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Abstract

If the initial and boundary data for a PDE do not obey an infinite set of compatibility conditions, singularities will

arise in the solution at the corners of the initial time–space domain. For dissipative equations, such as the 1-D heat

equation or 1-D convection–diffusion equations, the impacts of these singularities are short lived. However, they can

cause a very severe loss of numerical accuracy if we are interested in transient solutions. The phenomenon has been

described earlier from a theoretical standpoint. Here, we illustrate it graphically and present a simple remedy which,

with only little extra cost and effort, restores full numerical accuracy.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Solutions to initial-boundary value problems (IBVPs) will feature �corner singularities� unless an infinite

number of compatibility conditions, connecting the initial- and boundary data, are satisfied. Since the two

data sets usually arise from different considerations, each presents independent conditions at the corners of

the time–space domain. Therefore, these singularites are almost always present [3]. Although the mathe-

matical literature on the regularity of solutions for IBVPs goes back to the 1930s (for an extensive survey,

see [1]), effective numerical remedies have not yet been presented. Reasons include:

• For dissipative equations, the errors that are caused by these initial time–space corner singularities are

short-lived.

• When using finite difference or finite element schemes, the truncation errors are usually so large that they

dominate this additional error source.
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However nowadays, with spectral and high order methods readily available to provide high accuracy for

smooth solutions, these corner singularities can easily come to dominate other sources of errors by 10 orders

of magnitude or more. Futhermore, with today�s technology, computing very brief transients accurately has

become important in applications such as biophysics [5], nuclear reactor systems [6], computer science-

microchip design [2], and transport through pourous media [7]. It is therefore necessary not only to un-

derstand well the nature of these singularities, but also to have an easy-to-apply remedy which restores high

numerical accuracy. We focus in this study on the 1-D heat equation, in order to most easily illustrate both

the phenomenon and a correction procedure for it. In Section 2, we derive the analytic expressions for the

corner singularities, and illustrate them graphically. In Section 3, we introduce two test examples, and then

apply the Chebyshev pseudospectral method (CPS) to numerically solve them. In the first example the BCs

and initial condition (IC)/PDE are compatible to all orders, and thus the problem is entirely free of corner

singularities. In the second example, singularities of different severities are present in the two corners. When

we apply the CPS method, the errors caused by these singularities dominate very strongly over all other error

sources. After the correction procedure described in Section 4 has been applied, accuracy with near machine

precision is restored also during the initial moments of the simulation. It should be noted that these

initial transients are the ones that feature the sharpest gradients of the solution in both time and space. In

some applications, they therefore become the most critical moments. The correction method we have de-

scribed can be generalized in different ways. Section 5 shows how the procedure can be adjusted to apply to

variable coefficient 1-D convection–diffusion equations and an example is given that models diffusion

through a media that has a sharp gradient in its permeability. The final Section 6 offers some concluding

remarks.

2. Nature of a corner singularity

Until we consider generalizations in Section 5, we use as our model problem the regular 1-D heat

equation on ½0; 1� � ½0; 1�
ut ¼ uxx ð1Þ

with Dirchlet BCs. We first consider one corner, for example ð0; 0Þ. At this corner

o
kuBC

otk
� o

2kuIC

ox2k
¼ bk; k ¼ 0; 1; 2; . . . ; ð2Þ

where the PDE imposes that bk ¼ 0 for all k, otherwise there is an incompatibility between the BC and

the IC. The key ingredient in our corner correction procedure is to find a simple function, sðx; tÞ, which
satisfies the PDE away from the corner but has the same incompatibilites as (2) at the corner. The

solution will then be represented as uðx; tÞ ¼ sðx; tÞ þ vðx; tÞ, where vðx; tÞ satisfies the PDE, has the same

IC as uðx; tÞ but BCs that are compatible to all orders. Numerical computation is then performed on

vðx; tÞ which is free of corner singularities. Our starting point to construct sðx; tÞ is to find basis

functions ukðx; tÞ with the properties

ðiÞ ukðx; tÞ satisfies the PDE away from the corner; ð3Þ

ðiiÞ ukðx; 0Þ 	 0;

ðiiiÞ 1

k!

o
jukð0; tÞ
otj

¼ 1 for j ¼ k;
0 for j 6¼ k:

�

N. Flyer, B. Fornberg / Journal of Computational Physics 184 (2003) 526–539 527



We then define sðx; tÞ as a linear combination of the basis functions ukðx; tÞ:

sðx; tÞ ¼
X

1

k¼0

bk

k!
ukðx; tÞ:

reproducing the corner singulaity exactly. For Neumann BCs, only condition (iii) in (3) changes so that the

basis functions satisfy

ðiiiÞ 1

k!

o
j

otj
oukð0; tÞ

ox

� �� �

¼ 1 for j ¼ k;
0 for j 6¼ k:

�

Then,

vðx; tÞ ¼
X

1

k¼0

ak

k!
ukðx; tÞ;

where

o
k

otk
ouBC

ox

� �

� o
2kþ1uIC

ox2kþ1
¼ ak; k ¼ 0; 1; 2; . . .

For the remainder of the paper, only Dirichlet BCs will be considered. In the case of (1), ukðx; tÞ can be

found explicitly as follows. To begin, notice that (1) is a linear constant coefficient equation. Therefore, if it

is satisfied by a function uðx; tÞ, it will also be satisfied by a number of other functions that we can generate

from it, such as ux, uxx; . . ., ut, utt; . . .,
R x

udx;
R

x
udx,

R t
udt,

R

t
udt; . . . From the well-known solution to (1)

with a delta function IC, uðx; tÞ ¼ 1
ffiffiffi

pt
p e�x2=ð4tÞ, it then follows that

u0ðx; tÞ ¼
Z 1

x

uðx; tÞdx ¼ Erfc
x

2
ffiffi

t
p

� �

ð4Þ

also satisfies (1). Considering the first quadrant in the ðx; tÞ-plane, this solution u0ðx; tÞ satisfies the IC

u0ðx; 0Þ ¼ 0 ðx > 0Þ and the BC u0ð0; tÞ ¼ 1 ðt > 0Þ. To represent higher-order corner singularities (i.e.,

higher-order basis functions ukðx; tÞ), (4) is repeatedly integrated from zero to t. The result is a sequence of

functions ukðx; tÞ ¼ k
R t

0
uk�1ðx; tÞdt which all obey the same IC, i.e., ukðx; 0Þ ¼ 0 ðx > 0Þ; but the different

BC ukð0; tÞ ¼ tk or in other words 1
k!
ðokukð0; tÞ=otkÞ ¼ 1 ðt > 0Þ. The functions ukðx; tÞ are readily available in

closed form:

u0ðx; tÞ ¼ Erfc
x

2
ffiffi

t
p

� �

;

u1ðx; tÞ ¼ �
ffiffiffi

t

p

r

x e�x2=ð4tÞ þ t

�

þ x2

2

�

Erfc
x

2
ffiffi

t
p

� �

;

u2ðx; tÞ ¼ � 1

6

ffiffiffi

t

p

r

x ð10 t þ x2Þe�x2=ð4tÞ þ t2
�

þ t x2 þ x4

12

�

Erfc
x

2
ffiffi

t
p

� �

;

u3ðx; tÞ ¼ � 1

60

ffiffiffi

t

p

r

x ð132 t2 þ 28 t x2 þ x4Þ e�x2=ð4tÞ þ t3
�

þ 3

2
t2x2 þ 1

4
t x4 þ x6

120

�

Erfc
x

2
ffiffi

t
p

� �

;

u4ðx; tÞ ¼ � 1

840

ffiffiffi

t

p

r

x ð2232 t3 þ 740 t2x2 þ 54 t x4 þ x6Þ e�x2=ð4tÞ

þ t4
�

þ 2 t3x2 þ 1

2
t2x4 þ 1

30
t x6 þ x8

1680

�

Erfc
x

2
ffiffi

t
p

� �

; etc:;

ð5Þ
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The left column of subplots in Fig. 1 displays the three first of these functions (i.e., u0ðx; tÞ; u1ðx; tÞ; and
u2ðx; tÞÞ over the unit square ½0; 1� � ½0; 1� in the ðx; tÞ-plane. The function u0ðx; tÞ shows a very strong

singularity at the origin. The data are discontinuous there, but the solution still needs to be infinitely

differentiable even at the smallest distance away from this point. The next two functions u1ðx; tÞ and

u2ðx; tÞ superficially look smooth, but this impression is due only to the graphical scale, as the right

column of subplots in Fig. 1 reveals. Notice that u1ðx; tÞ grows linearly as a function of t at x ¼ 0, u2ðx; tÞ
grows quadratically and so forth, as is needed to satisfy (iii) in (3). The first three functions

ukðx; tÞ; k ¼ 0; 1; 2, violate uBC � uIC ¼ 0; ðutÞBC � ðuxxÞIC ¼ 0; and ðuttÞBC � ðuxxxxÞIC ¼ 0; respectively.

Whenever any condition of this type is violated, there will arise a corner singularity. The only issue is

whether the scale on which it appears is such it can be ignored or not. That depends on the application

and its accuracy requirements. If we need to take the singularity into account, we need an efficient

numerical procedure for doing so. That issue will be discussed in Section 4. Before that, we pose two test

problems.

3. Two test examples

In both of the examples below, we want to solve (1) over 06 x6 1 together with the following time

periodic Dirichlet boundary conditions:

uð0; tÞ ¼ cos
p2

2
t;

uð1; tÞ ¼ sin
p2

2
t:

ð6Þ

Fig. 1. The functions u0ðx; tÞ; u1ðx; tÞ; u2ðx; tÞ displayed over 06 x6 1. The time interval for the left subplots is 0 < t6 1 and for the

right ones 06 t6 0:001. Note the different vertical scales on the latter.
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It can easily be verified that the combination (1) and (6) is satisfied by

uðx; tÞ ¼ ð1þ ep=2Þ e�p=2ðx�1Þ cos p

2
ðpt � xÞ


 �

þ ð1� ep=2Þ eðp=2Þx cos p

2
ðpt þ xÞ


 �

1þ ep
: ð7Þ

Example 1. Free of corner singularities

Setting t ¼ 0 in (7) gives

uðx; 0Þ ¼ ð1þ ep=2Þ e�p=2ðx�1Þ þ ð1� ep=2Þ eðp=2Þx
1þ ep

cos
p

2
x ð0 < x6 1Þ: ð8Þ

If we take this as the IC, the closed-form solution (7) assures compatibility between the PDE, IC and BC,

and makes this example entirely free from corner singularities. The analytic solution up to time t ¼ 4
p
(one

time period) is shown in Fig. 2.

Example 2. Presence of corner singularities.

Here, the same BCs are used but this time with the simple IC

uðx; 0Þ ¼ x ðx� 1Þ ð0 < x6 1Þ: ð9Þ

Analytic solution. As we will shortly determine, this example features singularities of different severity at

the two corners. Again, the solution is known in closed form:

uðx; tÞ ¼ long term solution ðuLðx; tÞÞ þ transient solutionðuTðx; tÞÞ;

Fig. 2. Analytic solution to Example 1 over one period in time ð06 t6 4=pÞ.
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where

uLðx; tÞ ¼
ð1þ ep=2Þ e�p=2ðx�1Þ cos p

2
ðpt � xÞ


 �

þ ð1� ep=2Þ ep=2x cos p

2
ðpt þ xÞ


 �

1þ ep
;

uTðx; tÞ ¼ � 4

p

X

1

k¼1

kð1þ 2k2Þ
1þ 4k4

e�k2p2t sinðkpxÞ � 8

p3

X

1

k¼1;odd

e�k2p2t

k3
sinðkpxÞ:

ð10Þ

Thefirst part or long-term solution is exactly the sameas (7). The two infiniteFourier sums,which compose the

transient solution, compensate for the different choice of IC that this time is incompatible with the given BCs.

The first Fourier sum coverges only as 1=k at t ¼ 0, reflecting that there is a discontinuity between the IC and

BC, i.e., uBC 6¼ uIC. Fig. 3 shows the analytic solution of this problem up to time t ¼ 4
p
, and Fig. 4 its second

derivative uxx up to four different time levels. The discontinuity in uðx; tÞ at the origin x ¼ 0; t ¼ 0 causes sharp

gradients around that corner. The next order singularity, visible only in the uxx plots, also produces irregu-

larities which for small t will greatly decrease the accuracy of any spectral or high-order method.

Numerical solution. It is entirely straightforward to implement CPS for the two test examples (see for

example [4] for implementation considerations). Therefore, we do not elaborate on any such details here. For

time integration, we have used the standard fourth-order Runge–Kutta scheme with sufficiently small time

step, so that all visible errors come from the space discretization. Fig. 5 shows the errors for the two test

examples when using CPS with N ¼ 11 points in space. In Example 1, the error stays below 5� 10�11 and the

plot over a short time interval does not show any kind of initial anomaly. In the sharpest contrast to this, the

display for Example 2 (bottom left subplot) shows a corner anomaly that is 9 orders of magnitude larger than

errors in the solution at later times given by Example 1. The lower right subplot shows the �final remains� of

the anomaly at time t ¼ 0:03 having decayed to Oð10�6Þ; with the error polluting the entire x axis. Before

proceeding to the next section where we describe a very effective correction procedure for obtaining full

accuracy even in the presence of corner singularities, let us remark that mesh refinement in space for the

usually very effective CPS method is an inefficient approach. Not only is it very expensive computationally

(because implicit time stepping requires the solution of full linear systems, and explicit time stepping suffers

Fig. 3. Analytical solution to Example 2 over the interval 06 t6p=4.
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from a stability condition of the form Dt6 const=N 4), it is also quite ineffective in increasing the accuracy.

Chebyshev methods are only spectrally accurate when solutions are smooth and, in the corners, this is not

the case. If we measure errors at grid points only (meaning that for larger N , we get grid points moving closer

to the singularity), the improvement in max norm error by increasing N is almost nonexistent. In Example 2,

increasing N from 11 up to 51 brings the error down only from 0.05 to 0.03. Refining a Chebyshev grid to

capture a singularity more accurately is a conceptually unsound approach, since the problem is one of

multiple spatial scales. The initial condition is given on a large space scale, and the corner singularities first

appear on extremely small scales. Separating the two issues from each other, as we will be doing, allows each

one to be handled in a way that is optimized for its particular scale and character.

4. Correction procedure

For simplicity of notation, we describe the correction procedure not in full generality, but instead in

terms of Example 2 from Section 3, i.e., as defined by (1), (6), and (9). Table 1 summarizers the quantities

that should be zero at the two corners, and lists the values which we instead observe from the given IC and

BC data. The first step in the correction procedure is to reproduce the corner discrepancies using the basis

functions ukðx; tÞ introduced in Section 2. Therefore, we form the function

sðx; tÞ ¼ 1

0!
u0ðx; tÞ

�

� 2

1!
u1ðx; tÞ �

p4

4 
 2! u2ðx; tÞ þ
p8

16 
 4! u4ðx; tÞ
�

þ p2=2� 2

1!
u1ð1

�

� x; tÞ � p6

8 
 3! u3ð1� x; tÞ
�

: ð11Þ

Fig. 4. Analytic values for uxx ð¼ utÞ for Example 2 over four different intervals in t (a) ½0; 4
p
�; (b) ½0; 10�1�; (c) ½0; 10�2�; (d) ½0; 10�4�. The

surfaces are truncated in height at the level uxx ¼ 10.
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Recalling, for instance at x ¼ 0; that ukð0; tÞ ¼ tk, i.e., 1=ðk!Þ=okukð0; tÞ=otk ¼ 1; the coefficients of sðx; tÞ are
simply the magnitude of the corner discrepancies divided by k!. Since ukðx; tÞ is bounded in size by tk, using

four basis functions will prove to be more than enough to achieve computer accuracy for small t. The

function sðx; tÞ
• is analytically available (it will be shown in Section 5 that this is not necessary to implement the correc-

tion procedure),

• satisfies the PDE (1),

• satisfies the IC sðx; 0Þ ¼ 0;
• has, to the orders included, the same corner singularities as the desired solution.

Fig. 5. Errors in CPS solution (with N ¼ 11 points in space) for the two examples displayed over the time intervals 06 t6 0:001 (left

column) and 0:036 t6 1 (right column).

Table 1

Summary of leading order corner discrepancies for Example 2, Section 3

Quantities that should be zero according

to the PDE

Values of the different quantities, as obtained by BC and IC information

At left corner ðx ¼ 0; t ¼ 0Þ At right corner ðx ¼ 1; t ¼ 0Þ
u� u 1 0

ut � uxx �2 p2=2� 2

utt � uxxxx �p4=4 0

uttt � uxxxxxx 0 �p6=8

utttt � uxxxxxxxx p8=16 0
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To solve our PDE (1) with the BC (6) and the IC (9), we next consider

vðx; tÞ ¼ uðx; tÞ � sðx; tÞ: ð12Þ

This function vðx; tÞ satisfies
• the PDE vt ¼ vxx,

• the same IC as uðx; tÞ (since sðx; 0Þ ¼ 0),

• the same BC as uðx; tÞ; however with the boundary values for sðx; tÞ (as obtained from (11)) subtracted.

Our procedure for correcting the corner singularities consists of numerically solving the corresponding

IBVP for vðx; tÞ and then adding back sðx; tÞ to obtain the solution for uðx; tÞ. The whole point with first

subtracting the function sðx; tÞ and then adding it back is, of course, that the function vðx; tÞ ¼
uðx; tÞ � sðx; tÞ (on which we do the actual numerics) has been made free of the corner singularities up to a

high order. Fig. 6 (for CPS, again with N ¼ 11) has been obtained with this correction implemented. The

left subplot shows the computed solution over the time ½0; 0:001� and the right subplot displays the error

(which should be compared against the equivalent error without correction, as showed at bottom left in Fig.

5. With the correction procedure, the error has been reduced from 0.05 to Oð10�13Þ. After the initial

transients have died down, the correction procedure is unneccessary and the regular CPS method can be

applied directly to the PDE solution uðx; tÞ.

5. Generalization to variable coefficients

The concept of singularity subtraction is effective in all cases. But for variable coefficients, it is only in

rare cases that we have very simple closed-form expressions like (5) to work with.

5.1. PDEs of the form ut ¼ a(t)uxx

The change of variable s ¼
R t

0
aðtÞdt transforms this PDE into us ¼ uxx. Therefore, substituting

R t

0
aðtÞdt

in place of t wherever this independent variable appears in the right hand sides of (5) will give us the

appropriate set of corner functions for this particular variable coefficient case. The resulting functions will

all satisfy the PDE and the IC ukðx; tÞ ¼ 0. The boundary condition at x ¼ 0 has however become slightly

modified, to ukð0; tÞ ¼ ð
R t

0
aðtÞdtÞk. After a brief Taylor expansion in t, this form is seen to be just as suitable

to work with as ukð0; tÞ ¼ tk was in the constant coefficient case.

Fig. 6. Computed solution and error up to time t ¼ 0:001 for Example 2, with the correction procedure implemented.
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5.2. PDEs of more general form

For general 1-D convection–diffusion equations, the corner singularity functions ukðx; tÞ can be com-

puted rapidly and conveniently following a change of variables. For simplicity, we will explain this first in

the case of the constant coefficient heat equation (1). Fig. 7 shows some contour lines for the function

u0ðx; tÞ. For increasing values of t, this function gets uniformly stretched out in the x-direction propor-

tionally to
ffiffi

t
p

(as can also be seen directly from its closed form (4)). This suggests a change of variable

n ¼ x
ffiffi

t
p :

Then, ux ¼ 1
ffi

t
p un and uxx ¼ 1

t
unn, so the heat equation (1) now becomes ut ¼ 1

t
unn. To get rid of the

1
t
-factor, we let

s ¼ log t:

Then ut ¼ un nt þ us st ¼ � 1
2

x

t
ffi

t
p un þ 1

t
us and the equation becomes

us ¼ unn þ 1
2
nun: ð13Þ

With the boundary conditions uð0; sÞ ¼ 1; uð1; sÞ ¼ 0; the equilibrium solution becomes uðnÞ ¼
Erfcðn=2Þ; confirming that (13) indeed generates the corner singularity function u0ðx; tÞ. With the left

boundary condition uð0; sÞ ¼ eks (since tk ¼ eks), we similarly obtain ukðx; tÞ; k ¼ 0; 1; . . .. Eq. (13) is very
well suited for numerical implementation:

• it has no singularities or mixing of scales due to the s domain starting at s ¼ �1
• the solutions decay to zero extremely rapidly for increasing n; so a small n-interval is sufficient even for

very high accuracies,

• the small number of grid points that is needed for a Chebyshev discretization in space (maybe 10 or so)

means that we can easily afford implicit (unconditionally stable) time stepping, if we so wish.

The fact that we do not have any obvious initial condition for (13) matters little; we simply start at some

negative s-position (exactly where would depend on the accuracy we want) and the character of the

Fig. 7. Some contour lines for u0ðx; tÞ.
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equation is such that it quickly wipes out the effects of any bad initial conditions we might have chosen.

Suppose next that our original heat equation has variable coefficients, for example ut ¼ aðx; tÞ uxx. Instead
of (13), we then obtain

us ¼ aðnes=2; esÞ unn þ 1
2
nun:

Although we no longer have any equilibrium solution and are unlikely to find any analytical solution,

nothing of numerical significance has changed—this is again a PDE very well suited for numerics. Other

variations (which also can include a convection term) can be handled similarly. For example, ut ¼
ðaðx; tÞ uxÞx leads to us ¼ a unn þ ðn

2
þ anÞ un; and ut ¼ aðx; tÞ uxx þ bðx; tÞ ux þ cðx; tÞ u leads to us ¼ a unn þ

ðn
2
þ b es=2Þun þ c esu; etc. Since we are only interested in solving these PDEs for s-ranges well below s ¼ 0

(corresponding to very small positive t-values), the exponentials es=2 and es are very close to zero).

5.3. Numerical example

As an example of implementing the above technique, consider the following variable coefficient case

ut ¼ ðtanhð3xþ 0:5ÞuxÞx;

uð0; tÞ ¼ sin
p2

2
t

� �

; uð1; tÞ ¼ 0;

uðx; 0Þ ¼ sinðpxÞ:

ð14Þ

The PDE models diffusion through a media that has a sharp gradient in its permeability, represented by the

tanh profile. The subtlety in this problem is that, although the IC is consistent with the BCs to leading order

(both are zero at x ¼ 0 and x ¼ 1), they are inconsistent with the PDE and its higher derivatives. Letting

L ¼ ðo=oxÞðtanhð3xþ 0:5Þðo=oxÞÞ, the leading order compatibility conditions require that the following

quantities are zero at the two corners

ðiÞ u� u ¼ 0;

ðiiÞ ut � Lu ¼ 0;

ðiiiÞ utt � LðLuÞ ¼ 0;

ðivÞ uttt � LðLðLuÞÞ ¼ 0:

. . . . . .

Tables 2 and 3 summarize how these conditions are violated due to the present IC and BC. The correction

functions are obtained via the CPS method by applying the IC uðn; lnð10�5ÞÞ ¼ 0 and the BC uð0; sÞ ¼ eks

(where k is the order of the correction function) to (14) in n; s coordinates. For the left corner, this becomes

Table 2

Leading order corner discrepancies at left corner for the variable coefficient case, Section 5.3, ðx ¼ 0; t ¼ 0Þ
Incompatibilities between the IC and BCs as obtained from the PDE and its differentiated forms

(i) 0

(ii) p2=2� 3p sech2ð0:5Þ
(iii) 6pð27þ p2 þ ðp2 � 9Þ coshð1ÞÞ sech4ð0:5Þ tanhð0:5Þ
(iv) � p

6=8þ 27p

32
sech8ð0:5Þ 34560

�

þ 544p2 þ 2p4 þ ð � 39600þ 52p2 þ p
4Þ coshð1Þ

� 2ð � 3168þ 224p2 þ p
4Þ coshð2Þ þ ð � 144þ 44p2 � p

4Þ coshð3Þ



. . . . . .
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us ¼ tanhð3nes=2 þ 0:5Þ unn þ 1
2
n




þ 3 sech2 3nes=2



þ 0:5
�

es=2
�

un:

As noted above, and seen in Fig. 8, the correction functions decay rapidly not only in x; but also in n. We

therefore need only a small n interval. Since the solution is free of singularities in the n; s-plane, a small

number of grid points, here 11, suffices for the computation. We can also see that the influence of an in-

accurate IC in the n; s-plane computation (here for convenience chosen as identically zero) becomes quickly

self-corrected. Chebyshev interpolation is particularly convenient for transferring the solution over to grid

positions in the x-direction (In time, no interpolation at all is needed if our s-steps are suitably chosen). The

dependence of these correction functions, ukðx; tÞ; solely on the PDE implies the following:

• The BCs and IC of the problem can be changed without having to re-compute the correction functions.

• As a result, the correction functions only need to be computed once and stored for a given PDE.

Table 3

Leading order corner discrepancies at right corner for the variable coefficient case, Section 5.3, ðx ¼ 1; t ¼ 0Þ
Incompatibilities between the IC and BCs as obtained from the PDE and its differentiated forms

(i) 0

(ii) 3p sech2ð3:5Þ
(iii) �6pð27þ p2 þ ðp2 � 9Þ coshð7ÞÞ sech4ð3:5Þ tanhð3:5Þ
(iv) � 27p

32
sech8ð3:5Þ 34560

�

þ 544p2 þ 2p4 þ ð � 39600þ 52p2 þ p
4Þ coshð7Þ

� 2ð � 3168þ 224p2 þ p
4Þ coshð14Þ þ ð � 144þ 44p2 � p

4Þ coshð21Þ



. . . . . .

Fig. 8. Left corner correction functions u0, u1, u2 to (14), shown as computed in the n; s-plane (left column) and when interpolated to

the x; t-plane (right column).
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• Changing the PDE being solved only requires a change in one line of code for calculating the new cor-

rection functions.

Since the correction functions reconstruct the corner singularities, they are only implemented during the

initial transient period of the solution. For longer time we can directly integrate (14). The solution is shown

in Fig. 9.

6. Concluding remarks

When solving initial-boundary value problems, singularities almost always occur in the corners where IC

and BC meet. For dissipative PDEs, these singularities are confined to the corners of the time–space do-

main. In general, if we are interested in numerical solutions only at large times, they can safely be ignored.

The dissipative process of the PDE is �self-correcting� in the sense that accurate long-term solutions do not

depend on catching initial details accurately. However, for applications in which these initial gradients are

of interest, it is far more efficient to utilize a method that is designed to correct for them rather than in-

creasing the overall computational resolution until short-term errors also become sufficiently small (or than

to use a boundary-layer approach which would be forced to simultaneously deal accurately with features on

very different length scales). In our examples, N ¼ 11 grid points in space was sufficient to obtain better

than 10�10 level accuracy. The spectral convergence implies that the accuracy could have been further

increased with only very small changes in N . For instance in Example 2 in Section 3, we find

In an application, one may need to obtain the solution at a different point set than just on a coarse

Chebyshev grid. The present approach separates the smooth and the singular parts of the solution in a way

N 9 10 11 12 13

Max norm error 1� 10�8 5� 10�10 4� 10�11 1� 10�12 4� 10�14

Fig. 9. The numerical solution uðx; tÞ to (14) for 06 t6 1.
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such that both are smooth on their respective grids. This is in contrast to the situation if the problem had

been solved using Chebyshev mesh refinement or some boundary-layer method. In this study, we have

illustrated the phenomenon of initial time–space corner singularities in the case of the 1-D convection–

diffusion equation. We then devised and demonstrated the effectiveness of a correction procedure that is

based on separating the small corner scale of the problem from the large scale solution. The key feature of

this approach is to identify the corner singularities and to treat them separately from the solution to the rest

of the PDE. The major advantages of this include:

• In cases such as constant coefficients or with a variable coefficient that only depends on time, the corner

singularities can be found analytically at essentially no additional computational cost. Full precision re-

sults will be obtained just as effectively at very short times as at long times.

• We can interpolate our solutions over to other grids (than the coarse Chebyshev one used in the actual

calculation) with little or no loss of accuracy even in the immediate vicinity of the singularities.

• If our PDE has variable coefficients, we can cheaply and accurately compute the relevant corner singu-

larity functions. A change of variables leads to a numerically easy-to-solve PDE describing them.

• The corner singularity functions depend on the PDE�s variable coefficients, but not on initial and bound-

ary conditions. Once these singularity functions are computed and stored away (only about 4 or so in

total are needed), they can be re-used indefinitely whenever initial and boundary conditions change.
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