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DARK SOLITONS, DISPERSIVE SHOCK WAVES, AND
TRANSVERSE INSTABILITIES∗
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Abstract. The nature of transverse instabilities of dark solitons for the (2+1)-dimensional defo-
cusing nonlinear Schrödinger/Gross–Pitaevskĭi (NLS/GP) equation is considered. Special attention
is given to the small (shallow) amplitude regime, which limits to the Kadomtsev–Petviashvili (KP)
equation. We study analytically and numerically the eigenvalues of the linearized NLS/GP equation.
The dispersion relation for shallow solitons is obtained asymptotically beyond the KP limit. This
yields (1) the maximal growth rate and associated wavenumber of unstable perturbations and (2)
the separatrix between convective and absolute instabilities. The instability properties of the dark
soliton are directly related to those of oblique dispersive shock wave (DSW) solutions. Stationary
and nonstationary oblique DSWs are constructed analytically and investigated numerically by direct
simulations of the NLS/GP equation. It is found that stationary and nonstationary oblique DSWs
have the same jump conditions in the shallow and hypersonic regimes. These results have application
to controlling nonlinear waves in dispersive media.
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1. Introduction. The instability of one-dimensional structures to weak, long
wavelength, transverse perturbations plays an important role in multidimensional
nonlinear wave propagation. Physical examples appear in nonlinear optics [1], Bose–
Einstein condensates (BECs) [2], and water waves [3, 4]. Early theoretical work on the
transverse instability of solitons for the Kadomtsev–Petviashvili (KP) equation [5, 6]
and the nonlinear Schrödinger (NLS) equation [7, 8] focused on the existence of a linear
instability and the maximal growth rate, both of which are properties of the imaginary
portion of the spectrum of unstable modes. On the other hand, recent two-dimensional
numerical simulations of NLS [9] and vector NLS [10] supersonic flows past an obsta-
cle in two dimensions reveal the excitation of apparently stable, oblique spatial dark
solitons for certain flow parameters. The resolution of this paradox, i.e., that dark
NLS solitons are unstable to transverse perturbations yet can arise as stable structures
in supersonic flows was explained in [11], where the instability was shown to be of
convective type, so that transverse perturbations are carried away by the flow parallel
to the soliton plane, effectively stabilizing the soliton near the obstacle. The charac-
terization of convective versus absolute instability requires knowledge of the spectrum
for a range of wavenumbers in the complex plane [12, 13]. For NLS dark solitons, the
criteria can be simplified and involve the real (stable) portion of the spectrum [11].

One of the hallmarks of supersonic flows is the formation of shock waves. In
classical viscous fluids, shock dynamics can be well understood mathematically in the
context of a dissipative regularization of conservation laws (cf. [14]). However, there
are fluids with negligible dissipation, whose dominant shock regularizing mechanism
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is dispersion (see the review [15]). Notably, superfluidic BECs in the repulsive regime
and laser beams in optically defocusing media fall within this class of dispersive fluids.
When a dispersive fluid flows at supersonic speed, it can form a dispersive shock wave
(DSW) that possesses an expanding, oscillatory wavetrain with a large-amplitude, soli-
ton edge, and small-amplitude sound wave edge. DSWs appear as special, asymptotic
solutions of nonlinear dispersive equations and have been observed in BEC [16, 17, 18]
and nonlinear optics [19, 20]. Their theory is much less developed than their classical
(dissipative) counterparts. In particular, there has been limited study of DSW stabil-
ity. Recent works numerically observe transverse instabilities for NLS DSWs resulting
from dark pulse propagation on a background in two spatial dimensions [21] and for
oblique DSWs in supersonic flow past a corner [22]. In the former case, the trans-
verse instability was mitigated by introducing nonlocal nonlinearity, while in the latter
case, the convective nature of the instability effectively stabilizes the oblique DSW
in certain parameter regimes. In contrast, oblique shock waves in multidimensional,
classical gas dynamics are known to be linearly stable when the downstream flow is
supersonic [23, 24, 25]. (See also the review article [26] for more general results.)

The aim of this work is to clarify the role of absolute and convective instabilities
as they relate to spatial dark solitons and apply this understanding to oblique DSWs.
Analytical and computational challenges include

• the multidimensional nature of the flows;
• the general criteria for absolute and convective instabilities requires detailed
knowledge of the spectrum;

• long time integration and large spatial domains are required to properly re-
solve DSWs numerically.

To address these challenges, we asymptotically determine the spectrum of trans-
verse perturbations to shallow but finite amplitude NLS dark solitons beyond the
KP limit. This enables determination of the maximal growth rate and associated
wavenumber of unstable perturbations as functions of the soliton amplitude. In ad-
dition, using adjoint methods, we introduce a simple, accurate method for computing
the spectrum and its derivatives numerically for arbitrary soliton amplitudes. Simpli-
fied criteria for the determination of the separatrix between absolute and convective
instabilities are derived. The separatrix is determined in terms of the critical Mach
number Mcr as it relates to the soliton far field flow. Oblique dark solitons are convec-
tively unstable when M ≥ Mcr and absolutely unstable otherwise. Using the shallow
soliton asymptotics and numerical computations of the spectrum, we determine Mcr,
demonstrating that 1 < Mcr ! 1.4374 with Mcr monotonically increasing with the
soliton amplitude.

The oblique DSW trailing edge is well approximated by an oblique dark soliton. In
this study, we apply the soliton stability results to the oblique DSW trailing edge in the
stationary and nonstationary cases. Stationary oblique DSWs result from the solution
of a boundary value problem (supersonic corner flow), while the nonstationary case
arises in the solution of a Riemann initial value problem. We find that oblique DSWs
with supersonic downstream flows can be absolutely unstable in contrast to classical
oblique shocks. We also show that stationary and nonstationary oblique DSWs have
the same downstream flow properties in the shallow and hypersonic regimes.

We consider the (2+1)-dimensional defocusing nonlinear Schrödinger/Gross–
Pitaevskĭi (NLS/GP) equation

(1.1) iψt = −1

2
(ψxx + ψyy) + |ψ|2ψ, (x, y) ∈ R2, t > 0,
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along with appropriate initial or boundary data. Equation (1.1) models matter waves
in repulsive BECs and intense laser propagation in optically defocusing (i.e., with
normal dispersion) media. In the variables

(1.2) ψ =
√
ρeiφ, (u, v) = ∇φ,

(1.1) can be recast in terms of fluid-like variables, i.e., density ρ and superfluid velocity
(u, v), as

ρt + (ρu)x + (ρv)y = 0,(1.3a)

ut + uux + vuy + ρx =
1

4

(
ρxx + ρyy

ρ
−
ρ2x + ρ2y
2ρ2

)

x

,(1.3b)

vt + uvx + vvy + ρy =
1

4

(
ρxx + ρyy

ρ
−
ρ2x + ρ2y
2ρ2

)

y

.(1.3c)

Note that (1.3) in the dispersionless regime (neglecting the right-hand sides) corre-
spond to the classical shallow water equations (Euler equations of gas dynamics with
adiabatic constant γ = 2) with the speed of sound

√
ρ [27].

The outline of this paper is as follows. Section 2 discusses the spectrum of unstable
transverse perturbations of dark solitons with asymptotic resolution of the maximal
growth rate and associated wavenumber in the shallow regime. In section 3, we recap
the general criteria for absolute and convective instabilities and then carefully derive
simplified criteria for oblique dark solitons. The separatrix Mcr is then determined.
In section 4, we construct nonstationary oblique DSWs of arbitrary amplitude and
stationary oblique DSWs in the shallow regime, showing the connection between their
downstream flows. The stationary case is compared with (2+1)-dimensional numerical
simulations. Convective and absolute instabilities of oblique DSWs are determined
using the separatrix for the trailing edge dark soliton. Our numerical methods are
presented in section 5. Finally, section 6 contains a discussion of the results and the
applicability of our methods to other nonlinear dispersive problems.

2. Transverse instability of dark solitons. It is well known that dark soliton
solutions of (1.1) exhibit an instability to perturbations of sufficiently long wavelength
in the transverse direction along the soliton plane [8]. The eigenvalue problem associ-
ated with linearizing (1.1) about the dark soliton leads to the dispersion relation for
unstable perturbations. Beyond demonstrating the existence of an instability, knowl-
edge of the dispersion relation for a range of wavenumbers yields important properties
of the instability, such as the growth rate Γmax, the maximally unstable wavenumber
kmax, and whether the instability is convective or absolute.

An example numerical computation of the eigenvalues for the spectral problem
in (2.7) is shown in Figure 2.1. Since exact expressions are not known, asymptotic
approaches leveraging the shallow dark soliton, KP limit [6, 28], and others [29, 11]
have been devised. In this section, we complement these results by determining the
next order correction to the dispersion relation for shallow dark solitons resulting in
accurate approximation across a wider range of soliton amplitudes. We use this to
determine Γmax and kmax asymptotically. These calculations are verified numerically.
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Fig. 2.1. Numerically computed real (dashes) and imaginary (solid) parts of the discrete eigen-
value Ω0(k; ν) of the linearized NLS equation (spectral problem (2.7)) as functions of k for ν = 0.5 .
Delineated on the axes are (i) the cutoff wavenumber kcutoff (2.11), where the eigenvalue transitions
from purely imaginary to real, (ii) the maximal growth wavenumber and growth rate (kmax,Γmax)
(2.14), and (iii) the critical wavenumber and associated eigenvalue (kcr,Ωcr) (3.8) corresponding to
the transition between absolute/convective instabilities.

2.1. Dark soliton. Up to spatiotemporal shifts and an overall phase, the most
general line dark soliton solution of (1.1) is

ψ′
s(x

′, y′, t′) =
√
ρ {cosφ+ i sinφ tanh [a(sinβx′ − cosβy′ − vt′)]}

(2.1)

× exp

{
i

[
cx′ + dy′ −

(
c2 + d2

2
+ ρ

)
t′
]}

,

a =
√
ρ sinφ, v = c sinβ − d cosβ −√

ρ cosφ, φ ∈ [0,π], β ∈ (0,π],

where ρ is the background density and 2φ is the phase variation across the soliton,
which together determine the depression amplitude as

√
ρ| sinφ|. The soliton is prop-

agating at an angle β with respect to the (horizontal) x′ axis with horizontal and
vertical flow velocities c and d, respectively. Interpreting this solution in the fluid
context with density |ψ′

s|2 and flow velocity ∇ argψ′
s, the soliton is a localized density

depression on a uniformly flowing background. The Mach number of the background
flow is the total flow velocity divided by the speed of sound

(2.2) M =

√
c2 + d2

ρ
.

The soliton has the far field behavior

sinβx′ − cosβy′ → ±∞,

ψ′
s(x

′, y′, t′) → √
ρ exp

{
±iφ+ i

[
cx′ + dy′ −

(
c2 + d2

2
+ ρ

)
t′
]}

.

Thus, five parameters determine the soliton uniquely, i.e., ρ,φ,β, c, d.
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Using the invariances of (1.1) associated with rotation, Galilean transformation,
scaling, and phase, we apply the coordinate transformation

ψs(x, y, t) =
−i
√
ρ
e
−i
[
(c sin β−d cosβ) x√

ρ+(c cosβ+d sin β) y√
ρ+

(c2+d2)t
2ρ

]
(2.3)

× ψ′
s

(
1
√
ρ
(sinβx+ cosβy) +

c

ρ
t,

1
√
ρ
(− cosβx + sinβy) +

d

ρ
t,

t

ρ

)
,

leading to the one-parameter family of dark solitons

(2.4) ψs(ξ, y, t) = [iκ+ ν tanh (νξ)] e−it, ν2 + κ2 = 1,

(after dropping the prime from ψ′
s) where ν = | sinφ| ∈ (0, 1] and the frame moving

with the soliton is

ξ
.
= x− κt.

The soliton amplitude is ν. When ν ) 1 the dark soliton is in the shallow amplitude
regime. The soliton speed is κ = − cosφ =

√
1− ν2.

2.2. Linearized eigenvalue problem. To study the transverse instabilities of
the dark soliton (2.4), we consider the ansatz for (1.1)

ψ(ξ, y, t) =
[
ψs(ξ, y, t)e

it + ϕR(ξ, y, t) + iϕI(ξ, y, t)
]
e−it,

where ϕR, ϕI are the real and imaginary parts of a small perturbation to a line soliton
aligned with the y axis. Linearizing (1.1) results in the system

(2.5)

∂

∂t
ϕ = Lϕ,

ϕ
.
=

[
ϕR

ϕI

]
,

L .
=

[
κ∂ξ + 2νκ tanh(νξ) − 1

2 (∂ξξ + ∂yy)− ν2[2 + sech2(νξ)]

1
2 (∂ξξ + ∂yy)− ν2[2− 3 sech2(νξ)] κ∂ξ − 2νκ tanh(νξ)

]
.

It is expedient to decompose the perturbation as

(2.6) ϕ(ξ, y, t) =
1

2π

∫

R
f(ξ; k)ei[ky−Ω(k)t)]dk, f(ξ; k)

.
=

[
f1(ξ; k)
f2(ξ; k)

]
.

Substituting (2.6) into (2.5) yields the linearized spectral problem

(2.7) JLf(ξ; k) = −iΩ(k)f(ξ; k),

where

(2.8) L
.
= L0 +

1

2
k2, J

.
=

[
0 1
−1 0

]
,

and

(2.9) L0
.
=

[
− 1

2∂ξξ + ν2[2− 3sech2(νξ)] −κ∂ξ + 2νκ tanh(νξ)

κ∂ξ + 2νκ tanh(νξ) − 1
2∂ξξ − ν2[2 + sech2(νξ)]

]
.
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For k ∈ R, L0 and L are self-adjoint with respect to the L2(R) inner product

(2.10) 〈g,h〉 .
=

∫

R
gTh∗ dξ.

For small k it was shown formally in [8] that (i) a double eigenvalue Ω(0) = 0 bifurcates
into two distinct branches with each in iR and (ii) there is another zero eigenvalue at
the cutoff wavenumber

(2.11) kcutoff
.
=

√
ν2 − 2 + 2

√
ν4 − ν2 + 1, Ω(kcutoff) = 0.

These calculations were made rigorous in [30] and can be summarized as follows.
Theorem 2.1 (Rousset and Tzvetkov [30]). For k ∈ (−kcutoff , kcutoff) \ {0}, the

system (2.7) has exactly two purely imaginary eigenvalues which are simple and come
in pairs ±Ω0(k). Therefore, the dark soliton is unstable to sufficiently long wavelength
transverse perturbations. Furthermore, for k ∈ R, |k| > kcutoff , the spectrum Ω(k) is
real.

For the study of convective/absolute instabilities, knowledge of the stable por-
tion of the spectrum when |k| > kcutoff is required. Based on our asymptotics and
numerical computations we conjecture the following.

Conjecture 2.2. For |k| > kcutoff , there exist exactly two real, simple eigenval-
ues ±Ω0(k).

This conjecture is a natural extension of Theorem 2.1 to the real portion of the
spectrum. See Appendix B for further details and comments.

Without loss of generality, we choose Ω0(k) such that ,{Ω0(k)} > 0 for 0 < k <
kcutoff and -{Ω0(k)} > 0 for k > kcutoff . Thus, Ω0(k) is the dispersion relation for
transverse perturbations of the dark soliton (2.4). By a suitable choice of a branch
cut, the eigenvalue Ω0(k) can be analytically continued for k ∈ C \ {0,±kcutoff} with
0 and ±kcutoff square root branch points. We denote the growth rate as

(2.12) Γ(k)
.
= ,{Ω0(k)}

and the eigenfunction associated with Ω0(k) as

f0(ξ; k) =

[
f0,1(ξ; k)
f0,2(ξ; k)

]
.

In section 5 we discuss our numerical method for computing Ω0(k) for k ∈ C. To
illustrate the spectrum, Figure 2.1 shows the (real or imaginary) computed eigenvalue,
Ω0(k), and the corresponding eigenfunctions. Note that the eigenfunctions are neither
symmetric nor antisymmetric. Figures 2.2 and 2.3 present the computed continuous
and discrete spectra for particular wavenumbers 0 < k < kcutoff (Ω0 ∈ iR) and
k > kcutoff (Ω0 ∈ R) as well as the associated localized eigenfunctions.

2.3. Asymptotic eigenvalue. It follows from (2.11) that for shallow ampli-

tude solitons, 0 < ν ) 1, the cutoff wavenumber is small, i.e., kcutoff ∼
√
3
2 ν

2. In
Appendix A we prove the following.

Proposition 2.3. For shallow amplitude, 0 < ν ) 1, and either k < kcutoff or
kcutoff < k ∼ O(ν2) ) 1, the eigenvalue for (2.7) formally satisfies

Ω0(k) =
k

3

√
2
√
3k − 3ν2

︸ ︷︷ ︸
KP

+
k2(

√
3ν2 − k)

6
√
2
√
3k − 3ν2︸ ︷︷ ︸

NLS correction

+ O(k7/2),(2.13)
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Fig. 2.2. (a) Numerical approximation of the continuous spectrum (•) and the two purely
imaginary discrete eigenvalues ±Ω0 ≈ ±0.022i (+) computed for the linearized system (2.7) with
ν = 0.5 and k = 0.2 < kcutoff ≈ 0.23 (2.11). The real (solid) and imaginary (dashed) parts of the
two component localized eigenfunctions corresponding to Ω0 are shown in (b) f0,1(ξ) and (c) f0,2(ξ).

−0.5 0 0.5
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1
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−10
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ξ

(b)

−22 22
−1

1

ξ

(c)

Fig. 2.3. Same as for Figure 2.2 for k = 0.25 > kcutoff and ±Ω0 ≈ ±0.0215.

where the first (leading order) O(k3/2) term is the dispersion relation for the KP
equation and the second term is the O(k5/2) correction arising from the NLS equation.

Equation (2.13) gives an asymptotic approximation to the eigenvalue for long wave
perturbations of shallow dark solitons. The dispersion relation for the KP equation
is well known (cf. [6, 28]). The new O(k5/2) correction term enables us to accomplish
the following.

• Implement an accurate, explicit calculation of the maximal growth rate and
associated wavenumber of unstable perturbations (section 2.4).

• Show that the separatrix between absolute and convective instabilities is su-
personic (section 3.3).

• Validate the numerical computations of Ω0(k), which are computationally
demanding, especially in the shallow regime.

2.4. Calculation of the maximal growth rate. The maximal growth wave-
number kmax and the maximal growth rate Γmax are defined by

(2.14) Ω′
0(kmax) = 0, Γmax = ,{Ω0(kmax)}.

Since Ω0(k) is real for k > kcutoff it follows that kmax < kcutoff (see Figure 2.1). Using
Proposition 2.3 we find the next corollary.
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Fig. 2.4. Numerically computed maximal growth rate Γmax (a) and maximally unstable
wavenumber kmax (c) as functions of ν for dark solitons of the NLS equation (1.1). The KP
limit and its first order correction are presented for comparison. Plots (b) and (d) are the corre-
sponding differences between the highly accurate computed values and asymptotic approximations
(2.15)–(2.16), exhibiting the expected scaling with ν.

Corollary 2.4.

kmax =
ν2√
3︸︷︷︸

KP

+
5ν4

18
√
3︸ ︷︷ ︸

NLS correction

+O(ν6),(2.15)

Γmax =
ν3

3
√
3︸ ︷︷ ︸

KP

+
ν5

9
√
3︸ ︷︷ ︸

NLS correction

+O(ν7).(2.16)

The proof follows by expanding kmax and Γmax for small ν and solving (2.14) with
the approximation (2.13).

A comparison of these results with numerical computations (discussed in sec-
tion 5) is shown in Figure 2.4. The computations exhibit excellent agreement with
the asymptotics as well as the expected scaling of the errors with ν.

3. Convective and absolute instabilities of dark solitons. We begin by
reviewing the notions of absolute/convective instabilities and the general criteria for
distinguishing between them. For more detailed discussions see [12, 13, 31, 32, 33].
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t

x

(a)
t

x

(b)

Fig. 3.1. Illustration of (a) absolutely and (b) convectively unstable waves.

Qualitatively, absolute and convective instabilities can be defined as follows (see il-
lustration in Figure 3.1).

Definition 3.1. A solution is said to be absolutely unstable if generic, small,
localized perturbations grow arbitrarily large in time at each fixed point in space. A
solution is said to be convectively unstable if small, localized perturbations grow arbi-
trarily large in time but decay to zero at any fixed point in space.

It is important to note that Definition 3.1 depends implicitly on the reference
frame. This can be gleaned from Figure 3.1, where panel (b) is a rotation in the x-t
plane of panel (a). Such a rotation implies that the observer in (b) is moving faster
to the left than the observer in (a). Thus, if the observer “outruns” the growing
perturbation, then the instability is convective. Equivalently, if the background flow
speed is faster than the expanding, unstable perturbation, and after sufficient time
passes the solution returns to its unperturbed state, the instability is convective. For
dark solitons, the physically interesting frame of reference is the one that moves with
the soliton. In this frame, the soliton is called a spatial dark soliton. See section 3.4.

3.1. Review of the general criteria for distinguishing between instabili-
ties. Absolute and convective instabilities can be distinguished analytically. Consider
an initial value problem on the entire line, i.e., a (1+1)-dimensional linearized system
on (x, t) ∈ R × (0,∞). The usual approach for studying instabilities is to consider
a small, spatially extended plane wave perturbation ei(kx−ωt) of some wavenumber
k and corresponding frequency ω = Ω(k) determined by a zero of the dispersion
function D(ω, k) = 0. The zero state is stable if and only if ,{Ω(k)} ≤ 0 for all
zeros of the dispersion function. However, the evolution of a particular, localized
perturbation involves a Fourier integral over all real wavenumbers so that treating a
single wavenumber is insufficient to fully describe any instabilities observed (or not
observed) in a physical system [12].

The resolution calls for a different approach to instability analysis. Instead of
a plane wave perturbation one assumes that the system is perturbed by a localized
impulse, i.e., a Dirac delta function at position x and time t = 0. In this case the
solution is the Green’s function

(3.1) G(x, t) =

∫∫
ei(kx−ωt)

D(ω, k)
dω dk,

where the Fourier integral in k is carried out over real wavenumbers and the frequency
integral (inverse Laplace transform) is performed on the Bromwich contour that lies
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above all zeros of D(k,ω). In connection with the plane wave analysis, the system is
unstable if and only if the solution grows without bound along some reference frame,
i.e., there is a velocity V such that for fixed x,

G(x− V t, t)
t→∞−→ ∞ ⇔ unstable.

However, when considering a particular reference frame, say, ξ = x−V0t for fixed V0,
if the solution grows without bound (resp., decays to zero) at a certain fixed point in
space, x, then the system is absolutely (resp., convectively) unstable in this reference
frame, i.e.,

• G(x− V0t, t)
t→∞−→ ∞ ⇔ absolutely unstable,

• G(x− V0t, t)
t→∞−→ 0 ⇔ convectively unstable.

Exponential integrals of the type in (3.1) have two competing effects. Zeros of the
dispersion function ω = Ω(k) can lead to either exponential growth when ,{Ω(k)} > 0
or to cancellation and decay due to rapid oscillations of the integrand when ,{Ω(k)} =
0 for large t. To ascertain whether the system is absolutely or convectively unstable
one needs to discover which of these opposite tendencies dominates. A number of
methods for distinguishing between convective and absolute instabilities have been
suggested, dating back to the work of Sturrock [12] and Briggs [13]. See also [34, 35,
36]. For completeness we outline the general criteria below.

It is assumed that D(ω, k) is known explicitly. The ω-integral in (3.1) is along a
contour that lies above all the zeros of D(ω, k) for each fixed, real k and we further
assume that D(ω, k) is entire in (ω, k) above this contour. Hence, for t > 0 the ω-
integral may be carried out by closing the contour in the lower half-plane and summing
over the residues of the dispersion function expanded at each of its roots. Assuming
the roots of D(ω, k) are simple (multiple roots do not pose a serious difficulty [32]),
the resulting integral can be written as

(3.2) G(x, t) = −2πi
N∑

n=1

∫ ∞

−∞

ei(kx−Ωn(k)t)

D′(Ωn(k), k)
dk,

where the sum is over the N zeros of the dispersion function

D(Ωn(k), k) = 0, D′(ω, k)
.
=
∂D(ω, k)

∂ω
.

The problem is to determine the long time behavior of (3.2) for which the method
of steepest descent is applicable (cf. [37]). It suffices to consider the point moving with
speed V , x = V t. Then, by suitable deformation of the real line to the steepest descent
contour, the dominant contributions arise from the saddle points of the exponent
satisfying

d

dk
Ωn(kn,m) = V, n = 1, . . .N, m = 1, . . . ,Mn,

allowing for multiple saddle points along each branch of the dispersion relation. Note
that the zeros of D′, double roots of the dispersion function, do not contribute appre-
ciably to the integral because they cancel in the sum (3.2) [32]. Using the method of
steepest descent, one recovers the dominant long time behavior

G(V t, t) ∼ O(eγmaxt/
√
t), t → ∞,
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where

γmax(V )
.
= max

n,m
, {Ωn(kn,m)− V kn,m} .

Thus, if γmax > 0, then an impulse perturbation at t = 0, x = 0 grows without bound
along the line x = V t and the instability is absolute. Otherwise, if γmax ≤ 0, the
perturbation decays along the line x = V t and so the instability is convective. These
have been referred to as the Bers-Briggs criteria [13, 32].

3.2. Simplified criteria for the separatrix of soliton instabilities. Many
previous studies applied the general criteria for classifying instabilities to dissipative
systems (plasma physics, viscous fluids, etc.) where the dispersion relation was known
explicitly. Given explicit and sufficiently simple dispersion relations, the analysis of
the stationary points can be carried out directly. However, the dispersion relation
Ω(k) is unknown for dark solitons of the NLS equation. While Ω(k) can be computed
numerically for any k ∈ C, doing so would make the analysis of saddle points in the
complex-k or complex-ω planes quite challenging. Fortunately, as derived below, there
are simplified analytic criteria for the transition point between absolute and convective
instabilities of NLS solitons that rely solely on computations of the dispersion relation
for real k.

Using the Laplace transform in (2.5), the linearized evolution of an initial L2(R2;R2)
perturbation ϕ0(ξ, y) to the dark soliton satisfies

ϕ(ξ, y, t) =
1

2π

∫

CB

e−iωt (L+ iω)−1 ϕ0(ξ, y) dω,

where the Bromwich contour CB lies above all L2 eigenvalues of L. In order to inves-
tigate the unstable transverse dynamics in (y, t), we project onto the eigenfunction f0
and perform the contour integration over CB resulting in the following representation
of the dynamics:

ϕ(ξ, y, t) =
−i

2π

∫ ∞

0

ei(ky−Ω0(k)t)

Ω0(k)
f0(ξ; k) dk.

The integral is taken over (0,∞) by use of the invariance k → −k of the eigenpair
(Ω0(k), f0(ξ; k)).

By performing a Galilean shift in the NLS (1.1) as

(3.3) ψ(x, y, t) → ψ′(x, y, t) = ei(−wy−w2t/2)ψ(x, y + wt, t),

the dispersion relation for transverse perturbations becomes

(3.4) Ω0(k) → Ω(k) = −wk + Ω0(k),

where −w is the flow speed parallel to the plane of the dark soliton (2.4). This is
equivalent to investigating the behavior of the perturbation in (3.3) along the line y =
wt. With this substitution, we consider (3.3), whose long time asymptotic behavior
requires the evaluation of

(3.5) I(t) =

∫ kcutoff

0

e−iΩ(k)t

Ω0(k)
f0(k) dk, t 1 1,
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Fig. 3.2. Integration contours C (solid curves) in the complex z plane for (3.6) and the real
interval [−wkcutoff , 0] (dashed lines). The filled circles correspond to poles of the integrand where
Ω′(k) = Ω′

0(k)−w = 0, z = Ω(k), which in (a) prevent the smooth deformation of C to [−wkcutoff , 0]
giving rise to an absolute instability. Parameter values are ν = 0.5, wcr ≈ 0.535. (a) w = 0.5 < wcr,
(b) w = 0.6 > wcr. See also Figure 3.3.

where the dependence on ξ is suppressed. The integral over (kcutoff ,∞) is negligible
because the dispersion relation is purely real. (The stationary phase method yields
algebraic decay in t; cf. [37].) Introducing the change to a complex variable z = Ω(k),
(3.5) becomes

(3.6) I(t) =

∫

C

e−izt

Ω0(z)Ω′(z)
f0(z) dz,

where Ω′(z) = −w + Ω′
0(z) and the contour is C

.
= {z = Ω(k) | k ∈ [0, kcutoff ]}. Two

distinct possibilities arise:
1. A zero of Ω′ gives a residue contribution to Cauchy’s theorem when deforming

C to the real interval [−wkcutoff , 0] as in Figure 3.2(a). In this case the integral
diverges exponentially as t → ∞ and the instability is absolute.

2. The zeros of Ω′ do not lie between C and the real line as in Figure 3.2(b)
(they may lie on the real axis) so that there is a smooth deformation of the
contour C to the real interval [−wkcutoff , 0]. In this case the integral decays
to zero as t → ∞ and the instability is convective.

As discussed in the previous section, the saddle points Ω′(k0) = Ω′
0(k0) − w = 0

give the long time asymptotic behavior ϕ ∼ O(eiΩ(k0)t/
√
t), t → ∞. As the transverse

flow speed w is varied, the type of instability changes from absolute to convective. The
transition from absolute to convective instability occurs at w = wcr when two zeros
of Ω′(k) merge on the real line. That is, they form a double zero so that Ω′′(kcr) =
Ω′′

0(kcr) = 0 and Ω′
0(kcr) is minimum. This behavior is depicted in Figures 3.2 and

3.3 with Figure 3.2(a) showing two complex conjugate zeros for w < wcr, while Figure
3.2(b) reveals their splitting into two real zeros for w > wcr. These real zeros are
depicted in Figure 3.3 for w > wcr. By an appropriate choice of the branch cut, one
can show that Ω0(k) = Ω∗

0(k
∗) so that complex zeros of Ω′(k) = Ω′

0(k) − w come in
conjugate pairs. This proves the next proposition.

Proposition 3.2. The critical wavenumber kcr and critical transverse velocity
wcr for the transition between absolute and convective instability are real. They satisfy
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Fig. 3.3. Plot of Ω′
0(k) for real k > kcutoff ≈ 0.230 and ν = 0.5. The minimum of this curve

corresponds to the coalescence of the poles in Figure 3.2 and the critical transverse flow speed wcr at
which the instability changes from absolute to convective. The dashed lines correspond to the values
of w used to compute Figure 3.2(a) (lower, absolute instability) and Figure 3.2(b) (upper, convective
instability).

the simplified criteria

∂2Ω

∂k2
(kcr;wcr) = 0,(3.7a)

∂Ω

∂k
(kcr;wcr) = 0.(3.7b)

These conditions appeared in [11].
Corollary 3.3.

∂2Ω0

∂k2
(kcr) = 0,(3.8a)

wcr =
∂Ω0

∂k
(kcr).(3.8b)

The proof follows from (3.4) and (3.7).
When the transverse flow speed is subcritical, w < wcr, the dark soliton is ab-

solutely unstable, and when w > wcr, the dark soliton is convectively unstable. The
soliton family is parameterized by its amplitude ν; thus ν 2→ wcr(ν) forms a separatrix
between absolute and convective instabilities. The separatrix wcr(ν) can also be inter-
preted as the speed at which an initially localized perturbation spreads in time. Thus
a convective instability occurs when the background flow speed, carrying the pertur-
bation’s center of mass, exceeds the speed at which the perturbation spreads out.

In general, the determination of wcr(ν) via (3.8) requires numerical computation.
Even so, (3.8) are much easier to use than the general criteria because the general
criteria depend on Ω0(k) over the complex-k plane, whereas (3.8) only depend on
Ω0(k) for real k.

3.3. The separatrix in the shallow amplitude regime. The shallow ampli-
tude asymptotics of the dispersion relation (2.13) enable us to explicitly compute Ωk

and Ωkk, determine the critical wavenumber kcr, and find the separatrix wcr(ν) be-
tween absolute and convective instabilities. Here it is convenient to use the wavenum-
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ber scaling (see Appendix A)

k = ν2p.

The asymptotic dispersion relation (3.4) becomes

Ω(p;w) ∼ −ν2wp+ ν3
p

3
(2
√
3p− 3)1/2 + ν5

p2(
√
3− p)

6(2
√
3p− 3)1/2

.
= −ν2wp+ ν3Λ0(p) + ν5Λ1(p), 0 < ν ) 1.

The simplified criteria (3.8) give

kcr = ν2pcr = ν2(p0 + ν2p1) + O(ν6),

Ωkk(kcr) ∼
1

ν
Λ′′
0(p0) + ν [Λ′′′

0 (p0)p1 + Λ′′
1(p0)] ,

Ωk(kcr;wcr) ∼ −wcr + νΛ′
0(p0) + ν3 [Λ′′

0(p0)p1 + Λ′
1(p0)] .

Equating like coefficients of ν and using (3.8), yields the next proposition.
Proposition 3.4. The first order asymptotic approximation of the critical ve-

locity and wavenumber is

wcr = ν︸︷︷︸
KP

+
2ν3

9︸︷︷︸
NLS correction

+ O(ν5),(3.9a)

kcr =
2ν2√
3︸︷︷︸

KP

+
ν4

3
√
3︸ ︷︷ ︸

NLS correction

+ O(ν6).(3.9b)

For comparison, Figure 3.4 shows the numerical solution of the system (3.8) and
the asymptotics in (3.9). The numerical details are presented in section 5.1.

3.4. Convective/absolute instabilities of spatial dark solitons. The nat-
ural reference frame for studying the convective or absolute nature of soliton insta-
bilities is the one moving with the soliton. In this reference frame, both the soliton
density and velocity are independent of time. The dark soliton is referred to as a
spatial dark soliton. Such structures arise, for example, in the context of flow past an
impurity [9, 38], flow over extended obstacles, and dispersive shock waves [39, 22].

The spatial dark soliton in (2.1) satisfies v = 0, i.e.,

(3.10) cosφ =
c sinβ − d cosβ

√
ρ

.

This soliton is uniquely determined by four parameters rather than five. We use the
background density ρ and background velocity (c, d) as three of these parameters
along with the soliton angle 0 < β ≤ π/2. The normalized soliton amplitude 0 < ν =
| sinφ| =

√
1− cosφ2 ≤ 1 is then determined via (3.10) as

(3.11)
√
ρ
√
1− ν2 = c sinβ − d cosβ.

The spatial dark soliton exhibits either an absolute or a convective instability de-
pending on the Mach number of the background flow (2.2) and the amplitude ν. By



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

320 M. A. HOEFER AND B. ILAN

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ν

w
c

r

(a) c omp u t e d
fi r s t or d e r
K P

10
−1

10
0

10
−10

10
−5

10
−1

ν

(b) e r r or
ν 5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

ν

k
c

r

(c) c omp u t e d
fi r s t or d e r
K P

10
−1

10
0

10
−10

10
−5

10
−1

ν

(d) e r r or
ν 6

Fig. 3.4. (a) The separatrix wcr(ν) between absolute and convective instabilities. For speeds w ≥
wcr (w < wcr), the dark soliton is convectively (absolutely) unstable. (c) The critical wavenumber
kcr satisfying the condition (3.7a). (b) and (d) are the differences in the numerically computed
values of wcr, kcr and the first order approximations in (3.9a) and (3.9b), respectively, showing the
expected error scalings.

moving in the reference frame ξ = x − κt of the normalized dark soliton (2.4), the
background flow has velocity −κ normal to the soliton and velocity −w parallel to
the soliton. The critical Mach number of the background flow and its first order
asymptotic approximation are

Mcr(ν) =
√
κ2 + wcr(ν)2 =

√
1− ν2 + wcr(ν)2(3.12a)

(3.9a)
= 1 +

2

9
ν4 + O(ν6).(3.12b)

Transverse perturbations are absolutely unstable for M < Mcr and convectively un-
stable for M ≥ Mcr.

Figure 3.5 shows the numerically calculated dependence of Mcr on ν and compar-
isons with the asymptotic result (3.12b). Combining the asymptotic result (3.12b)
with these computations leads to the following conclusion.

Conclusion 3.5. The transition between convective and absolute instabilities
for spatial dark solitons occurs at supersonic speeds for any soliton amplitude, i.e.,
Mcr(ν) > 1. A sufficient condition for a spatial dark soliton with background Mach
number M to be absolutely unstable is

M ≤ 1.
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Fig. 3.5. Critical Mach number Mcr ( (3.12a)) and its asymptotic approximations (Mcr = 1 for
KP, (3.12b) for the first order correction) as functions of the soliton amplitude ν. For M ≥ Mcr,
the spatial dark soliton is convectively unstable; otherwise it is absolutely unstable.

A sufficient condition for a spatial dark soliton with background Mach number M to
be convectively unstable is

M ≥ Mcr(ν = 1) ≈ 1.4374.

Additionally, ν 2→ Mcr(ν) is monotonically increasing. In sum,

1 < Mcr ! 1.4374.(3.13)

Remark 3.6. In [11], the bounds 1 " Mcr " 1.46 were obtained. The leading order
term in (2.13) was used to show that Mcr ∼ 1 in the shallow regime. Equation (3.12b)
improves the lower bound on Mcr and demonstrates that Mcr is strictly supersonic
for all finite soliton amplitudes. The upper bound 1.46 in [11] was calculated from
a rational approximation of the spectrum for large soliton amplitudes [29]. Equation
(3.13) gives the accurate upper bound.

4. Oblique dispersive shock waves. In a dispersive fluid where dissipation is
negligible, a jump in the density/velocity may be resolved by an expanding oscillatory
region called a dispersive shock wave. The Whitham averaging technique [40] has been
successfully used to describe a DSW’s long time asymptotic behavior in a number of
physical systems, for example, [41, 42, 17, 43, 44]. We briefly recap the rudiments of
DSW theory. A DSW is a modulated wavetrain composed of a large-amplitude soli-
ton edge and a small-amplitude, oscillatory edge, each moving with different speeds.
In the relatively simple case where a DSW connects two constant states, the speeds
associated with each edge are determined by jump conditions [45], in analogy with
the Rankine–Hugoniot jump conditions of classical viscous gas dynamics. The jump
conditions result from a simple wave solution of the Whitham modulation equations
connecting the zero-wavenumber soliton edge to the zero-amplitude oscillatory edge.
The existence of a DSW for a particular jump in the fluid variables is guaranteed
when an appropriate entropy condition is satisfied. For a left-going DSW, we define
the leading (trailing) edge to be the leftmost (rightmost) edge—and vice versa for a
right-going DSW. The sign of the dispersion determines the locations of the soliton and
small-amplitude edges. For systems with positive dispersion such as the NLS equa-
tion (1.1), the soliton is a depression wave that resides at the trailing edge of the DSW.

While DSWs in (1+1)-dimensions have been well studied, the theory of supersonic
dispersive fluid dynamics in multiple spatial dimensions is in its infancy. Perhaps the
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Fig. 4.1. Schematic of an oblique DSW.

simplest DSW in multiple dimensions is an oblique DSW, which has been studied in
the stationary [46, 47, 48, 39] and nonstationary [22] regimes (see Figures 4.1 and 4.4).
In this section, the analysis from the previous section is applied to the stationary and
nonstationary oblique DSW soliton trailing edge to determine the separatrix between
convective and absolute instabilities. In addition, in the weak shock and hypersonic
regimes, we find that the jump conditions for stationary and nonstationary oblique
DSWs are the same. As in classical gas dynamics, oblique DSWs can serve as building
blocks for more complicated boundary value problems. Therefore, understanding
the instability properties of oblique DSWs is important and relevant to supersonic
dispersive flows. This has been further demonstrated by recent numerical simulations
of NLS supersonic flow past a corner [39, 22].

In section 4.1, the jump conditions and instability properties of nonstationary
oblique DSWs are presented. Section 4.2 contains a derivation of a stationary oblique
DSW in the shallow regime, its stability, and comparisons with numerical simulation.
Finally, section 4.3 demonstrates the connections between stationary and nonstation-
ary oblique DSWs.

4.1. Nonstationary oblique DSWs. In this section, we first recap the deriva-
tion of a nonstationary oblique DSW [22] and then discuss its instability properties.

A schematic of a nonstationary oblique DSW at a specific time in its evolution is
depicted in Figure 4.1. An incoming upstream, supersonic flow is turned through the
oblique DSW by the deflection angle θ. To accommodate the deflection, the oblique
DSW expands along the wave angle β. The leading edge consists of small-amplitude
waves propagating into the upstream flow, while the trailing edge is composed of
a dark soliton whose amplitude and speed are asymptotically calculated from the
oblique DSW jump conditions.

The nonstationary oblique DSW results from the long time evolution of an initial
jump in the density and velocity component normal to the DSW wave angle β, in
the direction n̂β = (sinβ,− cosβ), and continuity of the velocity parallel to β, in the
direction p̂β = (cos β, sinβ). We consider the upstream state

lim
x→−∞

ρ = ρ1, lim
x→−∞

.u = (u1, 0)

and the downstream state

lim
x→+∞

ρ = ρ2, lim
x→+∞

.u = (u2 cos θ, u2 sin θ).

The normal 1-DSW associated with the dispersionless characteristic λ1 = u − √
ρ
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(left-going wave) satisfies the simple wave condition [42]

(4.1) n̂β · (u1 − u2 cos θ,−u2 sin θ) = 2(
√
ρ2 −

√
ρ1).

An NLS-governed fluid experiences potential flow (see (1.2)). By restricting the spa-
tial variation of the solution to the direction n̂β and integrating the irrotationality
constraint vx = uy along the direction p̂β, we obtain the continuity of the parallel
velocity component

(4.2) p̂β · (u1 − u2 cos θ,−u2 sin θ) = 0.

Choosing the reference frame in which the soliton trailing edge is fixed, the speed of
the soliton edge satisfies [42]

(4.3) n̂β · (u1, 0)−
√
ρ2
ρ1

= 0.

The jump conditions (4.1), (4.2), and (4.3) for the oblique DSW relate the upstream
quantities ρ1, u1 and one of the angles θ or β to the downstream quantities ρ2, u2

and the other angle. Introducing the Mach numbers Mj = uj/
√
ρj , j = 1, 2, along

with some manipulation, the jump conditions become [22]

tan(β − θ) =
2

M1
secβ − tanβ,(4.4a)

M2 =
cotβ

cos(β − θ)
=

√
M2

1 + 4− 4M1 sinβ

M1 sinβ
,(4.4b)

ρ2 = ρ1M
2
1 sin2 β.(4.4c)

Further manipulations lead to the equivalent relations

sin(2β − θ)

cos(β − θ)
=

2

M1
, cos θ =

M1 cos(2β) + 2 sinβ√
4 +M2

1 − 4M1 sinβ
.

The associated entropy condition is ρ2 > ρ1, which, when incorporated into the
jump conditions, gives

M1 > 1, 0 ≤ θ ≤ π, sin−1 1

M1
≤ β ≤ π

2
.

These state that the upstream flow must be supersonic, the flow always turns into
the DSW, and the wave angle is larger than the Mach angle sin−1(1/M1). The Mach
angle is half the opening angle of the Mach cone, inside which infinitesimally small
disturbances are confined to propagate in dispersionless supersonic flow. A convenient
way to visualize these results is by the M -θ-β diagram in Figure 4.2 that relates the
deflection and wave angles for a given upstream Mach numberM1. Figure 4.2 includes
the sonic curve M2 = 1 (to the right/left the flow is sub/supersonic).

A natural question is whether oblique DSWs with supersonic downstream flow
conditions are convectively or absolutely unstable. To address this question, we use
the next definition.

Definition 4.1. Transverse perturbations to the nonstationary and stationary
oblique DSW are convectively (absolutely) unstable whenever the trailing dark soliton
edge is convectively (absolutely) unstable.
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Fig. 4.2. The M-θ-β diagram for nonstationary oblique DSWs of the NLS equation (1.1). Each
upstream Mach number M1 leads to a relationship between θ and β. The separatrix curve (solid)
between convectively and absolutely unstable solitons is supersonic, i.e., in the M2 > 1 region (left
of the sonic line, dashes). The separatrix curve is asymptotic to the sonic line as β → 90◦.

See further discussion in section 6.
Spatial dark solitons exhibit the constraint (3.10). When applied to the oblique

DSW trailing edge in Figure 4.1 with background flow parameters (c, d) =
√
ρM2(cos θ,

sin θ), we find

cosφ = M2 sin(β − θ).

Using the jump conditions in (4.4), we determine the normalized soliton amplitude

(4.5) ν(M1, θ) = sinφ =
2
√
M1 sinβ − 1

M1 sinβ
,

where β is related to θ by (4.4a). The Mach number of the downstream flow adjacent
to the soliton is M2 so the absolute/convective stability criterion (3.12a) determines
the separatrix

(4.6) M2(M1, θ) = Mcr(ν) =
√
1− ν2 + wcr(ν)2

with ν given in (4.5). Conclusion 3.5 implies the next corollary.
Corollary 4.2. Nonstationary oblique DSWs with subsonic downstream flow

are absolutely unstable. Supersonic downstream flow can be either convectively or
absolutely unstable.

This conclusion can also be gleaned from Figure 4.2. To the right of the separatrix,
the trailing edge oblique soliton is absolutely unstable because M2 < Mcr, while to
its left, the soliton is convectively unstable. The region to the right of the separatrix
and to the left of the sonic line represents absolutely unstable oblique DSWs with
supersonic downstream flow conditions. Below we derive additional properties of the
separatrix.
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Fig. 4.3. Separatrix curve (solid) dividing the M1-θ plane for nonstationary oblique DSWs into
two regions: the absolute/convective instability of the trailing edge dark soliton. The sonic curve
M2(M1, θ) = 1 (dashed) is included for comparison.

From Figure 4.2, we observe a minimum wave angle βcr, below which the oblique
DSW is convectively unstable. Setting M2 = Mcr in (4.4b) and solving for β we find

sinβcr =
−2 +

√
4 + (4 +M2

1 )M
2
cr

M1M2
cr

,

which has a minimum for M1 = 2
√
1 +M2

cr, Mcr = Mcr(ν = 1) ≈ 1.4374. We there-
fore have a sufficient condition for the oblique DSW trailing edge to be convectively
unstable

β ≤ βcr = sin−1
[
(1 +Mcr(1)

2)−1/2
]
≈ 34.83◦.

The nonstationary oblique DSW is uniquely determined by the parameters M1,
θ, and ρ1. Thus, given M1 > 1 and 0 < θ < π, the absolute or convective instability of
the corresponding oblique DSW’s trailing edge is determined by the location of (M1, θ)
relative to the separatrix condition (4.6) in the M1-θ plane, as shown in Figure 4.3.
The parameter ρ1 does not affect the absolute or convective nature of the instability.

Using the small-amplitude result (3.12a), Mcr ∼ 1 + 2
9ν

4, assuming near sonic
upstream flow M1 = 1 + ε, 0 < ε = O(ν2) ) 1, and expanding β, θ, M2, and Mcr,
we compute the critical angle

M2(1 + ε, θcr) = Mcr +O(ε3) = Mcr +O(ν6),

θcr ∼
4

3
√
3
ε3/2

(
1− 26

27
ε

)
, 0 < ε) 1.

For θ ≤ θcr, the trailing edge dark soliton is convectively unstable and absolutely
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Fig. 4.4. Example spatial oblique DSW with small deflection angle θ constructed from the
asymptotic solution (4.14).

unstable otherwise. Similarly, the sonic angle satisfies

M2(1 + ε, θsonic) = 1 +O(ε3) = 1 +O(ν6),

θsonic ∼
4

3
√
3
ε3/2

(
1− 2

3
ε

)
, 0 < ε) 1.

For θ < θsonic, the downstream flow is supersonic and subsonic when θ > θsonic. For
the narrow window of deflection angles θcr < θ < θsonic, the flow is supersonic and
absolutely unstable.

4.2. Spatial oblique DSWs. We have so far focused on nonstationary oblique
DSWs. In this section, we construct stationary or spatial oblique DSWs in the weakly
nonlinear regime (see Figure 4.4), study their instability properties, and perform nu-
merical simulations. This discussion for the NLS equation (1.1) with positive disper-
sion parallels the developments in [46, 47] applied to ion-acoustic waves in plasma, a
system with negative dispersion.

Equations (1.3a) and (1.3b), and the irrotationality constraint due to potential
flow are considered in the (2+0)-dimensional case

(ρu)x + (ρv)y = 0,(4.7a)

uux + vuy + ρx =
1

4

(
ρxx + ρyy

ρ
−
ρ2x + ρ2y
2ρ2

)

x

,(4.7b)

vx − uy = 0.(4.7c)

We seek a special class of solutions that are related to supersonic flow past a sharp
corner or wedge. For this, we treat y as a time-like variable and consider the “initial
conditions” at y = 0

ρ(x, 0) =

{
1, x < 0,
ρ2, x > 0,

(4.8a)

u(x, 0) =

{
M1, x < 0,√

ρ2M2 cos θ, x > 0,
(4.8b)

v(x, 0) =

{
0, x < 0,√

ρ2M2 sin θ, x > 0.
(4.8c)
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The well-posedness of this initial value problem is plausible in the supersonic regime,
Mj > 1, j = 1, 2, due to the hyperbolicity of the dispersionless equations (see, e.g.,
[27]). We seek a stationary, oblique DSW solution in the supersonic and weakly
nonlinear regime 0 < ρ2 − 1 ) 1. For this, we apply the method of multiple scales

ρ = 1 + ερ(1) + ε2ρ(2) + · · · ,(4.9a)

u = M1 − εu(1) + ε2u(2) + · · · ,(4.9b)

v = εv(1) + ε2v(2) + · · ·(4.9c)

in the transformed variables

(4.10) ξ = ε1/2[x− (M2
1 − 1)1/2y], τ = ε3/2y.

This particular choice is motivated by the line ξ = const whose angle with the x axis
is the Mach angle sin−1(1/M1) for small-amplitude wave propagation in the upstream
flow. Equating like powers of ε leads to

O(ε
3
2 ) :

−u(1)
ξ +M1ρ

(1)
ξ − (M2

1 − 1)
1
2 v(1)ξ = 0,

−M1u
(1)
ξ + ρ(1)ξ = 0,

v(1)ξ − (M2
1 − 1)

1
2 u(1)

ξ = 0.

The solution incorporating the initial conditions (4.8) is

(4.11) ρ(1) = M1u
(1), v(1) = (M2

1 − 1)
1
2 u(1)

with u(1) determined at the next order:

O(ε
5
2 ) :

u(2)
ξ +M1ρ

(2)
ξ − (M2

1 − 1)
1
2 v(2)ξ − (ρ(1)u(1))ξ

+ v(1)τ − (M2
1 − 1)

1
2 (ρ(1)v(1))ξ = 0,

M1u
(2)
ξ + ρ(2)ξ + u(1)u(1)

ξ + (M2
1 − 1)

1
2 v(1)u(1)

ξ = 1
4ρ

(1)
ξξξ,

v(2)ξ + (M2
1 − 1)

1
2 u(2)

ξ + u(1)
τ = 0.

Inserting (4.11) we obtain the KdV equation

(4.12) u(1)
τ − 3M3

1

2(M2
1 − 1)

1
2

u(1)u(1)
ξ +

M2
1

8(M2
1 − 1)

1
2

u(1)
ξξξ = 0.

It is convenient to consider the transformed variables U , ζ as

(4.13) U = − 3M
7
3
1

(M2
1 − 1)

1
3

u(1) + 1, ξ =
M

2
3
1 (ζ − τ)

2(M2
1 − 1)

1
6

.

Then, (4.12) becomes the KdV equation with negative dispersion

Uτ + UUζ + Uζζζ = 0.

The initial data in (4.8) maps to the Riemann problem

U(ζ, 0) =

{
1, ζ < 0,
0, ζ > 0.

This dispersive Riemann problem was solved by Gurevich and Pitaevskĭi in 1974 [41].
The result is a DSW with the trailing edge, small-amplitude wave speed cT = −1
and leading edge, soliton speed cL = 2/3. The leading edge soliton amplitude is 2,
corresponding to the KdV soliton speed/amplitude relation. The oscillatory part of
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the DSW, for τ sufficiently large, has the approximate form [41, 15]

(4.14) U(ζ, τ) ∼ m(ζ/τ) − 1 + 2dn2
(
K[m(ζ/τ)]

π
φ(ζ, τ);m(ζ/τ)

)
, τ 1 1,

where dn is a Jacobi elliptic function and K[m] is the complete elliptic integral of the
first kind. The elliptic parameter m(ζ/τ) is the self-similar, simple wave solution to
the Whitham modulation equations given implicitly by

ζ

τ
=

1

3
(1 +m)− 2

3
m

(1−m)K[m]

E[m]− (1 −m)K[m]
,

where E[m] is the complete elliptic integral of the second kind. The phase is deter-
mined through

φ(ζ, τ) = − πτ√
6

∫ 2/3

ζ/τ

dz

K[m(z)]
.

To obtain the NLS oblique DSW solution in its unscaled form, we use the trans-
formations (4.13), (4.10) along with the substitutions (4.11) to match the asymptotic
solution (4.9) to the initial conditions (4.8). The deflection angle θ is related to the
small parameter ε via

(4.15) θ ∼ ε
(M2

1 − 1)
5
6

3M
10
3

1

) 1,

so that weak spatial DSWs correspond to a small DSW deflection angle. Then the
relationship between the downstream and upstream variables takes the asymptotic
form

ρ2 ∼ 1 +
M2

1

(M2
1 − 1)

1
2

θ,(4.16a)

M2 ∼ M1

(
1− M2

1 + 2

2(M2
1 − 1)

1
2

θ

)
, 0 < θ ) 1.(4.16b)

The KdV DSW speeds cT = −1 and cL = 2/3 correspond to the slopes of the oscil-
latory region’s boundaries which we transform to the leading and trailing angles β+,
β−, respectively, for the stationary oblique DSW. Using the transformations (4.10),
(4.13), and (4.15), the oblique DSW angles take the asymptotic forms

β− ∼ sin−1

(
1

M1

)
+

M2
1

2(M2
1 − 1)

θ,(4.17a)

β+ ∼ sin−1

(
1

M1

)
+

3M2
1

M2
1 − 1

θ, 0 < θ ) 1.(4.17b)

Finally, the trailing edge soliton amplitude and phase jump 2φ with the angle β−

have the asymptotic form

(4.18) ρ2 − ρ(x, x tanβ−) =
√
ρ2 sinφ ∼ φ ∼ 2M2

1

(M2
1 − 1)

1
2

θ.

This DSW solution is plotted in Figure 4.4 and approximates a stationary, weak
oblique DSW for NLS.
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Fig. 4.5. Numerical simulation of supersonic flow past a corner with θ = 9◦, M1 = 2, at
t = 400. The color scale is chosen to visually resolve the small amplitude oscillations.

Equations (4.16) and (4.17) are the jump conditions for weak, stationary oblique
DSWs. These can be used to approximately solve the problem of supersonic flow
over a corner with angle 0 < θ ) 1. Additionally, due to symmetry arguments, two
stationary oblique DSWs approximately solve supersonic flow over a wedge as in [39].
Figure 4.5 shows the numerical solution of (1.1) for supersonic M1 = 2 flow past a
corner with angle θ = 9◦ after the flow pattern has reached a quasi-steady state. (See
section 5.2 for the numerical details.) Sufficiently close to the corner, the structure of
the numerical solution resembles the asymptotic oblique DSW shown in Figure 4.4.
Further away from the corner, the first sign of instability occurs along the trailing dark
soliton edge leading to the generation of vortices. This provides some justification for
our definition of oblique DSW instability in Definition 4.1. Furthermore, we observe
that the vortices are convected further away from the corner as time progresses.1 In a
previous work [22], we performed numerical simulations of NLS supersonic flow past
a corner for a large number of flow configurations, observing similar, stable pattern
formation in some cases. Flow configurations where the instability overwhelms any
stable pattern formation were also observed. We identify these two flow regimes with
convective and absolute instability of the oblique DSW.

Table 4.1 summarizes the asymptotic estimates in (4.16) and (4.17) compared
with the numerical computations showing excellent agreement, even for fairly large
corner angles and when the “small” parameter ε is larger than one.

1The vortex pattern eventually stabilizes at a fixed distance from the corner. A recent study [49]
of NLS dark soliton convective/absolute instabilities has some independent results that overlap with
ours in sections 3.2 and 3.4. This work also gives a further description of perturbation convection
along the soliton. The effective group velocity of the perturbation along the soliton is found to
be equal to the critical flow speed (here

√
ρ2wcr). However, convective instability theory does not

explain the numerically observed stabilization of vortex formation at a fixed distance from the corner.
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Table 4.1
Comparison of the asymptotic results of (4.16) and (4.17) and numerical simulation of super-

sonic flow over a corner.

M1 = 2 θ ε M2 ρ2 β− β+

Theory 3◦ 0.6 1.82 1.12 32◦ 42◦

Numerics 3◦ 0.6 1.84 1.12 32◦ 39◦

Theory 6◦ 1.3 1.64 1.24 34◦ 54◦

Numerics 6◦ 1.3 1.67 1.26 34◦ 49◦

Theory 9◦ 1.9 1.46 1.36 36◦ 66◦

Numerics 9◦ 1.9 1.51 1.40 37◦ 62◦

The trailing edge dark soliton is shallow. Therefore, using the theory developed
in section 3.3 and (4.16b), (3.12b), the oblique DSW is convectively unstable when

M2 > Mcr(ν) or M1[1 +O(θ)] > 1 +O(θ4), 0 < θ ) 1,

because ν = sinφ ∼ O(θ) from (4.18). As long as M1 > 1, independent of the corner
angle θ, using Conclusion 3.5 gives the next corollary.

Corollary 4.3. For NLS supersonic upstream flow M1 > 1 and sufficiently
small corner angles 0 < θ ) 1, the oblique DSW emanating from a sharp corner is
convectively unstable.

4.3. Relationship between stationary and nonstationary oblique DSWs.
As shown in the previous section, stationary oblique DSWs can be physically realized
as the solution of a two-dimensional boundary value problem involving supersonic flow.
In contrast, the nonstationary oblique DSW studied in section 4.1 results from the
solution of an initial value problem. As we now demonstrate, the downstream flow
conditions for the stationary and nonstationary oblique DSW are the same in two
asymptotic regimes: weak shocks and hypersonic flow.

The downstream flow conditions and the stationary trailing edge soliton in both
the stationary and nonstationary oblique DSWs are characterized by the deflection
angle θ, the wave angle β− or β for the nonstationary case, the Mach number M2, and
the density ρ2. These properties are related via the oblique DSW jump conditions.
For weak oblique DSWs, we assume a fixed upstream supersonic Mach numberM1 > 1
and small deflection angle 0 < θ ) 1 as in section 4.2. By a standard asymptotic
calculation, an expansion of the jump conditions for the nonstationary oblique DSW
in (4.4) in the form

ρ1 = 1, ρ2 = 1 +O(θ), M2 = M1 +O(θ), β = sin−1 1/M1 +O(θ),

gives precisely the same result as that obtained for the stationary oblique DSW in
(4.16a), (4.16b), and (4.17a).

The hypersonic regime assumes the large Mach number scaling M1 1 1 and small
deflection angle θ = O(1/M1). In this asymptotic regime, the jump conditions (4.4)
become

ρ2 =

(
θM1

2
+ 1

)2

+O(1/M1),(4.19a)

M2 =
2M1

2 + θM1
+O(1),(4.19b)

β =
θ

2
+

1

M1
+O(1/M2

1 ), M1 1 1, 0 < θ = O(1/M1),(4.19c)
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where we have assumed that ρ1 = 1. In [48, 39], stationary oblique DSW solutions of
(4.7) and (4.8) in the hypersonic regime were constructed asymptotically. The classical
notion of hypersonic similitude [50] applies so that the (2+0)-dimensional stationary
problem was asymptotically mapped to a (1+1)-dimensional problem for the NLS
equation. Stationary, supersonic flow past an extended obstacle is then related to a
piston problem, which can be solved analytically in the case of a sharp corner (constant
piston speed) [51] and for more general profiles [39, 52]. The results for the stationary
oblique DSW are the same as those computed asymptotically for the nonstationary
case in (4.19) when M1θ ≤ 2. The case M1θ > 2 corresponds to a novel feature
of the dispersive piston problem where the oblique DSW experiences cavitation and
the DSW forms an oscillatory wake [51], not captured by the jump conditions (4.4).
Combining these results with Corollaries 4.2 and 4.3 demonstrates the next conclusion.

Conclusion 4.4. For weak (small deflection angle 0 < θ ) 1, fixed upstream
Mach number M1) or hypersonic (M1 1 1, θ = O(1/M1), M1θ ≤ 2) oblique DSWs,
the nonstationary and stationary flows have the same asymptotic downstream flow
properties and trailing edge soliton amplitudes/angles. In these regimes, the oblique
DSWs are convectively unstable.

5. Computational techniques. In this section, we present details of our nu-
merical methods for computing the spectrum of transversely unstable perturbations
as well as derivatives of the dispersion relation via adjoint methods (section 5.1).
Direct numerical simulations of NLS supersonic flow over a corner are explained in
section 5.2.

5.1. Computing the spectrum and derivatives of the dispersion rela-
tion. Accurately computing the spectrum of the linearized NLS equation (1.1), find-
ing the maximal growth wavenumber (2.14) and the critical wavenumber (3.7a) re-
quire a fine grid and sufficiently large computational domain. This turns out to be
challenging, especially in the small amplitude regime. To achieve this, we employ a
combination of computational and analytical techniques explained below.

• The linearized operator in (2.7) is realized using the centered, fourth order
(sparse) finite difference stencil in ξ for the Laplacian and other derivative
operators. Zero Dirichlet boundary conditions are embedded into the associ-
ated matrix. We find that a domain size of 11/ν serves well (increasing the
domain size has negligible effect on the results).

• For accuracy, the number of grid points along the transverse direction ξ should
scale as 1/ν. As ν decreases from 1 to 0.01, we use 29−213 grid points. Using
fewer points can lead to completely wrong results, either because kmax → 0
or because kcr → kcutoff+ as ν → 0.

• The discrete eigenvalue Ω0(k) and its associated localized eigenfunction f0(ξ; k)
are computed using MATLAB’s sparse eigenvalue solver (’eigs’ with ’SM’).

• One approach is to compute Ω0(k) on a grid of k values (as for Figure 2.1).
Then, Ω′

0(k) (resp., Ω
′′
0(k)) can be computed using finite differences and min-

imized on the k grid to find kmax (resp., kcr). This method turns out to be
computationally expensive. To overcome these challenges, an accurate and
fast method is explained below.

Recall the eigenvalue problem (2.7). As discussed previously the discrete spectrum
of JL consists of two simple eigenvalues of opposite signs, ±Ω0(k) (we choose the
positive sign), with the associated eigenfunction f0(ξ; k). Our main goal is to compute
kmax such that Ω′

0(kmax) = 0 and kcr such that Ω′′
0(kcr) = 0. This is achieved using

the following algorithm:
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1. Compute the discrete spectrum at some (initial) k, i.e., Ω0(k) and f0(ξ; k).
2. Apply adjoint methods to find exact expressions for Ω′

0(k) and Ω′′
0 (k), i.e.,

(5.5)–(5.6) below.
3. Repeat steps 1–2 using a root finder to converge to kmax and kcr.
4. Compute Γmax = ,{Ω0(kmax)} and/or Ωcr = Ω0(kcr) and wcr = Ω′

0(kcr).
We proceed to derive the relevant expressions. Use will be made of the standard

Pauli matrices,

(5.1) σ1
.
=

[
0 1
1 0

]
, σ2

.
=

[
0 −i
i 0

]
, σ3

.
=

[
1 0
0 −1

]
,

the reflection operator R, Rg(x) = g(−x), and the adjoint of an operator will be
denoted by (·)†.

Differentiating (2.7) with respect to k gives

(5.2)

(
σ2L0 +

1

2
k2σ2 + Ω0

)
f ′0 = −(kσ2 + Ω′

0)f0,

where (·)′ denotes differentiation with respect to k. Solvability requires that (kσ2+Ω′
0)f0

be orthogonal to the nullspace of the adjoint operator to the left-hand side of (5.2).
In Appendix C we prove that this nullspace can be characterized as follows.

Lemma 5.1. For k ∈ C\{0,±kcutoff} and (Ω0(k), f0(ξ; k)) an eigenpair satisfying

(5.3)

(
σ2L0 +

1

2
k2σ2 + Ω0

)
f0 = 0,

we have

(5.4) ker

{(
σ2L0 +

1

2
k2σ2 + Ω0

)†
}

= span{Rσ1f∗0 }.

Using Lemma 5.1 and taking the inner product of (5.2) with Rσ1f∗0 , the solvability
condition reads

(5.5) Ω′
0(k) = −k

〈σ2f0, Rσ1f∗0 〉
〈f0, Rσ1f∗0 〉

.

Differentiating (5.2) with respect to k gives

(
σ2L0 +

1

2
k2σ2 + Ω0

)
f ′′0 = −(kσ2 + Ω′

0)f
′
0 − (σ2 + Ω′′

0 )f0.

Using the solvability condition we conclude that

(5.6) Ω′′
0(k) = −2

〈(kσ2 + Ω′
0)f

′
0, Rσ1f

∗
0 〉

〈f0, Rσ1f∗0 〉
− 〈σ2f0, Rσ1f∗0 〉

〈f0, Rσ1f∗0 〉
.

In summary, we compute Ω′
0(k) and Ω′′

0 (k) using (5.2), (5.3), (5.5), and (5.6). These
computations are accurate and fast. The most time-consuming operation is the com-
putation of the discrete spectrum of L .
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Fig. 5.1. An example potential V (x, y, t) with V0 & 1 used to model numerical simulation of
supersonic flow past a corner. Regions where V (x, y, t) is large correspond to negligible density. The
ramp moves to the left with speed M1 leading to oblique DSW formation.

5.2. Numerical solution of the NLS equation. In section 4.2 we presented
the numerical solution of supersonic NLS flow past a corner. The technique used was
the same as that presented in [22]. We introduce a linear potential with large contrast
that acts as a penalization to flow outside the domain. Such volume penalization
methods are well known in classical fluid dynamics (see, e.g., [53]). In the context of
BEC and optics, superfluid flow around obstacles or boundaries is realized in practice
using electromagnetic waves or a variable refractive index, both modeled as a spatially
varying, linear potential. The benefits of this numerical technique include the use of
a regular, Cartesian mesh and highly accurate pseudospectral derivative calculations.

The time-dependent NLS/GP equation (1.1) with a linear potential

(5.7) iψt = −1

2
(ψxx + ψyy) + V (x, y, t)ψ + |ψ|2ψ

was solved numerically using a pseudospectral, Fourier spatial discretization, and a
fourth order Runge–Kutta explicit time stepper. These computations were performed
on a rectangular mesh of NxNy equispaced grid points within the domain [−Lx, Lx]×
[−Ly, Ly]. Our choice of the potential

V (x, y, t)

= V0

[
1−Hµ(Lx − |x|− δ)Hµ(Ly − |y|− δ)(5.8a)

Hµ(y − C(x−M1t))
]
,(5.8b)

C(ξ) = − tan(θ)
[
Hµ(x1 − ξ)−Hµ(l)

]
− Ly + δ,(5.8c)

Hµ(ξ) =
1

2
+

1

2
tanh(ξ/µ),(5.8d)

models the boundary conditions corresponding to flow over a corner and also serves to
“localize” the solution so that a pseudospectral, Fourier discretization with periodic
boundary conditions can be employed. An example potential is shown in Figure 5.1.
The time-dependent potential corresponds to a moving ramp. The function Hµ is a
regularized Heaviside step function with transition width µ. The terms on line (5.8a)
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effect the localization of ψ to within δ of the domain boundaries. The terms on lines
(5.8b) and (5.8c) correspond to a moving ramp with corner angle θ and apex located
at (x0 −M1t,−Ly + δ). When the second corner at x = x0 −M1t+ l is reached, the
ramp flattens and continues as a straight line. The initial condition is the nonlinear,
stationary ground state of (5.7) with potential V (x, y, 0) computed by the spectral
renormalization technique [54] with the unit density constraint |ψ(0, 0, 0)|2 = 1. The
potential contrast V0 is taken sufficiently large so that the density is effectively zero
where V (x, y, t) ≈ V0. Time integration was carried out until the corner reached
the left boundary. Near the corner, the flow approximates a “pure” oblique DSW
as shown in Figure 4.5. Parameter values for Table 4.1 are Nx = 4000, Ny = 1000,
Lx = 2000, Ly = 500, V0 = 20, δ = 2, x0 = 1000, l = 1000, µ = 2, and a time step
of 0.05. The simulation depicted in Figure 4.5 results from Nx = 3200, Ny = 1600,
Lx = 800, Ly = 400, V0 = 20, δ = 2, x0 = 400, l = 400, µ = 2, and a time step of 0.01.

6. Discussion and conclusions. One of the motivating questions for this study
was the nature of convective versus absolute instabilities of dark solitons. In general,
the characterization of the instability type requires knowledge of the dispersion re-
lation for a range of wavenumbers in the complex plane. Unfortunately, the exact
discrete spectrum (and hence dispersion relation) for NLS dark solitons is unknown.
The formal analysis presented in [11] led to greatly simplified criteria for determining
the instability type, which involve only the imaginary (stable) portion of the spectrum.

In this study, the underlying assumptions behind the simplified criteria are ex-
posed and justified using a combination of rigorous results (Theorem 2.1 and
Lemma 5.1), shallow amplitude asymptotics (Proposition 2.3), and computations of
the spectrum. Consequences of the small-amplitude asymptotics and numerical com-
putations are the first order corrections to the maximal growth rate and associated
wavenumber (Corollary 2.4) and dependence of the critical Mach number on the soli-
ton amplitude (Conclusion 3.5). Applying Conclusion 3.5 to the soliton trailing edge
of oblique DSWs, we conclude that subsonic oblique DSWs are always absolutely un-
stable, whereas supersonic oblique DSWs can be absolutely or convectively unstable
(Corollaries 4.2 and 4.3). In addition, the relationship between stationary DSWs
(corner BVPs) and nonstationary DSWs (Riemann IVPs) is studied. In both cases,
the DSWs are found to have the same downstream flow properties in the shallow and
hypersonic regimes (Conclusion 4.4).

It is worth contrasting these results with oblique shock waves in classical gas dy-
namics. Supersonic classical shock fronts in gas dynamics are linearly stable when they
satisfy the Lax entropy condition [23]. For the boundary value problem of supersonic
flow past a sharp corner, the oblique shock is stable if and only if the downstream
flow is supersonic [24, 25]. As far as we know, the distinction between absolute and
convective instabilities in the subsonic case has not been elucidated. We note that
recent experiments in another viscous medium (granular material) exhibit the sta-
ble excitation of oblique DSWs with both supersonic and subsonic downstream flow
conditions [55].

Several questions and open problems related to this study are mentioned below.
The nonstationary oblique DSW consists of a slowly modulated elliptic function

solution to NLS. How to study the stability or instability of this coherent structure
is not immediately obvious given its expanding nature and asymptotic representa-
tion. The notion of instability we consider here is centered upon the properties of
perturbations to the stationary trailing dark soliton edge. This is a natural criterion
because the soliton trailing edge corresponds to the largest oscillation in the DSW;



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DARK SOLITONS, DSWs, AND TRANSVERSE INSTABILITIES 335

hence nonlinear effects are strongest there. Another motivation for this choice comes
from the numerical simulation of supersonic flow over a corner where the instabil-
ity first appears along the trailing edge soliton. However, to gain a more complete
understanding of DSW instabilities, one should develop an analysis of absolute and
convective transverse instabilities of elliptic function solutions. This suggests the more
general study of convective/absolute instability for systems with continuous bands of
unstable modes. We are not aware of any previous work in this direction.

Careful computations of the spectrum suggest that Conjecture 2.2 is true. How-
ever, to the best of our knowledge, it has not been proved rigorously. It may be
possible to do this by reducing the problem to an ODE, where Sturm–Liouville the-
ory is applicable (cf. [56, 30]).

It would be interesting to extend the results obtained here for the KP-I equation
to the KP-II equation. KP-II corresponds to negative (normal) dispersion, which
arises in shallow water waves with small surface tension. In contrast to the KP-I
line-solitons studied here, line-solitons of KP-II are linearly stable [28]. Since DSWs
also occur in the KP-II equation (cf. [58]), this raises the question: Are DSWs in
KP-II (and other systems with negative disperson) stable?

Appendix A. Eigenvalue asymptotics. We seek the dispersion relationΩ(k; ν)
of (2.7) for unstable transverse perturbations to the shallow (0 < ν ) 1) dark line
soliton (2.4). Rather than perform asymptotics directly on (2.7) it is convenient to
consider the eigenvalue problem in fluid variables (1.2). The soliton solution (2.4)
takes the form

ρ(x, y, t) = ρs(ζ) = 1− ν2sech2(ζ),(A.1a)

u(x, y, t) = us(ζ) =
−κ

sinh2(ζ) + κ2

ν2 cosh
2(ζ)

,(A.1b)

v(x, y, t) = 0, ζ = ν(x− κt).(A.1c)

Applying multiple scales to (1.3) leads to the KP-I equation for weakly nonlinear
excitations of (1.1) to the uniform state ρ ≡ 1 (cf. [57]). The scalings involved
motivate the following representation of weak transverse perturbations to the dark
soliton (A.1)

ρ(x, y, t) = ρs(ζ)− εf(ζ)ei(pη−Λτ),

u(x, y, t) = us(ζ) − εg(ζ)ei(pη−Λτ),

v(x, y, t) = ενh(ζ)ei(pη−Λτ),

ζ = ν(x − κt), η = ν2y, τ = ν3t, 0 < ε) 1.

Inserting these expansions into (1.3) and (4.7c) while keeping only O(ε) terms gives

−fu′
s − gρ′s + f ′ [κ− us] + ρs

(
−g′ + ipν2h

)
= −iν2Λf,(A.2a)

− ν2ρ′s
ρ3s

(3f ′ρ′s + 4fρ′′s ) +
3ν2fρ′3s
ρ4s

+ 4gu′
s

+
ν2

ρ2s

[
ρ′s
(
2f ′′ − p2ν2f

)
+ 2f ′ρ′′s (ζ) + fρ′′′s

]

+ 4 [f ′ + g′ (us − κ)] +
1

ρs

(
p2ν4f ′ − ν2f ′′′) = 4iν2Λg,(A.2b)

h′ = −ipg.(A.2c)
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This is an eigenvalue problem parameterized by p and ν for the eigenvalue Λ = Λ(p; ν)
and eigenfunction [f, g, h]T .

Assuming p /∈ {0,±pcutoff} where pcutoff = kcutoff/ν2 so that the eigenvalue of
interest is simple, we expand2 the coefficient functions ρs and us, the parameter
κ =

√
1− ν2, the eigenfunction [f, g, h]T , and the eigenvalue Λ in powers of ν2:

f = f0 + ν2f1 + ν4f2 + · · · ,
g = f0 + ν2g1 + ν4g2 + · · · ,(A.3)

h = −ip

∫ (
f0 + ν2g1 + ν4g2 + · · ·

)
dζ,

Λ(p; ν) = Λ0(p) + ν2Λ1(p) + · · · .

Then, (A.2c) is automatically satisfied to all orders so we only consider equations
(A.2a) and (A.2b) which expand, respectively, as

{
f ′
1 − g′1 +

[(
2sech2(ζ)− 1

2

)
f0

]′
+ iΛ0f0 + p2

∫
f0dζ

}
(A.4a)

+ ν2
{
f ′
2 − g′2 −

1

2
sech2(ζ)

(
−2 (f ′

1 + g′1) + f ′
0 + 2p2

∫
f0dζ

)

− 1

8
f ′
0 −

1

2
f ′
1sech

4(ζ)f ′
0 + tanh(ζ)sech2(ζ) (f0 − 2 (f1 + g1))

+ iΛ1f0 + iΛ0f1 − 4f0 tanh(ζ)sech
4(ζ) + p2

∫
g1dζ

}
= O(ν4),

{
g′1 − f ′

1 +

[(
sech2(ζ) − 1

2

)
f0

]′
+

1

4
f ′′′
0 + iΛ0f0

}
(A.4b)

+
ν2

8

{
8g′2 − 8f ′

2 + 8f0sech
2(ζ) tanh(ζ)

(
2sech2(ζ)− 1

)

+ 2sech2(ζ) [−4 tanh(ζ) (f ′′
0 + 2g1) + f ′′′

0 + 4g′1]

+ 2sech2(ζ)
(
6− 8sech2(ζ)

)
f ′
0 −

(
2p2 + 1

)
f ′
0

+ 2f ′′′
1 − 4g′1 + 8iΛ1f0 + 8iΛ0g1

}
= O(ν4).

A.1. KP eigenvalue problem. Adding (A.4a) to (A.4b) gives

1

4

[
f ′′′
0 − 4

[
(1− 3sech2(ζ))f0

]′
+ 8iΛ0f0 + 4p2

∫
f0dζ

]
= O(ν2).

Differentiating and keeping only leading order terms gives

Lf0
.
= f ′′′′

0 − 4[(1− 3sech2ζ)f0]
′′ + 8iΛ0f

′
0 + 4p2f0 = 0.

2The two limits, linearization about the soliton and expanding in ν, are not interchangeable.
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This is the KP eigenvalue problem studied in [28]. The unstable portion of the
spectrum includes one eigenpair,

f0(ζ; p) =
d2

dζ2

{
e

(
1+

√
1−2p/

√
3
)
ζ
[
2− 2p/

√
3 + 2

√
1− 2p/

√
3

]
[1− tanh(ζ)]

}
,

Λ0(p) = −i
p

3

√
3− 2

√
3p, 0 < p <

√
3

2
∼ pcutoff , 0 < ν ) 1.

This eigenvalue is continued onto the positive real line by the eigenpair

f0(ζ; p) =
d2

dζ2

{
e

(
1−i

√
2p/

√
3−1

)
ζ
[
2− 2p/

√
3 + 2i

√
2p/

√
3− 1

]
[1− tanh(ζ)]

}
,

Λ0(p) =
p

3

√
2
√
3p− 3, p >

√
3

2
∼ pcutoff , 0 < ν ) 1.

A.2. Perturbed KP eigenvalue problem. Below we determine the correction
Λ1(p). f1 is determined in terms of g1 by subtracting (A.4a) from (A.4b) to obtain

2f ′
1 − 2g′1 −

1

4
f ′′′
0 +

[
sech2(ζ)f0

]′
+ p2

∫
f0dζ = O(ν2),

so that

f1 = g1 +
1

8
f ′′
0 − 1

2
sech2(ζ)f0 −

p2

2

∫ ∫
f0dζ +O(ν2)(A.5)

.
= g1 + f̃ +O(ν2), f̃ =

1

8
f ′′
0 − 1

2
sech2(ζ)f0 −

p2

2

∫ ∫
f0dζ.

Using (A.5) in (A.4a) and (A.4b), adding the two equations together, and differenti-
ating, the O(ν2) terms equate to

Lg1 = − sech2(ζ)
[
4
(
3f ′′

0 − p2f0 + f̃ ′′ + 4f̃
)
+ f ′′′′

0

]

+ 2 tanh(ζ)sech2(ζ)

(
4f ′

0 + 3f ′′′
0 − 4p2

∫
f0dζ + 8f̃ ′

)

+ 8sech4(ζ)
(
2f ′′

0 − 4f0 + 3f̃
)
+ p2f ′′

0 − 4iΛ0f̃
′

− 8 tanh(ζ)sech4(ζ)f ′
0 + f ′′

0 (ζ)− f̃ ′′′′ + 40f0sech
6(ζ)

+ 2f̃ ′′ − 8iΛ1f
′
0

.
= G(ζ; p) − 8iΛ1f

′
0.

Solvability then determines Λ1

(A.6) Λ1(p) = −i

∫∞
−∞ G(ζ; p)h∗(ζ; p)dζ

8
∫∞
−∞ f ′

0(ζ; p)h
∗(ζ; p)dζ

,

where h(ζ; p) is the homogeneous solution of the adjoint problem

L†h = h′′′′ − 4(1− 3sech2ζ)h′′ + 8iΛ∗
0h

′ + 4p2h = 0.

Since Λ0 is either purely real or purely imaginary, the solution of the adjoint problem
is

h(ζ; p) =

{
f∗
0 (ζ; p), p <

√
3
2 ,

f0(ζ; p), p >
√
3
2 .
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The integrals in (A.6) can be calculated explicitly:

Λ1(p) =
p2
(√

3− p
)

6
√
2
√
3p− 3

.

For the asymptotic expansion in (A.3) to be valid, we require Λ0(p) 1 ν2Λ1(p). This
puts a restriction on the values of p where the expansion is valid:

pcutoff < p ) 1

ν2
or 0 < p < pcutoff , 0 < ν ) 1.

Then, the unscaled eigenvalue Ω(k; ν) in (2.7) has the asymptotic expansion

Ω(k; ν) ∼ ν3Λ0(k/ν
2) + ν5Λ1(k/ν

2),

k < kcutoff(ν), kcutoff(ν) < k = O(ν2) ) 1, 0 < ν ) 1,

which is given in (2.13).

Appendix B. Theorem 2.1. In [30] it was proved that L0 has exactly one
negative eigenvalue which was determined explicitly in [8] (L0 + k2cutoff/2)f = 0.
In addition, it was proved in [56] from general considerations of linear operators
of the form JL, where J is skew-symmetric and L is symmetric, that the number
of eigenvalues of JL with a positive real part is at most the number of negative
eigenvalues of L. The latter decomposition applies to (2.8), where L = L0 + k2/2 is
symmetric for k ∈ R and J is skew-symmetric.

Combining these results, for 0 < |k| < kcutoff , k ∈ R, L has one negative eigen-
value and therefore JL has at most one eigenvalue with a positive real part. By the
instability of the dark soliton, proven in [30], JL has exactly one eigenvalue with
positive real part. There is also exactly one eigenvalue with negative real part via the
following lemma.

Lemma B1. For k ∈ R, the eigenvalues of JL come in pairs of opposite sign.
Proof. For any k ∈ R,

(B.1) JL = −Rσ3LJRσ3.

Let JLf = Γf . Using (B.1) and one of the Pauli matrices (5.1) gives

JLRσ3f = −ΓRσ3f .

It follows that (−Γ, Rσ3f) is also an eigenpair for JL.
On the other hand, for |k| > kcutoff , k ∈ R, L has no negative eigenvalues and

therefore, by Lemma B1, JL has only purely imaginary eigenvalues. We find numer-
ically and asymptotically in the shallow regime only two discrete, simple eigenvalues
for k ∈ C \ {0,±kcutoff}.

Appendix C. Proof of Lemma 5.1. We make use of the following identity:

JL0 = Rσ1L0JRσ1.(C.1)

For any k ∈ C, consider (Ω0, f0) an eigenpair for (2.7) satisfying

(C.2)

[
J

(
L0 +

1

2
k2
)
+ iΩ0

]
f0 = 0.
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Since Ω0 is a simple eigenvalue, it follows that

dim

(
ker

{[
JL0 +

1

2
k2J + iΩ0

]†})
= 1.

Therefore, it remains to verify that Rσ1f∗0 is in the nullspace of [JL0 + 1
2k

2J + iΩ0]†.
We take the complex conjugate of (C.2) and apply the decomposition (C.1) to obtain

[
−Rσ1L0JRσ1 +

1

2
k∗

2

J − iΩ∗
0

]
f∗0 = 0.

Applying Rσ1 yields

−
[
L0J +

1

2
k∗

2

J + iΩ∗
0

]
Rσ1f

∗
0 = 0,

which is precisely the adjoint equation to (C.2). Therefore, we have

ker

{[
J

(
L0 +

1

2
k2
)
+ iΩ0

]†}
= span{Rσ1f∗0 }, k ∈ C.

By similar arguments with JL0 = −σ2L0Jσ2, one can show that σ2f0 ∝ Rσ1f∗0 and
hence spans the kernel of [JL0 + 1

2k
2J + iΩ0]† when k, Ω0 ∈ R. We use this null

eigenfunction in our numerical computations whenever k ∈ (kcutoff ,∞).
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[31] L. P. Pitaevskĭi and E. Lifshitz, Physical Kinetics, Course of Theoretical Physics 10, Perg-
amon Press, Oxford, UK, 1981, pp. 268–273.

[32] E. Infeld and G. Rowlands, Nonlinear Waves, Solitons and Chaos, Cambridge University
Press, Cambridge, UK, 1990.

[33] P. J. Schmid and D. S. Henningson, Stability and Transition in Shear Flows, Appl. Math.
Sci. 142, Springer-Verlag, New York, 2000.

[34] A. Bers, Space-Time Evolution of Plasma Instabilities—Absolute and Convective, vol. 1, El-
sevier, Amsterdam, 1983, pp. 451–517.

[35] P. Huerre and P. A. Monkewitz, Absolute and convective instabilities in free shear layers,
J. Fluid Mech., 159 (1985), pp. 151–168.

[36] L. Brevdo and T. J. Bridges, Absolute and convective instabilities of spatially periodic flows,
Phil. Trans. Roy. Soc. Lond. A, 354 (1996), pp. 1027–1064.

[37] P. D. Miller, Applied Asymptotic Analysis, AMS Publications, Providence, RI, 2006.
[38] V. A. Mironov, A. I. Smirnov, and L. A. Smirnov, Structure of vortex shedding past potential

barriers moving in a Bose-Einstein condensate, JETP, 110 (2010), pp. 877–889.
[39] G. A. El, A. M. Kamchatnov, V. V. Khodorovskii, E. S. Annibale, and A. Gammal, Two-

dimensional supersonic nonlinear Schrödinger equation flow past an extended obstacle,
Phys. Rev. E, 80 (2009), 046317.

[40] G. B. Whitham, Non-linear dispersive waves, Proc. Roy. Soc. Ser. A, 283 (1965), pp. 238–261.
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