined by (3.3.39) is a bounded operator from
Htol®if3<2and B<2+7.

We show the matrix defined by (3.3.41) to be a bounded linear operator from I* to [
with the same restrictions on 8. If @ = 2, then this is trivially true since Ko = 0. For a > 2,

the technique is again to write

|ki — li|ﬂ Z |m1:,i;||(Ka)p,q||m;}| <D Z (&p,q + Ep,q + Ep,q) ) (3.3.47)
Pa Pa
where
dp,q = |ki — Qi|ﬂ|m1:i,||(Ka)p,q||m;}|a (3.3.48)
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Bp,q = |m1:,1 [lpi — Qi|ﬁ|(Ka)p,q”m;1|a (3.3.49)
and

Zp.a = ImiL|(Ka)p,allai — Lil°lmg - (3.3.50)

We use the fact that K, € 7, to derive the same restrictions on 3 that were derived for
the matrix (3.3.39). The details are very similar to those of the previous case, so we do not
display them here.

The matrix defined by (3.3.40) is dealt in two different ways depending on the value of
a. First, consider the case where a > 2. If 8 < 2, then we see that the matrix defined by
(3.3.40) is at worst an element of Z_1, so there exists a uniform bound on its elements. Any
such matrix is a bounded linear operator from I! to [*°, as follows from Young’s inequality.

If @« = 2, then at best we can say only that M~! € Z,. The class Z does not form a

multiplicative algebra, so for @ = 2 the matrix (3.3.40), given by
ki — LiIP(M™HX;, MM X, MIM ™y, (3.3.51)

requires a similar trick to that of (3.3.39). Namely, the factor |k; — ;|° is “spread” across
the five matrices in the product. The technique is virtually identical to that which has been
previously described, and it yields the same restrictions on 5. We do not repeat the argument
here. Therefore, we have shown that the matrix defined by (3.3.38) is a bounded linear
operator from ! to [* if 8 < 2 and 8 < 2 + 7, and thus have proved Lemma 3.3.3.0

Now, we use Lemmas 3.3.2 and 3.3.3 in sequence to prove Proposition 3.3.1. We have
already shown that M~! € Z,_». In terms of Lemmas 3.3.2 and 3.3.3, this means that we may
set v = 0. The two lemmas then imply that the matrices defined by |k,~—l,~|ﬁ+"|m;’} (i=1,2)
are both bounded linear operators from ! to I*® if 8 < 2. In order to use Lemmas 3.3.2 and
3.3.3 again, we choose 3 = 1 and see that, therefore, M—! € Z,_;. Thus, in the application
of Lemma 3.3.2 and Lemma 3.3.3 again, we may now set v = 1. This allows us to choose
B < 2, from which we see that M~! € 7, which yields Theorem 3.3.2.0

The remaining task for completion of the proof of Theorem 3.3.2 is to prove Proposi-
tion 3.3.2, which says that if M € T, and M is invertible on {2, then M~! has a bounded

inverse on all [P spaces.
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Proof of Proposition 3.3.2. The main idea of our proof comes from [37]. First we
define the matrix M) by
0  |k-1>N

M)k = : (3.3.52)
m,1 |k — 1| <N

We define the remainder as R = M — M(y). Then, by making estimates on the norm of
My, M(_Alf), and M — My, we will show that, by making the bandwidth of My, large
enough we can make the perturbation M — M small enough so that the inverse of M can

be shown to exist. We construct the proof in a series of lemmas.

First, we claim that
Lemma 3.3.4 If M € 7, then |R|1,1 + [|R||oo,00 < C(M, ) N~

To prove this, we see that

IRl < € sup 3 3 A+ Kk=1) "l (3.3.53)
lelli=tyez2 k—1/>N
1€Z,|1|>N

by Young’s inequality. We then write

Sooa+mre o= 3 S+ ]+ )+ (3.3.55)

1€Z,|1|>N l1|>N l2€Z

oY +lnl+ ) (3.3.56)

[11|<N |l2[>N—|i1]

We estimate

Yo > A+l + e

> ((1 F)TPTE 2D (1 L]+ |12|)—2—°‘>

[l1|>N 12€Z l1|>N lo=1
o
< D [a+pe +2/(1 + L] +y) 2 dy
[l >N 0
. 2
— 1 —2—a 1 —1l1-«a
> (asmpes o))
[l1]>N
< 2/(1+x)_2_°‘+ 2 (1+2)"'"%dz
- 1+a
N
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= LN

CN™%,

a+a2(1 +N)™@

IN

and

Z Z L+ L]+ ]L)™2> = 4 Z Z L+ — 1) 2

|l1|§N‘l2|>N—|l1| 0<l1 <N l2<l1—
I1—N
4 Z (1+1; —y)~?"*dy

0<l; <N

INA

—0Q

:42 1 ~(1+N)™

0<ly <N
< CN7°,
and so we arrive at

[R[[1,1 <CN~“. (3.3.57)

Additionally, ||R|co,co = ||R*

|1,1, and ||R*||1,1 satisfies an inequality of the same form since
each step in the derivation of the inequality is also valid for R*, so the result of Lemma, 3.3.4
is proved.

We use the above Lemma and Theorem 3.2.2 to prove the following lemma:

Lemma 3.3.5 If M € 7, is invertible on IP and l”l, where 1/p+1/p' =1, and p < p', then

for N large enough, My is invertible on I[P and I
Proof: By Theorem 3.2.2 and Lemma 3.3.4,
IRllgq < IRIYIRIGY < M, )N, (3:3.58)

where ¢ = p and ¢ = p/, so, for N large enough, we know that

[Rllg,q < (M lg,q) 7 (3.3.59)
Thus,
IRM ™ g < IR lg,qM™ g, <1, (3.3.60)
o0
which means that the series Y (RM~!)" is convergent in the (g, g)-norm. But, then,
n=0
My, =(M-R)" =M }(I-RM™! -1 Z (RM™ (3.3.61)
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which means that M(_Al,) exists in the (p, p)-norm and the (p',p')-norm.0
Lemma 3.3.6 If M € 7, is invertible on I?, then My is invertible on I' and 1>°.

Proof: Clearly, M(n) € X and M(y) has an inverse so M(_Al,) € X. But all elements of X
are bounded operators on I' and [*°.

Now, we estimate the norm of My in terms of N and p.

Proposition 3.3.3 If M € Z,, and M is invertible on I?, and I (where 1/p+ 1/p' = 1,
1<p<2), then [[Mzyll1 + Mz llos,c0 < C(M,p)N3~*/Plog N.

Proof: The proof of this proposition involves many parts and each will be proved as a separate

lemma. Throughout, we set s =3 —2/p+ a.

Lemma 3.3.7 If M € 7, and M is invertible on P, 1 < p < 2, then
| (ki = k0 (VL)) ko by hasby | < COINP TP (L ko — Ry |+ k2 = R5)) (3.3.62)
[ (ki = B M) ks o by | < N2 (L [y = Ky |+ [k — B [) (3.3.63)

Proof: First, consider integers k and [ such that 1 <k < N, 1 <[ < N. Clearly,

(k+1)°% % <C(p)N*>3. (3.3.64)
Furthermore,
1
1+——)<2 3.
1+ =) <2, (3.3.65)
SO
k4D 31+ — )2 <CpN* 3 (3.3.66)
k+1 = ' e
Thus,
(k+12(1+k+1)'"% <CmN>?, (3.3.67)
which yields
(k+D2(1+k+1) 2 *<CEN*"?(1+k+1)" G5t (3.3.68)
Of course,
(ki = k3)? < (k1 = k)% + (k2 = k3)*| < (Jka = Ky | + k2 = K5))?, (3.3.69)
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so combining (3.3.68) and (3.3.69) yields
|(ki — k2)2(M(N))k1,k'1,k2,k'2| < C(P)N%%(l + |k1 — Ki| 4 |k2 — K5))~° (3.3.70)

provided ki # ki, k2 # kb; this case may be handled by adjusting the constant C(p). Thus,

we have proved the inequality (3.3.62); the inequality (3.3.63) is proved similarly.0

Lemma 3.3.8 If M € Z, and M is invertible on 1P, 1 < p < 2, then, given € > 0, [X;, M ()]

and [X;, [ X, M(n)]] are continuous from 19 to 19%¢, where ¢ > 1.

Proof: Since we have assumed a > 2 we see that s > 3. Via Young’s inequality (Theo-

rem 3.2.1), we obtain

I1Xs M(nlllg,g = | Sllllgl X4, Myl
< CN?27P sup {1+ k1| + |k2]) *} % 2|,
= (3.3.71)
< C(p)N2‘2/”| Slup1 {1+ k| + B2~ HIxll 2l

< CM,p)N*=2/e.

Likewise, we can show that [|[X;, [X;, M(n)]lllg,q < C(M,p)N3~/P if s > 2. The result is

proved by noting that ||T(|¢,¢+e < ||T|lq,q for all operators T.O

Lemma 3.3.9 If M € 7, and M is invertible on 1P, 1 < p <2, and 1/p+1/p' =1, then

X, [Xi,M(_AI,)]] is continuous from I? to 1P and

i — KPPV )y iy | S C(ML @) NP727, (3.3.72)

Proof: Since M is invertible on {2, we know from Lemma 3.3.5 that My is invertible on
I2; we are assuming that M is invertible on [P and l"'7 so Lemma 3.3.5 gives us invertibility

of M(xy on I? and 17" also. We have the commutator identity

[Xi, (X3 M )] = My (=X, [Xs, M(w)]] + 2[X3, M IM g [ X, M) )M - (3.3.73)

By Lemma 3.3.8, [X;, M(x;)] is continuous from IP to 12 and from {2 to [?". Thus, the continuity

of M(_Alf) on [2 assures the continuity of [X;, M N)]M(_J\ll) [Xi, M(n)] from [P to IP". Furthermore,
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Lemma 3.3.8 shows that [X;, [X;, M(n)]] is continuous from IP to IP'. Thus, the identity
(3.3.73) shows that [X;, [X;, M(_Alf)]] is continuous from I? to 17’

The identity (3.3.73) shows that

11X, [Xo, My lllor - < IM o0 IM 5 llpr X (3.3.74)
(11X, [Xs, My ]l

HIM 22 11X M) 21X, M ll2,0) -

By the inequalities in the proof of Lemma (3.3.9), we see that

X6, M) llp2 | [Xi M) ll2,pr < CN*4P (3.3.75)
and
11X, (X, M) ||l < ON2/7, (3.3.76)
which imply
11X, [Xi, My lllpor < 1M [, My Nl (0N3‘2/” + 0||M(§)||2,2N4—4/P) . (3.3.77)

Clearly ||M(_1\1r)||q,q has a uniform upper bound in N since ||M(_A1,)||q,q = IM~Y4q 88 N = o0

when ¢ = p,p’, 2. Since 1 < p < 2, we know that N*=4/? < N3-2/P 50 we have

X5, [Xi, Mz lll2,2 < CN*272, (3.3.78)
which immediately implies the inequality (3.3.72).0
Lemma 3.3.10 If M € 7, and M is invertible on [P, 1 < p < 2, then for any 0 < e <1,

[(M(n))ich] € C(M,a) N3 5 N=9+3)e(1 4 [k — 1)) 727, (3.3.79)

where J > 3.
Proof: By construction, we have that

|(M(3))eal < CNP(1+ [k, 1) 75~ (3.3.80)
which implies that [X;, M(n)], [Xs, [Xi, M(a]], and [X, [Xs, [Xi, M(a)]]] are continuous on

12 with norms less than CN?3. Therefore, since the [X;, [X;, [Xi, M(]\I,)]]] may be written as a
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finite sum of products between M(_Al,) and the commutators [X;, M(n)], [X, [Xi, M(n)]], and
[X, [Xi, [Xi, M(n)]]], it is continous on 1? and its norm is less than C(M)N, where J > 3.
Since the norm of an operator on [? is also a bound on the elements of the matrix which

represents the operator, we know that
|((M(3))ie1l < CM, ) N*"(1 + [k —1))7%. (3.3.81)

Now we can combine the inequalities (3.3.72) and (3.3.81) by raising one to the 1 — ¢ power

and the other to the € power and taking their product; this yields
(M)l € CMLa)NEDOmINT (1 4 [k - 1)) (=975, (3.3.82)

which after simplification becomes the inequality (3.3.79).0

The proof of Proposition 3.3.3 is almost complete. To complete it, consider that

Ml < CM,a)N* 5NV 3D sup [[{P(2+€) x|y
llzlli=1
< OM,a)N* 3NV sup [[P(2+ ¢)llille]x
llzlli=1
< C(M,a)N* 3 NU=3HD P2+ )| (3.3.83)
by Young’s Inequality. The term ||P(2+ €)||1 can be bounded by 4 + ﬁ + 1%6 by an
integral comparison. Now we set € = (log N)~! in (3.3.83) using the bound
I1P2+e)| <4+ ﬁ + 1%55 after some further estimates, this yields
M ll11 < C(M,a)N*~5 75 log N (3.3.84)

for N large enough. Of course, this estimate is also true for (M(_Al,))*, and since ||M(_A1,) [loo,00 =
||(M(_1\1r))*||1,1 it is also true for ||M(_1\})||oooo Thus the inequality of Proposition 3.3.3 is

proved.O
Lemma 3.3.11 Let p; € [1,p], t€[0,1] such that

LR Sl (3.3.85)
IfM € I, and M is invertible on P and 1P, where 1 < p <2 and 1/p+1/p' =1, then

_ _ _2
IM o lps.pr + M [l . < C(M, @) N2 (log V) (3.3.86)
(N) (N)

84



1 1
where — + = = 1.
D1 + P'1

Proof: By Theorem 3.2.2,
My llpspr < 1M G 1 Iy 11 (3.3.87)
(N) (N) (N)
However, ||M(_A1,)||p,p is uniformly bounded in N, so

Il n < COM, @) M 1 (3.3.88)

Now,

IV e, < COML @) M [l oo (3.3.89)

by Theorem 3.2.2, so combining Proposition 3.3.3 with the inequalities (3.3.88) and (3.3.89)

yields the result of this lemma.O
Lemma 3.3.12 M is invertible on IP* and IP1 as soon as (3 — %)t <a.
Proof: The inequality
IM 4 Rl gy + My Rl < C(M,a) NG~ (log N)! (3.3.90)

follows immediately from the inequality (3.3.58) and Lemma 3.3.11. Thus, if (3 — %)t <
a, then, for large N, C(M,a)N(3_%)t_a(log N)t will be less than 1. Therefore, the se-
ries ioj (—1)”(M(_A1[)R)" will be convergent in the (p1,p1) and (p},p)) norms. Now, from
Lem:n_a03.3.6 and the inequality (3.3.58), we know that My is invertible on all 1 < ¢ < oco.
So, on IP* and IP' we can write :
oo
M~ =M +R)™ = I+MyR)"'My, = (Z{)(—n”(M(;)R)") My, (3.3.91)
n—
which is convergent in the (p1,p1) and (p,p}) norms as long as (3 — %)t < a.O
Finally, the proof of Proposition 3.3.2 is now possible. Starting from the fact that M is
invertible on {2, we know that it is invertible on P! and I?1 as long as 2t < «, where ¢ and
p1 satisfy the equation (3.3.85). Since a > 2, we may continue choosing successive p’s which

satisfy (3.3.85) and reach any 1 < p < 2 in a finite number of steps; therefore, M is invertible

on all I? spaces, and the result of Proposition 3.3.2 is proved.O
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CHAPTER 4

CONCLUSIONS AND FURTHER DIRECTIONS

In Chapter 1, we described the multiresolution homogenization approach in the context of
linear ODE’s. We compared the multiresolution approach with existing approaches and found
that classical results may be obtained using the multiresolution technique.

In Chapter 2, we discussed the generalization of the multiresolution approach to partial
differential equations. We showed that the multiresolution reduction procedure preserves the
sparsity of operators which are compressible in the wavelet basis, and also approximately
preserves small eigenvalues of elliptic operators.

In Chapter 3, we proved results concerning algebras of bi-infinite matrices and tensors.
We showed that bi-infinite matrices or tensors with exponential or polynomial decay away
from the diagonal form an algebra under inversion, and that, if a matrix in either class is
invertible, then its inverse is in that class as well. These results were used in Chapter 2.

In this chapter, we describe directions for future research.

4.1 Multiresolution Reduction of Hyperbolic and Parabolic Partial Differential

Equations

This section outlines further work and explains the importance of the fact that the reduction
procedure preserves small eigenvalues of elliptic equations. In particular, there are implica-
tions for solving hyperbolic and parabolic initial value problems.

Consider, for example, the differential equation
uge(z,t) + Su(z,t) =0, (4.1.1)

where S is a second-order elliptic operator with variable coefficients, supplemented with some
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boundary conditions and the initial conditions
w(z,0) = g(z), ue(z,t)[¢e=0 = 0. (4.1.2)

This equation describes (for example) wave propagation in a medium with variable velocity.
Consider a problem where the velocity is changing very rapidly (one may think of a highly
stratified rock structure) but the initial condition g(x) has relatively low wavenumbers, i.e.
the wavelength of the initial condition is large compared with the typical length over which
the velocity changes. A space-discretization of this problem would typically require a step-size
smaller than the smallest length over which the velocity changes, which may be prohibitively
expensive in practical applications. The key point of this section is that this difficulty may

be overcome by replacing S by the reduced operator on some scale.

4.1.1 Reduction of Hyperbolic PDE’s
Let us project S onto V; and write, as usual, S; = P;SP;. We assume that the space
V; has fine-enough resolution to capture smallest features of the behavior of the coefficients

of S. Consider the eigenvalue problem
Sjvi(z) = Nvi (=), (4.1.3)

where v}, (z) satisfies the boundary conditions. The eigenvalues {\,} of S; are all real and
positive, and we enumerate them in ascending order. The eigenvectors {v,(z)} of S; form an
orthonormal basis for V.

We may, therefore, look for solutions of the equation

(%)2uj (2, 1) + S;00 (2, 1) = 0 (4.1.4)

in the form

ul(z,t) = Z(an cos(\/g t) + by sin(\/g 1)) vl (z). (4.1.5)

n

Satisfying the initial conditions

W (z,0) = ¢/ (2), %Uj(%t)h:o =0, (4.1.6)
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we obtain
wl (2,t) = ancos((M,)? ) v] (), (4.1.7)
n
where the coefficients a,, are obtained from Pjg(z) = ¢/ (z) = Y, anvi(z).
We observe that there is no mixing between the eigenfunctions {v(z)} over time. In par-
ticular, if g7(z) = Y5 anvi (z) and V4 is an e-approximation of the span of {v] (x)}"=K,

then we may approximate solutions of (4.1.4) projected onto V,j by solutions of

2
(%) wTF(2,1) + Rjppu? (2, t) =0, (4.1.8)

where R is the k-step reduction of S;, with the initial conditions
jtk itk 0 i+
u™(2,0) = g7 (@), T, )]e=0 = 0. (4.1.9)

Solving (4.1.8) on Vj is less expensive than solving (4.1.4) on V; since, in a compact
domain, there are 2¢*-times as many degrees of freedom in V; than in V4, where d is the

spatial dimension.

4.1.2 Reduction of Parabolic PDE’s

The considerations for the hyperbolic case above also apply in the parabolic case
ut(z,t) + Su(z,t) =0 (4.1.10)

(with boundary and initial conditions). The situation for (4.1.10) is even more favorable.

Namely, on V; we may write the solution of (4.1.10) in the form
u (z,t) = Z ane_)‘it vl (z), (4.1.11)
n

where A/, > 0. Similar considerations as in the hyperbolic case apply. In addition, if we
are interested in the long-time solution, (due to the factor e—AZ,t) only those eigenvectors
corresponding to small eigenvalues will contribute, and we may replace S; by R regardless
of which eigenvectors constitute the initial condition g(z).

The efficiency of the reduction procedure in the hyperbolic and parabolic case depends on

the quality of the approximations of the eigenvectors of S; by functions in subspaces of the
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MRA. Since the eigenvectors of S; satisfy the boundary conditions, it is very important to use
an MRA where the scaling functions on coarse scales satisfy the same boundary conditions;
further work is required in this direction.

Procedures for reduction of wave propagation models have been extensively studied (see
e.g. [11]), but most results are concerned with situations where there is a preferred direction,
thus enabling the use of methods suitable for ODE’s. As far as we know, no method has been

proposed that addresses the problem where all directions of wave propagation are allowed.
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Appendix A

WAVELETS, MULTIRESOLUTION ANALYSES, AND
OPERATORS

A.1 Wavelets and Multiresolution Analyses

In this section, we set our notation and give a brief description of the concept of multiresolution

analysis (MRA) and wavelets. For details, we refer to e.g. [15].

A.1.1 Notation and Preliminary Considerations

As usual, we consider a chain of subspaces
...cVyCcViyCcVygCV_1CcV_,C... (A.l.l)

such that

ﬂvj = {0} and UV]- =12(Q) (A.1.2)

where () is some domain in R?. If the domain € is bounded, then there is a coarsest space

Vg and, instead of (A.1.1), we write
VoCV_i1CV_yC... (A13)

The subspace V; is spanned by an orthonormal basis {qbfc (x) =2792¢(27 72 — k) }rez. The

function ¢ is called the scaling function, and it satisfies the two-scale difference equation
¢(x/2) = V2D hpd(z — k). (A.1.4)
k

We consider the space V; to specify a scale or resolution of the space of L? functions on

Q, and use the index j to identify the scale. As j — oo, the scale grows “coarser,” and as
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j — —oo, the scale grows “finer.” Functions in L?(2) which are smooth or slowly-varying
may be represented on a coarser scale of the MRA than those which are highly-oscillatory or
have steep gradients.

We denote by W the orthogonal complement of V; in V;_1, V1 = Vj ® Wj and
use P; and Q; to denote the orthogonal projection operators onto V; and W;. Note that
Qj+1 =P; —Pj1. If z € V;, we write s, = Pj;12 and d; = Qj412, where s, € Vg
and d, € W,y ;. If d = 1, then the subspace W; is spanned by an orthonormal basis
{4l (x) = 279/%4)(27Iz—k)} rez. The function ¢ is called the wavelet, and it may be computed

using the scaling function ¢ via the two-scale relation
$(2/2) =V2) gud(x — k). (A.1.5)
k

The space W1, represents the “detail” component of the space V;, and the function zbi (z)
captures the highly-oscillatory, quickly-varying component of functions in V;.

From (A.1.2), we see that
L) =PWw,. (A.1.6)
J

If d > 2, then (for rectangular domains) the basis in the subspace W; may be constructed
using products of wavelets and scaling functions. For example, if d = 2, then functions
{zbi (z) i, (y), ¢§c (z) i, (y), 1% (w)qﬂc, (¥), }k,k ez form an orthonormal basis of W ;.

An important property of the wavelet is vanishing moments, i.e. orthogonality to low-
degree polynomials:

/w(x)xk de=0 for k=0,1,...,.M —1. (A.1.7)

If the above property holds, then we say that the wavelet has M vanishing moments.
An example of an MRA in which the wavelets have 1 vanishing moment is the Haar system,

defined by

1 if 0<z<1
o(z) = (A.1.8)

0 otherwise
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and

1 (A.1.9)
0 otherwise.
There are many examples of wavelets with more vanishing moments. The Haar basis is the
only (anti) symmetric orthogonal wavelet basis with compact support. Daubechies in [15]
constructed compactly supported wavelets with more vanishing moments.
The sequences h and g in (A.1.4) and (A.1.5) may be either finite or infinite. Given a

function

Fi@) =" fldl(a) (A.1.10)
k

in V;, we may compute the coefficients of s; and dy in the bases ¢’*1 and ¢7*1. Using the

relations (A.1.4) and (A.1.5), we derive

s3@) = Y (i @), (e =D hianf (A-111)
k I
and
d‘;c(.’L') = Z(dﬁc)kqﬂ;’_l (.’E) (d?c)k = Zgl_Qkf[ (A.1.12)
k !

The projection operations represented by equations (A.1.11) and (A.1.12) may be performed
by convolving the sequences h and g with the sequence f and keeping only the even-numbered
elements, a process which is called convolution-decimation. We call the mapping of f7 to s?;

and dgc the wavelet decomposition. We may iterate it over many scales to obtain

j
=3 d +s7. (A.1.13)

J'=jo
If d = 1 and Q is a bounded interval, then the vector of coefficients of f7 will be finite in
length (which we denote by V). The vectors of coefficients of s/ and d’ will then both be of
length N/2. Thus, the finite-dimensional wavelet decomposition takes a vector of length N
and produces two vectors, each of length N/2. In this situation, we may define the coordinate
transformation and projection from V; to V41 by a N/2 x N matrix H. Likewise, we may

define the matrix G to be the coordinate transformation and projection from V; to W;.
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In this context, we represent the projection sy = P;1f as application of the matrix H to
the vector of coefficients of f.

Just as we have defined the wavelet decomposition, we may also define the wavelet recon-
struction (or synthesis). Given functions s(z) € V41 and d(z) € W11 with coeflicients sy

and dj, we may write
f(@) =) frdi(z) = s(x) + d(2), (A.1.14)
k
where

Je = Z (h—2181 + gr—2d;) - (A.1.15)
]

A.1.2 Fourier Analysis

The sequences h and g are filters which are applied to sequences. In the Fourier domain,

we represent these filters as trigonometric polynomials defined by

1 .
mo(§) = —= > hwe™ ™ (A.1.16)
V24
and
1 .
mi(€) = —= Y gre” . (A.1.17)
V25
We define § to be the Fourier transform of the function g as follows:
~ 1 —ifx
9 = 5 [ e7**g(z) dx. (A.1.18)

The relations (A.1.4) and (A.1.5) may be recast in the Fourier domain as

~

$(€) = mo(£/2)$(£/2) (A.1.19)

and

~ ~

P(§) =m1(£/2)6(£/2). (A.1.20)

The functions mg and m; (and hence the sequences h and g) define a quadrature-mirror filter.
The function myg is a “low-pass” filter and captures low-frequency components in the Fourier
domain; m; is a “high-pass” filter and captures the high-frequency components in the Fourier

domain. We list here some properties of the functions mg and m:
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L |mo(&)I? + |ma1 () =1

3. If the wavelet has M vanishing moments, then

k
(%) mq (§) =0 for k=0,...,M—-1 (A.1.21)
€ o

k
(%) mo (&) =0 for k=1,...,.M—1 (A.1.22)
£ o

The convolution-decimation operations in (A.1.11) and (A.1.12) may be represented in

the Fourier domain. Note that, via (A.1.10), we derive

£&) = F(©)$(). (A.1.23)

where f(€) = 3 fle~™*¢. From this we obtain
k

31(6) = 57(©)$(&/2) (A.1.24)
and
dg (&) = dp (€)$(£/2), (A.1.25)
where
§7(26) = mo(€) F(€) + ma () F (€ + ) (A.1.26)
and
dy(26) = ma () f(€) + mo(&) (€ + ). (A.1.27)

Equations (A.1.26) and (A.1.27) are the Fourier-domain equivalent of convolution-decimation
of the sequence f with the sequences h and g, respectively. Figure A.1 shows typical low- and
high-pass filters my and m;. Both functions are 2m-periodic. The function mg(€) in general

has most of its mass between —Z and Z; m;(§) is likewise centered around & = 7.
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Modul us of filter val ues

1
.

Figure A.1: Plots on [m,n] of the modulus of the low-pass filter mo(§) (solid line) and the
high-pass filter m; (§) (dashed line). In this example the filters were derived from non-compact

orthogonal spline wavelets of degree 2. Clearly, mg low-frequency and m; is high-frequency.
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A.2 Operators in the Wavelet Basis

In the wavelet basis, certain classes of operators may be represented using matrices with
relatively few significant coefficients, so that fast application of matrices and matrices and
matrices to vectors may be achieved (see [9] for more details).

In this section we set the notation for representation of operators in the wavelet basis and

[4

describe some features of the “non-standard form.”

A.2.1 Notation and Preliminary Considerations

Given a bounded linear operator S on L?(R%), consider its projection S; on Vj;, S; =
P;SP;. Since V; is a subspace spanned by translations of ¢/, we may represent the operator
S; as a (possibly infinite) matrix in that basis. With a slight abuse of notation, we will use
the same symbol S; to represent both the operator and its matrix. Since V; = V1 @ W4,

we may also write S; : V; = V; in a block form

Asj st
S; = Vi1 ©Wiip = Vi @Wj g, (A.2.1)
CSj TS]'
where
As; = Q;+15;Qj+1,

Bs, = Q;+1S;Pj11,
Cs; = Pj118;Qj11,
Ts;, = Pj+1S;P 11

(A2.2)

We note that Ts; = S;.;. Each of the operators in (A.2.2) may be considered as a matrix. We

As,

J

Bs,
note, however, that in the matrix form the transition from S; in (A.2.1) to !

Cs Ts;
requires application of the wavelet transform. We will use the operator notation throughout

i

this Thesis and comment, if necessary, on the required numerical computations. For example,
if d = 1 and S; is finite and of size N by N, then each operator block in (A.2.2) is of size &
by g In terms of linear algebra, when d = 1 and S; is finite, we compute the matrices Asg;,

Bs;, Cs;, and Ts; by applying the wavelet decomposition first to the rows the matrix Sj,
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and then apply the wavelet decomposition again to the columns of that matrix.
The operators (and their matrix representations) in (A.2.2) are referred to as the A, B,
C, and T blocks of S;. Also, for an operator Z, we use notation Az, Bz, Cz, and Tz to

indicate its blocks.

A.2.2 The Standard and Non-Standard Forms

In the standard form, the idea is to represent the operator S; in the coordinates of the
decomposition (A.1.13). If d = 1, this is done by applying the wavelet decomposition over
several scales to the rows and columns of the matrix S;. Thus, the standard form is simply
a representation of the original matrix S; in a different basis.

The non-standard form (see e.g. [9]) is an alternative representation of the operator which
is not (strictly speaking) a representation of the matrix in a different basis. We start with

the telescoping series

S=> P;1SP;,_, —P,SP;. (A.2.3)
J

We note that Q; = P;_; — P; and rewrite this series as

S=) A;+B;+C, (A.2.4)
J

where A; = Q;SQ;, B; = Q;SP;, and C; = P;SQ);,. If S, is a bounded operator on Vj,
then we see that

J1

Sjo=| > A;+B; +C; | +P;,S;Pj,. (A.2.5)
J=Jo

This equation shows that we may think of the operator S;, as a coarse-scale component
P; S;,P;, together with interactions between succesively finer scales. Slightly more work is
required to apply the operator in this form to another operator or a vector.

If the operator S is an integral operator with kernel K(z,y), then the entries of the

matrices which represent the operators A;, B;, and C; are given by

o = [ [Kapie e (A.26)
Q Q
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b

O O

K(z T q)‘ dx dy
( 7y

K(z,y)¢, (x ' dx dy
( 7y
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(A.2.7)

(A.2.8)



