
F_LSFVIER

An International Journal
Available online at www.sciencedirect.com eomouter_~ &

mathematics
with applications

Computers and Mathematics with Applications 48 (2004) 853-867
www.elsevier.com/locate/camwa

Stable Computation of Multiquadric
Interpolants for All Values

of the Shape Parameter

B . F O R N B E R G *
Universi ty of Colorado, D e p a r t m e n t of Applied Ma thema t i c s

CB-526, Boulder, CO 80309, U.S.A.
f ornberg©colorado, edu

G. WRIGHTt
Universi ty of Utah , D e p a r t m e n t of Ma thema t i c s

Salt Lake City, U T 84112, U.S.A.
wright~math, utah. edu

(Received March 2003; revised and accepted August ~003)

A b s t r a c t - - S p e c t r a l l y accurate interpolation and approximation of derivatives used to be practical
only on highly regular grids in very simple geometries. Since radial basis function (RBF) approxima-
tions permit this even for multivariate scattered data, there has been much recent interest in practical
algorithms to compute these approximations effectively.

Several types of RBFs feature a free parameter (e.g., c in the multiquadric (MQ) case ¢(r) =
~) . The limit of c ~ ~ (increasingly flat basis functions) has not received much attention
because it leads to a severely ill-conditioned problem. We present here an algorithm which avoids
this difficulty, and which allows numerically stable computations of MQ RBF interpolants for all
parameter values. We then find that the accuracy of the resulting approximations, in some cases,
becomes orders of magnitude higher than was the case within the previously available parameter
range.

Our new method provides the first tool for the numerical exploration of MQ RBF interpolants in
the limit of c --* c~. The method is in no way specific to MQ basis functions and can--without any
change---be applied to many other cases as well. (~) 2004 Elsevier Ltd. All rights reserved.

K e y w o r d s - - R a d i a l basis functions, RBF, Multiquadrics, Ill-conditioning.

1. I N T R O D U C T I O N

Linear combinations of radial basis functions (RBFs) can provide very good interpolants for
multivariate data. Multiquadric (MQ) basis functions, generated by ¢(r) = ~ (or in the
notation used in this paper, ¢(r) = V/1 + (er) 2 with E = l/c), have proven to be particularly suc-
cessful [1]. However, there have been three main difficulties with this approach: severe numerical
ill-conditioning for a fixed N (the number of data points) and small E, similar ill-conditioning

*This work was supported by NSF Grants DMS-9810751 (VIGRE), DMS-0073048, and a Faculty Fellowship from
the University of Colorado at Boulder.
tThis work was supported by an NSF VIGRE Graduate Traineeship under Grant DMS-9810751.

0898-1221/04/$ - see front matter (~) 2004 Elsevier Ltd. All rights reserved. Typeset by .AAdS-TEX
doi:10.1016/j.camwa.2003.08.010

854 B. FORNBERO AND G. WRIGHT

problems for a fixed E and large N, and high computational cost. This study shows how the first
of these three problems can be resolved.

Large values of parameter E are well known to produce very inaccurate results (approaching lin-
ear interpolation in the case of l-D). Decreasing e usually improves the accuracy significantly [2].
However, the direct way of computing the RBF interpolant suffers from severe ill-conditioning
as E is decreased [3]. Several numerical methods have been developed for selecting the "optimal"
value of e (e.g., [4-6]). However, because of the ill-conditioning problem, they have all been lim-
ited in the range of values that could be considered, having to resort to high-precision arithmetic,
for which the cost of computing the interpolant increases to infinity as e --* 0 (timing illustra-
tions for this will be given later). In this study, we present the first algorithm which not only can
compute the interpolant for the full range e > 0, but it does so entirely without a progressive
cost increase as e -~ 0.

In the highly special case of MQ RBF interpolation on an infinite equispaced Cartesian grid,
Buhmann and Dyn [7] showed that the interpolants obtain spectral convergence for smooth
functions as the grid spacing goes to zero (see, for example, [8] for the spectral convergence
properties of MQ and other RBF interpolants for scattered finite data sets). Additionally, for an
infinite equispaced grid, but with a fixed grid spacing, Baxter [9] showed the MQ RBF interpolant
in the limit of ~ --+ 0 to cardinal data (equal to one at one data point and zero at all others)
exists and goes to the multidimensional sinc function--just as the case would be for a Fourier
spectral method. Limiting (6 --+ 0) interpolants on scattered finite data sets were studied by
Driscoll and Fornberg [10]. They noted that, although the limit usually exists, it can fail to do so
in exceptional cases. The present numerical algorithm handles both of these situations. It also
applies--without any change--t0 many other types of basis functions. The cases we will give
computational examples for are listed in Table 1. Note that for all these cases, the limits of flat
basis functions correspond to e --* 0.

Table 1.

Name of RBF Abbreviation Definition
Multiquadrics

Inverse Quadratics

Gaussians

MQ

IQ

CA

¢(,) =

1 ¢(r) = - -
1 + (er) 2

¢(~) = _ (~) 2

The main idea of the present method is to consider the l tBF interpolant at a fixed x

N

= Z (11-=- (1)
j = l

(where II" II is the two-norm) not only for real values of e, but as an analytic function of a complex
variable E. Although not explicitly marked, Aj and ¢ are now functions of e. In the sections that
follow, we demonstrate that in a relatively large area around e = 0, s(x, e) will at worst have
some isolated poles. It can, therefore, be written as

s(x, e) = (rational function in e) + (power series in e). (2)

The present algorithm numerically determines (in a stable way) the coefficients to the rational
function and the power series. This allows us to use (2) for computing the RBF interpolant
effectively numerically right down to e = 0. The importance of this entirely new capability is
expected to be as a tool to investigate properties of RBF approximations and not, at the present
time, to interpolate any large experimental data sets.

Although not pursued here, there are a number of important and unresolved issues relating
to the limit of the RBF interpolant as ~ --+ 0, for which the present algorithm will now allow

Stable Computation of Multiquadric Interpolants 855

numerical explorations. For example, it was shown by Driscoll and Fornberg [10] tha t the limiting
interpolant in 1-D is s imply the Lagrange interpolating polynomial. This, of course, forms the
foundation for finite-difference and pseudospectral methods. The equivalent limit (E ~ 0) can
now be studied for scat tered da ta in higher dimensions. This is a s i tuat ion where, in general,
there does not exist any unique lowest-degree interpolating polynomial and, consequently, spectral
limits have not received much attention.

The rest of this paper is organized as follows. Section 2 introduces a test example which we
will use to describe the new method. In Section 3, we illustrate the s t ructure of s(x,¢) in the
complex s-plane (the distribution of poles etc.). Section 4 describes the steps in the numerical
method, which then are applied to our test problem in Section 5. Section 6 contains additional
numerical examples and comments. We vary the number of da ta points and also give numerical
results for some other choices of RBFs. One of the examples we present there features a si tuation
where E --* 0 leads to divergence. We finish by giving a few concluding remarks in Section 7.

2. F I R S T T E S T P R O B L E M

Figure i shows 41 da ta points xj randomly scattered over the unit disk (in the x--plane where x_
is a two-vector with components Xl,X2). We let our da ta at these points be defined by the
function

59
f (x) ~-- f (X l , X2) :- 67' "Jr- (Xl "~ 1/7) 2 "1- (X2 -- 1/11) 2. (3)

1

0.5

-11.5

-1

Q,

® ® ® ® ® ® ®
® ® ®

® ® ®
®

®
®

® ®
® ® ® ®

® ®
®

® ® ® ®
® ® ®

®
-0:s 0 0:s

x 1

® ®

®

® ®

Figure 1. Distribution of 41 data points for use in the first test problem.

The task is to compute the MQ RBF interpolant (i.e., (1) with ¢(r) = ~/1 + (sr) 2) at some
location x inside the unit disk. We denote the da ta by yj = f (x j) , j = 1, 2 , . . . , 41. The immediate
way to perform the RBF interpolation would be to first obtain the expansion coefficients Aj by
solving

[A(s)] = , (4)

where the elements of A(s) are aj,k = ¢(llxj - X_kll). The RBF interpolant, evaluated at x, is
then wri t ten as

41

= (] Ix - x ll), (5)
j= l

or equivalently

856 B. FORNBERG AND G. WRIGHT

_ 1 0 ~

" '10-8

10 -lo

10-~2
0

I I i I i

0.2 0.4 0.6 0.8 e 1

Figure 2. The error (in magnitude) as a function of ¢ in the interpolant s(x, ¢) of (3)
when s(z_, e) is computed directly using (6). We have chosen x = (0.3, -0.2).

s(x_,s) = [B(¢)] [A(¢)] -1 , (6)

Yl

where the elements of B(e) are bj = ¢ (l l x - _xjl[).
Figure 2 shows the magnitude of the error s(x,¢) - f (x) , where x = (0.3,-0.2) as a function

of e when computed directly via (4) and (5). This computation clearly loses its accuracy (in
64-bit floating point precision) when s falls below approximately 0.2. The drop in error as z
approaches 0.2 (from above) suggests that computations for lower values of ¢ could be very
accurate if the numerical instability could be overcome. The reason the onset of ill-conditioning
occurs so far from s = 0 is that the matrix A(s) approaches singularity very rapidly as ¢ decreases.
Using Rouchd's theorem, we can find that in this test case det(A(e)) = a . e 416 + O(e 418) (where
the coefficient a is nonzero). Regardless of this rapid approach to singularity, we usually find that
s(x, E) exists and is bounded as e -+ 0. This means an extreme amount of numerical cancellation
occurs for small s when evaluating s(x, 6).

In the notation of (6), our task is to then determine the row vector

[C(¢)] = [B(e)] [A(E)]-1, (7)

for all s > 0. To do this, we need an algorithm which bypasses the extremely ill-conditioned direct
formation of A(e) -1 and computation of the product B(s)- A(z) -1 for any values of E less than
approximately 0.3. The algorithm we present in Section 4 does this by directly computing C(E)
around some circle in the complex G-plane where A(s) is well conditioned. This will allow us to
determine the coefficients in (2), and therefore, determine s(x__, s) for small e-values.

Note that in practice, we often want to evaluate the interpolant at several points. This is most
easily done by letting B(¢) (and thus, C(¢)) in (7) contain several rows---one for each of the
points.

3. T E S T P R O B L E M V I E W E D I N A C O M P L E X e - P L A N E

Figure 3 shows the log10 of the condition number of A(s) when s is no longer confined to the
real axis. We see that the ill-conditioning is equally severe in all directions as s approaches zero
in the complex plane. Furthermore, we note a number of sharp spikes. These correspond to
complex s-values for which A(e) is singular (apart from s = 0, none of these can occur on the
real axis according to the nonsingularity result by Micchelli [11]).

As stated in the Introduction, in a large area around ¢ = 0, s(x, 6) is a meromorphic function
of s. This can be shown by first noting that (7) can be rewritten as

1
C(s) = det(A(s)) [B(¢)] [adj(A(z))],

Stable Computat ion of Multiquadric Interpolants 857

Loglolcond(A)l

$ Re(e) l

/
/

Figure 3. Logarithm (base 10) of the condition number for A(e) as a function of the
complex variable z. The domain of the plat is a square with sides of length 2- 0.75
centered at the origin and the range of the plot varies from 0 to 102°. Note near
e = 0 the log10 of the condition number of A(s) goes to infinity. However, due to
numerical rounding, no values greater than 102° were recorded.

where adj(A(z)) is the adjoint matrix of A(E). Now, letting Fj,k(z) be the cofactors of A(z),
we have that Fj,k(Z) = F~,j(z) for j, k = 1 , . . . , N since A(z) is symmetric. Thus, expanding
det(A(E)) also in cofactors, gives the following result for the jth entry of C(E)

N
Y:, ¢ (11 - ll)rk,j(z)

C j (8) = k=l (8)
E (ll- J

k=l

The numerator and denominator of (8) are analytic everywhere apart from the trivial branch
point singularities of ¢(r) on the imaginary axis. Thus, at every point apart from these trivial
singularities, the numerator and denominator have a convergent Taylor expansion in some region.
None of the trivial singularities can occur at e -- 0 since this would require r -- co. Hence, there
can only be a pole at E = 0 if the leading power of z in the denominator is greater than the
leading power in the numerator. Remarkably, the leading powers are usually equal, making z -- 0
a removable singularity (in Section 6, we explore an example where this is not the case; a more
extensive study on this phenomenon can be found in [12]). Apart from z = 0 and the trivial
singularities, the only singularity that can arise in Cj(z) is when A(z) is singular. Due to the
analytic character of the numerator and denominator, this type of singularity can only be a pole
(thus, justifying the analytic form stated (2)).

The structure of s(_x, 6) in the complex z-plane is shown in Figure 4. The lined area marks where
the ill-conditioning is too severe for direct computation of s(x_, e) in 64-bit floating-point. The
solid circles mark simple poles and the ×'s mark the trivial branch point singularities. The dashed
line in Figure 4 indicates a possible contour (a circle) we can use in our method. Everywhere
along such a circle, s(x, z) can be evaluated directly with no particular ill-conditioning problems.
Had there been no poles inside the circle, plain averaging of the s(x_, e)-values around the circle
would have given us s(x_, 0).

It should be pointed out that if we increase the number of data points N too much (e.g.,
N > 100 in this example) the in-conditioning region in Figure 4 will grow so that it contains
some of the branch point singularities (starting at z = 0.5i), forcing us to choose a circle that
falls within this ill-conditioned region. However, we can still find s(_x, z) everywhere inside our
circle for no worse conditioning than at z just below 0.5.

858 B. FORNBEItG AND G. WRIGHT

0.6 . .

0.4 / "~• : ~-

/ • \

0.2 / \
/

I
0 _ I J

I
\ I

-0 .2 \ /
% /

- 0 . 4 ~ ~ _ _

• l "
- 0 . 6 ' ' '

--0.6 -0.4 -0 .2 0 0.2 0.4 0.6
Re(s)

Figure 4. S t ruc ture of s(_x, e) in the complex e-plane. T h e approx imate area wi th
ill-conditioning is marked with a line pat tern; poles are marked wi th solid circles and
branch points with x 's.

To complete the description of our algorithm, we next discuss how to

• detect and compensate for the poles located inside our circle (if any), and
• compute s(x., E) at any e-point inside the circle (and not just at its center)

based only on e-values around the circle.

4. N U M E R I C A L M E T H O D

We first evaluate s(x_, ¢) at equidistant locations around the circle of radius p that was shown in
Figure 4, and then take the (inverse) fast Fourier transform (FFT) of these values. This produces
the vector shown in Table 2 (here ordered as is conventional for the output of an FFT routine).
From this (with E = p e i e) , we have essentially obtained the Laurent expansion coefficients for
s(_x, E). We can, thus, write

s (~ , E) + d _ 3 E - a + d _ 2 E - 2 + d _ l E - l + d o + d l E l + d 2 E 2 + d 3 E 3 + . . . • (9)

This expansion is convergent within some strip around the periphery of the circle. If there are no
poles inside the circle all the coefficients in (9) with negative indices vanish, giving us the Taylor
part of the expansion

s(x, E) = do + dzE 1 + d2E 2 + d3~ 3 + " " • (10)

We can then use this to evaluate s(x, ~) numerically for any value of e inside the circle.
The presence of any negative powers in (9) indicates that s(x_, ~) has poles inside the circle. To

account for the poles so that we can evaluate s(x, E) for any value of ~ inside the circle, we recast
the terms with negative indices into Pad~ rational form. This is accomplished by first using the
FFT data to form

q(~/) = d_ i f /+ d_2v/2 + d_3vl 3 -4-... • (11)

Next, we expand q(7/) in Pad6 rational form (see, for example, [13]), and then set

Table 2.

I do]. 11.2d2].3 3 I I L I . -3 -3 I . -2d-2 I .

Stable Computation of Multiquadric Interpolants 859

Since s(x, s) can only possess a finite number of poles inside the circle, the function r (s) together
with (10) will entirely describe s(x__, ~) in the form previously stated in (2)

s(_x, E) = (r(E)} + {do + dl6 + d2E 2 + . . . } .

This expression can be numerically evaluated to give us s(x, 6) for any value of s inside the circle.
An automated computer code needs to monitor several consequences of the fact that we are

working with finite and not infinite expansions. These are as follows.

• s(x__, 6) must be sampled densely enough so that the coefficients for the high negative and
positive powers of 6 returned from the FFT are small.

• When turning (11) into Pad4 rational form, we must choose the degrees of the numerator
and denominator (which can be chosen to be equal) so that they match or exceed the total
number of poles within our circle. (Converting the Pad~ expansion back to Laurent form
and comparing coefficients offers an easy and accurate test that the degrees were chosen
sufficiently high.)

• The circular path must be chosen so that it is inside the closest branch point on the
imaginary axis (equal to i / D where D is the maximum distance between points), but still
outside the area where direct evaluation of s(x, e) via (6) is ill-conditioned.

• The circular path must not run very close to any of the poles.

The computations required of the method may appear to be specific to each evaluation point x_
that is used. However, it is possible to recycle some of the computational work needed for
evaluating s(x, s) at one x_ into evaluating s(x__, z) at new values of _x. For example, from (8), we
know that the nontrivial pole locations of s(x, 6) are entirely determined by the data points xj.
Thus, once r(z) has been determined for a given x, we can reuse its denominator for evaluating
s(x., s) at other values of x. This allows the interpolant to be evaluated much more cheaply at
new values of x.

It could conceivably happen that a zero in the denominator of (8) gets canceled by a simulta-
neous zero in the numerator for one evaluation point but not another. We have, however, only
observed this phenomenon in very rare situations (apart from the trivial case when the evaluation
point coalesces with one of the data points). Nevertheless, an automated code needs to handle
this situation appropriately.

5. N U M E R I C A L M E T H O D A P P L I E D T O T H E T E S T P R O B L E M

We choose for example M = 128 points around a circle of radius p = 0.42 (as shown in
Figure 4). This requires just M / 4 + 1 = 33 evaluations of s(x, E) due to the symmetry between
the four quadrants. We again take x__ = (0.3,-0.2). Following the inverse F F T (and after "scaling
away" p), we cast the terms with negative indices to Pad6 rational form to obtain

-3 .3297.10 - l l - 5.9685 • 10-1°62 - 1.8415.10-964 ÷ 0.66
r(s) -- 1.0541.10 -3 ÷ 2.4440.10-2~ 2 ÷ 2.2506.10-1E 4 ÷ E 8 (12)

(The highest degree term in the numerator is zero because expansion (11) contains no constant
term.) Combining (12) with the Taylor series approximation, we compute, for example, s(x__, E)
at ~-- 0.1

s(x, 0.1) ~ {r(0.1)} + d2k(O.1) 2k ~ 0.87692244095761.

Note that the only terms present in the Taylor and Pad~ approximations are even, due to the
four-fold symmetry of s(x, e) in the complex 6-plane.

Table 3 compares the error in s(x, 6) when computed in standard 64-bit floating point with the
direct method (6) and when computed with the present algorithm. The comparisons were made

860 B. FORNBERG AND C, WRIGHT

Table 3. Comparison of the error in s(x__, e) when computed using the direct method
and the Contour-Padg algorithm. For these comparisons, we have chosen x =
(0.3, - o . 2) .

Magnitude of the error in s(x_, ~) when computed using the direct method

e = 0 ~ = 0.01 e -- 0.05 e = 0.1 ~ = 0.12 6 = 0.25

oo 3.9.10 -3 1.0- 10 -6 4.9 • 10 -1° 1.4- 10 -9 4.6 • 10 -11

Magnitude of the error in s(x__, e)
when computed using the Contour-Pad4 algorithm

M
~ - + 1 ~ = 0 ¢ = 0.01 ~ = 0.05 ¢ = 0 . 1 e =0 .12 e = 0.25

33 .. . 1.1 • 10 -13 1.0.10 -13 8.4 .10 -14 7.1 • 10 -14 1.1 • 10 -13

65 . . . 1.3- 10 -13 1.4.10 -13 1.4.10 -13 1.4.10 -13 1.2.10 -13

129 . . . 2.1 - 10 -13 2.0.10 -13 1.8.10 -13 1.6 • 10 -13 5.6 .10 -14

Magnitude of the error s(x_, c) - f (x)
when s(_x, e) is computed using the Contour-Pad4 algorithm

M
-~- + 1 c = 0 e = 0.01 e = 0.05 e = 0.1 ~ = 0.12 6 = 0.25

33 5.3 • 10 -11 5.2.10 -11 2.5.10 -11 2.3.10 -12 2.5 .10 -13 5.5 .10 -9

10 -s

2
I .
LU
- - 10_10

10-12
%

!
I I I I I I I I I

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 e 0.45

Figure 5. The error (in magnitude) as a function of e in the interpolant s($_, e) of (3).
The solid line shows the error when s(x, ~) is computed using (6) and the dashed
line shows the error when s(x, ~) is computed using the Contour-Pad~ algorithm
presented in Section 4. Again, we have chosen x = (0.3, -0.2) .

w i t h s (x , E) c o m p u t e d v i a (6) w i t h h i g h - p r e c i s i o n a r i t h m e t i c , u s i n g 60 d ig i t s of accuracy . T h e

l a s t p a r t of t h e t a b l e c o m p a r e s t h e e r r o r in t h e a p p r o x i m a t i o n o f (3), w h e n s (x , c) is c o m p u t e d

u s i n g t h e p r e s e n t a l g o r i t h m .

F i g u r e 5 g r a p h i c a l l y c o m p a r e s t h e r e s u l t s of t h e C o n t o u r - P a d 4 a l g o r i t h m u s i n g M / 4 + 1 = 33 t o

t h o s e u s i n g t h e d i r e c t m e t h o d (6). Like T a b l e 3, t h e f igure c l ea r ly shows t h a t t h e C o n t o u r - P a d 4

a l g o r i t h m al lows t h e R B F i n t e r p o l a n t to b e c o m p u t e d in a s t a b l e m a n n e r for t h e full r a n g e of c.

(T h e i n c r e a s e d e r r o r in t h e r e s u l t s of t h e C o n t o u r - P a d ~ a l g o r i t h m as e falls b e l o w 0.12 is n o t due

to a n y loss in c o m p u t a t i o n a l a ccu racy ; i t is a g e n u i n e f e a t u r e of t h e R B F i n t e r p o l a n t , a n d wil l

b e d i s c u s s e d in a s e p a r a t e s tudy .)

N e x t , we c o m p a r e t h e c o m p u t a t i o n a l effor t r e q u i r e d t o c o m p u t e s (x , c) u s i n g t h e d i r ec t

m e t h o d (6) a n d t h e C o n t o u r - P a d ~ a l g o r i t h m . To o b t a i n t h e s a m e level of a c c u r a c y (a r o u n d

12 d ig i t s) w i t h t h e d i r ec t m e t h o d as t h e p r e s e n t a l g o r i t h m p r o v i d e s r e q u i r e s t h e use of h igh-

p rec i s ion a r i t h m e t i c . T a b l e 4 s u m m a r i z e s t h e t i m e r e q u i r e d for c o m p u t i n g t h e i n t e r p o l a n t v i a t h e

d i r ec t m e t h o d u s i n g 1VIATLAB's v a r i a b l e - p r e c i s i o n a r i t h m e t i c (V P A) package . N o t e t h a t in t h i s

a p p r o a c h , c h a n g i n g c wil l n e c e s s i t a t e a n e n t i r e l y n e w ca l cu l a t i on . Al l c o m p u t a t i o n s were d o n e

o n a 500 M H z P e n t i u m I I I p rocessor .

Stable Computation of Multiquadric Interpolants 861

Table 4.

Time for Time for evaluating
finding Aj s(_x, e) at each x

Digits
needed

10 -2 42

10 -4 74

10 -6 106

10 - s 138

172.5 sec.

336.3 sec.

574.6 sec.

877.1 sec.

1.92 sec.

2.09 sec.

2.31 sec.

2.47 sec.

Table 5.

Portion of the Algorithm Time

Finding the expansion coefficients

around the • circle and the poles

for the Pad6 rational form

Evaluating s(_x,e) at a new x value

Evaluating s(x_, 6) at a new e value

0.397 sec.

0.0412 sec.

0.0022 sec.

With the Contour-Pad~ algorithm, the problem can be done entirely in standard 64-bit floating
point. A summary of the time required to compute the various portions of the algorithm using
MATLAB's standard floating point is shown in Table 5. Note that these times hold true regardless
of the value of e.

6. S O M E A D D I T I O N A L E X A M P L E S A N D C O M M E N T S

Looking back at the description of the Contour-Padd algorithm, we see that it only relied on
computing s(x, z) around a contour and was in no way specific to the MQ RBF. In the first part
of this section, we present some additional results of the algorithm and make some comments not
only for the MQ RBF, but also for the IQ and GA RBFs.

We consider RBF approximations of (3) sampled at the 62 data points _xj shown in Figure 6. To
get a better idea of how the error behaves over the whole region (i.e., the unit disk), we compute
the root-mean-square (RMS) error of the approximations over a dense set of points covering the
region. In all cases, we use the Contour-Pad6 algorithm with M -- 512 points around the contour.

Figure 7a shows the structure in the complex e-plane for s(x, e) based on the MQ RBF (we
recall that the pole locations are entirely independent of x). Unlike the example from Section 2,
which resulted in six poles for s(x, z), we see from the figure that the present example only results
in two poles within the contour (indicated by the dashed line). Figure 8a compares the resulting

1

0.5

-0.5

-1

®
®

® ®

,)
® ®

,)
®

®

® O ®
® ® ®

® ® ®

® ® ® ®
1

® ® ® ® ~ i
®

® ® ®® ® -I
® ®

® ®

® ® ® ® E
®

® ® ® ®
® ® ®

® ®
® ® ® ®

-0'5. ~ ' ® ® 0 015
x 1

Figure 6. Distribution of 62 data points for use in the example from Section 6.

862 B. FOP~BERG AND G. WRIGHT

0.5

v _E o

-0.5

-0.5

/
/

I
I
I
\

\

0.5

.--0.5

--0.5

d "

M

M
w~

0
Re(e)

(a)

M

%

\

X
I

I
I

I
/

/

MQ
0.5

/
/

I
I

\
\

M
R2(~)

\
\

X
|
I

I
/

/
J

I

IQ
i

0.5

(b)

0.5

-0.5

-1

f
/ •

/

I
I
I

X

\
%

i i i i

-1 -0.5 Re'e)_ 0.5

(~)

%
\

\

X
I
I

I
I

/
]

GA
1

Figure 7. The structures of s(x_,e) in complex e-plane for the 62 da ta points shown
in Figure 6 in the case of (a) MQ RBF, (b) IQ RBF, and (c) GA RBF (note the
different scale). The approximate region of ill-conditioning is marked with a line
pat tern, the poles are marked with solid circles, and singularities due to the basis
functions themselves (i.e., branch points for the MQ RBF and poles for the IQ RBF)
are marked with x 's. The dashed lines indicate the contours tha t were used for
computing s(x_, e) for each of the three cases.

Stable Computation of Multiquadric Interpolants 863

lO ~

l o - '

uJ
¢/]

n" 10_1 o

10-~2
0

.. l o - '

ILl
(/)

n" 10_1 o

10 -12

0

lO ~

UJ

n" 10_10

10 -12
0

/
/

/
/

I I I I

0.05 0.1 0.15 0.2

(a) MQ RBF.

/
/

/

I I I

0.05 0.1 0.15

J

I I I I

0.25 0.3 0,35 0.4
E

/

I I I I I

0.2 0.25 0.3 0.35 0.4
E

(b) IQ RBF.

/

! I I I I I I

0.1 0.2 0.3 0.4 0.5 0.6 0.7
E

(c) GA RBF.

Figure 8. The RMS error in the (a) MQ, (b) IQ, and (c) CA RBF approximations
s(x, e) of (3). The solid line shows the error when s(x, 6) is computed using (6) and
the dashed line shows the error when s(x_, z) is computed using the Contour-Pad~
algorithm. Note the different scale for the GA RBF results.

RMS error as a function of e when the MQ R B F approximat ion is computed direct ly via (6)

and computed using the Contour-Pad6 algori thm. The figure shows t ha t the direct computa t ion

becomes uns table when e falls below approx imate ly 0.28. Most a lgor i thms for selecting the

opt imal value of z (based on RMS errors) would thus be l imited from below by this value.

However, the Contour-Pad~ algor i thm allows us to compute the approx imat ion accura te ly for
every value of z. As the figure shows, the t rue op t imal value of z is approx imate ly 0.119. The

864 B. FORNBERO AND G. WRIGHT

RMS error in the approximation at this value is approximately 2 .5 .10 -12, whereas the RMS
error in the approximation at a -- 0.28 is approximately 6.0 • 1 0 - 9 .

Figure 7b shows the structure in the complex a-plane for s(x, e) based on the IQ RBF. We notice
a couple of general differences between the structures based on the IQ RBF and MQ RBF. First,
the IQ RBF leads to a slightly better conditioned linear system to solve. Thus, the approximate
area of ill-conditioning is smaller. Second, the IQ basis function contains a pole, rather than
a branch point, when e = ± i / r . Thus, for evaluation on the unit disk, there will be trivial
poles (of unknown strengths) on the imaginary e-axis that can never get closer to the origin than
q-i~2. For our 62 point distribution and for an evaluation point x that does not correspond to
any of the data points, there could be up to 2 • 62 = 124 trivial poles on the imaginary axis.
If we combine these with the nontrivial poles that arise from singularities in the A(e) matrix,
this will be too many for the Contour-Pad~ algorithm to "pick up". So, as in the MQ case, the
choice of our contour is limited by 1/D, where D is the maximum distance between the points
(e.g., 1 / D = 1/2 for evaluation on the unit disk). One common feature we have observed in the
structures of s(x_, e) for the IQ and MQ cases is that the location of the poles due to singularities
of the A(e) matrix are usually in similar locations (cf. the solid circles in Figures 7a and 7b).

Figure 8b compares the resulting RMS error as a function of e when the IQ RBF approximation
is computed directly via (6) and computed using the Contour-Pad~ algorithm. Again, we see that
the direct computation becomes unstable when e falls below approximately 0.21. This is well
above the optimal value of approximately 0.122. Using the Contour-Pad6 algorithm, we find that
the RMS error in the approximation at this value of e is approximately 2.5 • 10 -12, whereas the
RMS error at e = 0.21 is approximately 2.5 • 10 -9.

Figure 7c shows the structure in the complex e-plane for s(x, e) based on the GA RBF. It differs
significantly from the structures based on the IQ and MQ RBFs. The first major difference is
that the GA I%BF possesses no singularities in the finite complex e-plane (it has an essential
singular point at e = oc). Thus, the contour we choose is not limited by the maximum distance
between the points. However, the GA RBF grows as e moves farther away from the real axis.
Thus, the contour we choose for evaluating s(_x, e) is limited by the ill-conditioning that arises for
large imaginary values of e. This limiting factor has significantly less impact than the "maximum
distance" limiting factor for the MQ and IQ RBFs, and makes the Contour-Pad~ algorithm based
on GA RBF able to handle larger data sets (for example, it can easily handle approximations based
on 100 data points in the unit disk when the computations are done in standard 64-bit floating
point). Indeed, Figure 7c shows that the contour we used for the GA RBF approximation is
much farther away from the ill-conditioned region around e = 0, than the corresponding contours
for the MQ and IQ approximations. The second difference for the GA RBF is that it leads to a
linear system that approaches ill-conditioning faster as e approaches zero [3]. The final difference
we note (from also looking at additional examples) is that the pole structure of s(x, e) based on
the GA RBF often differs quite significantly from those based on the MQ and IQ RBFs.

Figure 8c compares the resulting RMS error as a function of e when the GA RBF approximation
is computed directly via (6) and computed using the Contour-Pad6 algorithm. The figure shows
that instability in the direct method arises when e falls below 0.48. Again, this is well above the
optimal value of e = 0.253. The Contour-Pad~ algorithm produces an RMS error of approximately
1.4.10 -1° at this value, whereas the RMS error at e = 0.48 is approximately 2.0.10 -s .

We next explore a case where the limit of s(x, e) as e --~ 0 fails to exist. As was reported in [10],
the 5 × 5 equispaced Cartesian grid over [0, 1] x [0, 1] leads to divergence in s(x,a) of the type
O(e-2). To see how the Contour-Pad~ algorithm handles this situation, we consider the 5 x 5
grid as our data points xj and compute the MQ RBF approximation to (3) (although the choice
of data values is irrelevant to the issue of convergence or divergence; as we know from (6), this
depends only on the properties of the matrix C(e) = B (e) . A (e) - I) . Figure 9 shows a l o g - l o g
plot of RMS error where the MQ RBF approximation has been evaluated on a much denser grid
over [0, 1] x [0, 1]. In agreement with the high-precision calculations reported in [10], we again see

Stable Computation of Multiquadric Interpolants 865

10 0

10-1o

. i i i i i

10 ~ 1 ~ 10-' 1 ~ 1 ~ 10-' s

Figure 9. The RMS error in the MQ RBF approximation s(x_, e) of (3) for the case
of a 5 × 5 equispaced Cartesian grid over [0, 1] × [0, 1].

a slow growth towards infinity for the interpolant. The reason is that this time there is a double
pole right at the origin of the ~-plane (i.e., ~ -- 0 is not, i n this case, a removable singularity).
The Contour-Pad~ algorithm automatically handles this situation correctly, as Figure 9 shows.

To get a better understanding of how the interpolant behaves for this example, we use the
algorithm to compute all functions dk (x) in the small ~-expansion

s(x, s) = d_2(x_.)¢ -2 + d0(x) + d2(x)e 2 + d4(x)¢ 4 + (13)

Figure 10 displays the first six dk (x)-functions over the unit square. Note the small vertical scale
on the figure for the d_2(x__) function. This is consistent with the fact that divergence occurs
only for small values of ~ (cf. Figure 9). Each surface in Figure 10 shows markers (solid circles)
at the 25 data points. Function d0(x) exactly matches the input function values at those points
(and the other functions are exactly zero there). It also gives very accurate approximation to the
actual function; the RMS error is 1.27.10 -s.

We omit the results for the IQ and GA RBF interpolants for this example, but note that the
IQ also leads to divergence in s(x,¢) of the type O(~ -2) (as reported in [10]), whereas the GA
RBF actually leads to convergence.

We conclude this section with some additional comments about other techniques we tried
related to computing the interpolant for small values of E.

It is often useful (and sometimes necessary) to augment the RBF interpolant (1) with low-order
polynomial terms (see, for example, [14]). The addition of these polynomial terms gives the RBF
interpolation matrix (a slightly modified version of the A(E) matrix found in (4)) certain desirable
properties, e.g., (conditional) positive or negative definiteness [11]. The Contour-Padd algorithm
can--without any change be used to compute the RBF interpolant also with the inclusion of
these polynomial terms. We have found, however, that the behavior of the interpolant is not
significantly affected by such variations. For example, we found that the pole structure of s(x, ~)
is not noticeably affected, and there is no significant gain in accuracy at the "optimal" ~ value
(however, for larger values of ~, there can be some gains).

Since the RBF interpolant can usually be described for small values of s by (13) but without
the E -2 term, one might consider using Richardson/Romberg extrapolation at larger values of
to obtain the interpolant for ~ = 0. However, this idea is not practical. Such extrapolation is only
effective if the first few expansion terms strongly dominate the later ones. This would only be
true if we are well inside the expansion's radius of convergence. As Figures 4 and 8 indicate, this
would typically require computations at ~ values that are too small for acceptable conditioning.

7. C O N C L U D I N G R E M A R K S

The shape parameter c in RBF interpolation plays a significant role in the accuracy of the
interpolant. The highest accuracy is often found for values of ¢ that make the direct method of

866 B. FORNBERG AND G. WRIGHT

d-2 d_ 0
x 10 -11

• - ; .

• . . • , :

• . • . . • - - . . . , • • . , . ,

• • . , , 5
. . . - ! ' ' 0 . 8 9 : : ".

i 0.87

: 0.ssJ, i
1 ' 1 ~

x 2 . '..i x2 -. '"'.. i
0.5 " 1 1

0.5 x 1
0 0 0 o

_d2 d~
x 10 -e x 10 "6 !. !

4 ; ' '" 4 "" i "".,

1 .. !

: \ v "-'(
0.5 " ~ 0 . 5

1 1

0 . 5 X 1 X 1

0 0 0 0

d~ d~

x l o -~ x l o - '
• . . • ' " " " : ' , , , • " " " ' " i ' ,

• . , . " - . . , , . , ,

4 . - - ' 6 ",

0 . • -

-~ 1 ,. ,

x2 ~ " ~ V ~ "','~ ~ --'~ x2 0 5
0.5 " " "":

1 1
x 1

0 0 0 0

Figure 10. The first six terms from expansion (13) of s(_.x, e). The solid circles
represent the 5 x 5 equispaced Cartesian grid that served as the input data points
for the interpolant.

comput ing the interpolant suffer from severe ill-conditioning. In this paper, we have presented
an algori thm tha t allows stable computa t ion of R B F interpolants for all values of ~, including
the limiting case (if it exists) when the basis functions become perfect ly fiat. This algori thm has

Stable Computation of Multiquadric Interpolants 867

also been successfully used in [15] for computing RBF based solutions to elliptic PDEs for the
full range of e-values.

The key to the algorithm lies in removing the restriction that ¢ be a real parameter. By
allowing 6 to be complex, we not only obtain a numerically stable algorithm, but we also gain a
wealth of understanding about the interpolant, and we can use powerful tools to analyze it, such
as Cauchy integral formula, contour integration, Lanrent series, and Pad~ approximations.

R E F E R E N C E S
1. R. Franke, Scattered data interpolation: Tests of some methods, Math. Comput. 38, 181-200, (1982).
2. W.R. Madych, Miscellaneous error bounds for multiquadric and related interpolants, Computers Math. Ap-

plic. 24 (12), 121-138, (1992).
3. R. Schaback, Error estimates and condition numbers for radial basis function interpoiants, Adv. Comput.

Math. 3, 251-264, (1995).
4. R.E. Carlson and T.A. Foley, The parameter R 2 in multiquadric interpolation, Computers Math. Applic. 21

(9), 29-42, (1991).
5. T.A. Foley, Near optimal parameter selection for multiquadric interpolation, J. Appl. Sci. Comput. 1, 54-69,

(1994).
6. S. Rippa, An algorithm for selecting a good value for the parameter e in radial basis function interpolation,

Adv. Comput. Math. 11, 193-210, (1999).
7. M.D. Buhmann and N. Dyn, Spectral convergence of multiquadric interpolation, In Proceedings of the Edin-

burgh Mathematical Society, Volume 36, pp. 319--333, Edinburgh, (1993).
8. J. Yoon, Spectral approximation orders of radial basis function interpolation on the Sobolev space, SIAM J.

Math. Anal. 33 (4), 946-958, (2001).
9. B.J.C. Baxter, The asymptotic cardinal function of the multiquadric ~(r) = (r2+c2) 1/2 as c ---* or, Computers

Math. Applic. 24 (12), 1-6, (1992).
10. T.A. DriscoU and B. Fornberg, Interpolation in the limit of increasingly fiat radial basis functions, Computers

Math. Applie. 43 (3-5), 413--422, (2002).
11. C.A. Micchelli, Interpolation of scattered data: Distance matrices and conditionally positive definite func-

tions, Constr. Approx. 2, 11-22, (1986).
12. B. Fornberg, G. Wright and E. Lareson, Some observations regarding interpolants in the limit of fiat radial

basis functions, Computers Math. Applic. 4Y (1), 3?-55, (2004).
13. C.M. Bender and S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill,

(1978).
14. I.R.H. Jackson, Radial basis functions: A survey and new results, University of Cambridge, Report

No. DAMTP, NA16, (1988).
15. E. Larsson and B. Fornberg, A numerical study of some radial basis function based solution methods for

elliptic PDEs, Computers Math. Applie. 46 (5/6), 891-902, (2003).

