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A b s t r a c t - - S p e c t r a l l y  accurate interpolation and approximation of derivatives used to be practical 
only on highly regular grids in very simple geometries. Since radial basis function (RBF) approxima- 
tions permit this even for multivariate scattered data, there has been much recent interest in practical 
algorithms to compute these approximations effectively. 

Several types of RBFs feature a free parameter (e.g., c in the multiquadric (MQ) case ¢(r) = 
~ ) .  The limit of c ~ ~ (increasingly flat basis functions) has not received much attention 
because it leads to a severely ill-conditioned problem. We present here an algorithm which avoids 
this difficulty, and which allows numerically stable computations of MQ RBF interpolants for all 
parameter values. We then find that  the accuracy of the resulting approximations, in some cases, 
becomes orders of magnitude higher than was the case within the previously available parameter 
range. 

Our new method provides the first tool for the numerical exploration of MQ RBF interpolants in 
the limit of c --* c~. The method is in no way specific to MQ basis functions and can--without  any 
change---be applied to many other cases as well. (~) 2004 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - R a d i a l  basis functions, RBF, Multiquadrics, Ill-conditioning. 

1. I N T R O D U C T I O N  

Linear combinations of radial basis functions (RBFs) can provide very good interpolants for 
multivariate data. Multiquadric (MQ) basis functions, generated by ¢(r) = ~ (or in the 
notation used in this paper, ¢(r) = V/1 + (er) 2 with E = l/c), have proven to be particularly suc- 
cessful [1]. However, there have been three main difficulties with this approach: severe numerical 
ill-conditioning for a fixed N (the number of data points) and small E, similar ill-conditioning 
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problems for a fixed E and large N, and high computational cost. This study shows how the first 
of these three problems can be resolved. 

Large values of parameter E are well known to produce very inaccurate results (approaching lin- 
ear interpolation in the case of l-D). Decreasing e usually improves the accuracy significantly [2]. 
However, the direct way of computing the RBF interpolant suffers from severe ill-conditioning 
as E is decreased [3]. Several numerical methods have been developed for selecting the "optimal" 
value of e (e.g., [4-6]). However, because of the ill-conditioning problem, they have all been lim- 
ited in the range of values that could be considered, having to resort to high-precision arithmetic, 
for which the cost of computing the interpolant increases to infinity as e --* 0 (timing illustra- 
tions for this will be given later). In this study, we present the first algorithm which not only can 
compute the interpolant for the full range e > 0, but it does so entirely without a progressive 
cost increase as e -~ 0. 

In the highly special case of MQ RBF interpolation on an infinite equispaced Cartesian grid, 
Buhmann and Dyn [7] showed that the interpolants obtain spectral convergence for smooth 
functions as the grid spacing goes to zero (see, for example, [8] for the spectral convergence 
properties of MQ and other RBF interpolants for scattered finite data sets). Additionally, for an 
infinite equispaced grid, but with a fixed grid spacing, Baxter [9] showed the MQ RBF interpolant 
in the limit of ~ --+ 0 to cardinal data (equal to one at one data point and zero at all others) 
exists and goes to the multidimensional sinc function--just as the case would be for a Fourier 
spectral method. Limiting (6 --+ 0) interpolants on scattered finite data sets were studied by 
Driscoll and Fornberg [10]. They noted that, although the limit usually exists, it can fail to do so 
in exceptional cases. The present numerical algorithm handles both of these situations. It also 
applies--without any change--t0 many other types of basis functions. The cases we will give 
computational examples for are listed in Table 1. Note that for all these cases, the limits of flat 
basis functions correspond to e --* 0. 

Table 1. 

Name of RBF Abbreviation Definition 
Multiquadrics 

Inverse Quadratics 

Gaussians 

MQ 

IQ 

CA 

¢(,) = 

1 ¢(r) = - -  
1 + (er) 2 

¢(~) = _ ( ~ ) 2  

The main idea of the present method is to consider the l tBF interpolant at a fixed x 

N 

= Z (11-=- (1) 
j = l  

(where II" II is the two-norm) not only for real values of e, but as an analytic function of a complex 
variable E. Although not explicitly marked, Aj and ¢ are now functions of e. In the sections that 
follow, we demonstrate that in a relatively large area around e = 0, s(x, e) will at worst have 
some isolated poles. It can, therefore, be written as 

s(x, e) = (rational function in e) + (power series in e). ( 2 )  

The present algorithm numerically determines (in a stable way) the coefficients to the rational 
function and the power series. This allows us to use (2) for computing the RBF interpolant 
effectively numerically right down to e = 0. The importance of this entirely new capability is 
expected to be as a tool to investigate properties of RBF approximations and not, at the present 
time, to interpolate any large experimental data sets. 

Although not pursued here, there are a number of important and unresolved issues relating 
to the limit of the RBF interpolant as ~ --+ 0, for which the present algorithm will now allow 
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numerical explorations. For example,  it was shown by Driscoll and Fornberg [10] tha t  the limiting 
interpolant  in 1-D is s imply the Lagrange interpolating polynomial.  This,  of course, forms the 
foundation for finite-difference and pseudospectral  methods.  The  equivalent limit (E ~ 0) can 
now be studied for scat tered da ta  in higher dimensions. This is a s i tuat ion where, in general, 
there does not  exist any unique lowest-degree interpolating polynomial  and, consequently, spectral  
limits have not  received much attention. 

The  rest of this paper  is organized as follows. Section 2 introduces a test  example which we 
will use to describe the new method.  In Section 3, we illustrate the s t ructure  of s(x,¢)  in the 
complex s-plane (the distribution of poles etc.). Section 4 describes the steps in the numerical 
method,  which then are applied to our test  problem in Section 5. Section 6 contains additional 
numerical examples and comments.  We vary the number  of da ta  points and also give numerical 
results for some other choices of RBFs. One of the examples we present there features a si tuation 
where E --* 0 leads to divergence. We finish by giving a few concluding remarks  in Section 7. 

2. F I R S T  T E S T  P R O B L E M  

Figure i shows 41 da ta  points xj  randomly scattered over the unit  disk (in the x--plane where x_ 
is a two-vector with components  Xl,X2). We let our da ta  at  these points be defined by the 
function 

59 
f ( x )  ~-- f (X l ,  X2) :- 67' "Jr- (Xl "~ 1/7) 2 "1- (X2 -- 1/11) 2. (3) 
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Figure 1. Distribution of 41 data points for use in the first test problem. 

The  task  is to compute  the MQ RBF interpolant  (i.e., (1) with ¢(r)  = ~/1 + (sr)  2) at some 
location x inside the unit disk. We denote the da ta  by yj = f ( x j ) ,  j = 1, 2 , . . . ,  41. The  immediate  
way to perform the RBF interpolation would be to first obtain the expansion coefficients Aj by 
solving 

[A(s)]  = , (4) 

where the elements of A(s) are aj,k = ¢(llxj - X_kll). The  RBF interpolant,  evaluated at x, is 
then  wri t ten as 

41 

= ( ] Ix -  x ll), (5) 
j= l  

or equivalently 
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Figure 2. The error (in magnitude) as a function of ¢ in the interpolant s(x, ¢) of (3) 
when s(z_, e) is computed directly using (6). We have chosen x = (0.3, -0.2). 

s(x_,s) = [B(¢)] [A(¢)] -1 , (6) 

Yl  

where the elements of B(e) are bj = ¢ ( l l x -  _xjl[). 
Figure 2 shows the magnitude of the error s(x,¢) - f (x) ,  where x = (0.3,-0.2) as a function 

of e when computed directly via (4) and (5). This computation clearly loses its accuracy (in 
64-bit floating point precision) when s falls below approximately 0.2. The drop in error as z 
approaches 0.2 (from above) suggests that  computations for lower values of ¢ could be very 
accurate if the numerical instability could be overcome. The reason the onset of ill-conditioning 
occurs so far from s = 0 is that the matrix A(s) approaches singularity very rapidly as ¢ decreases. 
Using Rouchd's theorem, we can find that in this test case det(A(e)) = a .  e 416 + O(e 418) (where 
the coefficient a is nonzero). Regardless of this rapid approach to singularity, we usually find that 
s(x, E) exists and is bounded as e -+ 0. This means an extreme amount of numerical cancellation 
occurs for small s when evaluating s(x, 6). 

In the notation of (6), our task is to then determine the row vector 

[C(¢)] = [B(e)] [A(E)]-1, (7) 

for all s > 0. To do this, we need an algorithm which bypasses the extremely ill-conditioned direct 
formation of A(e) -1 and computation of the product B(s)-  A(z) -1 for any values of E less than 
approximately 0.3. The algorithm we present in Section 4 does this by directly computing C(E) 
around some circle in the complex G-plane where A(s) is well conditioned. This will allow us to 
determine the coefficients in (2), and therefore, determine s(x__, s) for small e-values. 

Note that  in practice, we often want to evaluate the interpolant at several points. This is most 
easily done by letting B(¢) (and thus, C(¢)) in (7) contain several rows---one for each of the 
points. 

3. T E S T  P R O B L E M  V I E W E D  I N  A C O M P L E X  e - P L A N E  

Figure 3 shows the log10 of the condition number of A(s) when s is no longer confined to the 
real axis. We see that  the ill-conditioning is equally severe in all directions as s approaches zero 
in the complex plane. Furthermore, we note a number of sharp spikes. These correspond to 
complex s-values for which A(e) is singular (apart from s = 0, none of these can occur on the 
real axis according to the nonsingularity result by Micchelli [11]). 

As stated in the Introduction, in a large area around ¢ = 0, s(x, 6) is a meromorphic function 
of s. This can be shown by first noting that (7) can be rewritten as 

1 
C(s) = det(A(s)) [B(¢)] [adj(A(z))],  
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Figure 3. Logarithm (base 10) of the condition number for A(e) as a function of the 
complex variable z. The domain of the plat is a square with sides of length 2- 0.75 
centered at the origin and the  range of the plot varies from 0 to 102°. Note near 
e = 0 the  log10 of the  condition number of A(s) goes to infinity. However, due to 
numerical rounding, no values greater than  102° were recorded. 

where adj(A(z)) is the adjoint matrix of A(E). Now, letting Fj,k(z) be the cofactors of A(z), 
we have that Fj,k(Z) = F~,j(z) for j, k = 1 , . . . ,  N since A(z) is symmetric. Thus, expanding 
det(A(E)) also in cofactors, gives the following result for the jth entry of C(E) 

N 
Y:, ¢ (11 -  ll)rk,j(z) 

C j ( 8 )  = k=l  (8) 
E (ll- J 

k=l  

The numerator and denominator of (8) are analytic everywhere apart from the trivial branch 
point singularities of ¢(r) on the imaginary axis. Thus, at every point apart from these trivial 
singularities, the numerator and denominator have a convergent Taylor expansion in some region. 
None of the trivial singularities can occur at e -- 0 since this would require r -- co. Hence, there 
can only be a pole at E = 0 if the leading power of z in the denominator is greater than  the 
leading power in the numerator. Remarkably, the leading powers are usually equal, making z -- 0 
a removable singularity (in Section 6, we explore an example where this is not the case; a more 
extensive study on this phenomenon can be found in [12]). Apart from z = 0 and the trivial 
singularities, the only singularity that can arise in Cj(z) is when A(z) is singular. Due to the 
analytic character of the numerator and denominator, this type of singularity can only be a pole 
(thus, justifying the analytic form stated (2)). 

The structure of s(_x, 6) in the complex z-plane is shown in Figure 4. The lined area marks where 
the ill-conditioning is too severe for direct computation of s(x_, e) in 64-bit floating-point. The 
solid circles mark simple poles and the ×'s mark the trivial branch point singularities. The dashed 
line in Figure 4 indicates a possible contour (a circle) we can use in our method. Everywhere 
along such a circle, s(x, z) can be evaluated directly with no particular ill-conditioning problems. 
Had there been no poles inside the circle, plain averaging of the s(x_, e)-values around the circle 
would have given us s(x_, 0). 

It should be pointed out that if we increase the number of data points N too much (e.g., 
N > 100 in this example) the in-conditioning region in Figure 4 will grow so that it contains 
some of the branch point singularities (starting at z = 0.5i), forcing us to choose a circle that 
falls within this ill-conditioned region. However, we can still find s(_x, z) everywhere inside our 
circle for no worse conditioning than at z just below 0.5. 
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Figure 4. S t ruc ture  of s(_x, e) in the  complex e-plane. T h e  approx imate  area wi th  
ill-conditioning is marked  with a line pat tern;  poles are marked  wi th  solid circles and  
branch points  with x 's. 

To complete the description of our algorithm, we next discuss how to 

• detect and compensate for the poles located inside our circle (if any), and 
• compute s(x., E) at any e-point inside the circle (and not just at its center) 

based only on e-values around the circle. 

4.  N U M E R I C A L  M E T H O D  

We first evaluate s(x_, ¢) at equidistant locations around the circle of radius p that was shown in 
Figure 4, and then take the (inverse) fast Fourier transform (FFT) of these values. This produces 
the vector shown in Table 2 (here ordered as is conventional for the output of an FFT routine). 
From this (with E = p e i e ) ,  we have essentially obtained the Laurent expansion coefficients for 
s(_x, E). We can, thus, write 

s ( ~ , E )  . . . .  + d _ 3 E - a + d _ 2 E - 2 + d _ l E - l + d o + d l E l + d 2 E 2 + d 3 E 3 +  . . .  • (9) 

This expansion is convergent within some strip around the periphery of the circle. If there are no 
poles inside the circle all the coefficients in (9) with negative indices vanish, giving us the Taylor 
part of the expansion 

s(x, E) = do + dzE 1 + d2E 2 + d3~ 3 + " "  • (10) 

We can then use this to evaluate s(x, ~) numerically for any value of e inside the circle. 
The presence of any negative powers in (9) indicates that s(x_, ~) has poles inside the circle. To 

account for the poles so that we can evaluate s(x, E) for any value of ~ inside the circle, we recast 
the terms with negative indices into Pad~ rational form. This is accomplished by first using the 
FFT data to form 

q(~/) = d_ i f /+  d_2v/2 + d_3vl 3 -4-... • (11) 

Next, we expand q(7/) in Pad6 rational form (see, for example, [13]), and then set 

Table 2. 

I do ]. 11.2d2 ].3 3 I I L I .  -3 -3 I .  -2d-2 I .  
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Since s(x, s) can only possess a finite number of poles inside the circle, the function r (s) together 
with (10) will entirely describe s(x__, ~) in the form previously stated in (2) 

s(_x, E) = (r(E)} + {do + dl6 + d2E 2 + . . . } .  

This expression can be numerically evaluated to give us s(x, 6) for any value of s inside the circle. 
An automated computer code needs to monitor several consequences of the fact that we are 

working with finite and not infinite expansions. These are as follows. 

• s(x__, 6) must be sampled densely enough so that the coefficients for the high negative and 
positive powers of 6 returned from the FFT are small. 

• When turning (11) into Pad4 rational form, we must choose the degrees of the numerator 
and denominator (which can be chosen to be equal) so that they match or exceed the total 
number of poles within our circle. (Converting the Pad~ expansion back to Laurent form 
and comparing coefficients offers an easy and accurate test that the degrees were chosen 
sufficiently high.) 

• The circular path must be chosen so that it is inside the closest branch point on the 
imaginary axis (equal to i / D  where D is the maximum distance between points), but still 
outside the area where direct evaluation of s(x, e) via (6) is ill-conditioned. 

• The circular path must not run very close to any of the poles. 

The computations required of the method may appear to be specific to each evaluation point x_ 
that is used. However, it is possible to recycle some of the computational work needed for 
evaluating s(x, s) at one x_ into evaluating s(x__, z) at new values of _x. For example, from (8), we 
know that the nontrivial pole locations of s(x, 6) are entirely determined by the data points xj. 
Thus, once r(z) has been determined for a given x, we can reuse its denominator for evaluating 
s(x., s) at other values of x. This allows the interpolant to be evaluated much more cheaply at 
new values of x. 

It could conceivably happen that a zero in the denominator of (8) gets canceled by a simulta- 
neous zero in the numerator for one evaluation point but not another. We have, however, only 
observed this phenomenon in very rare situations (apart from the trivial case when the evaluation 
point coalesces with one of the data points). Nevertheless, an automated code needs to handle 
this situation appropriately. 

5.  N U M E R I C A L  M E T H O D  A P P L I E D  T O  T H E  T E S T  P R O B L E M  

We choose for example M = 128 points around a circle of radius p = 0.42 (as shown in 
Figure 4). This requires just M / 4  + 1 = 33 evaluations of s(x, E) due to the symmetry between 
the four quadrants. We again take x__ = (0.3,-0.2). Following the inverse F F T  (and after "scaling 
away" p), we cast the terms with negative indices to Pad6 rational form to obtain 

-3 .3297.10 - l l  - 5.9685 • 10-1°62 - 1.8415.10-964 ÷ 0.66 
r(s) -- 1.0541.10 -3 ÷ 2.4440.10-2~ 2 ÷ 2.2506.10-1E 4 ÷ E 8 (12) 

(The highest degree term in the numerator is zero because expansion (11) contains no constant 
term.) Combining (12) with the Taylor series approximation, we compute, for example, s(x__, E) 
at ~--  0.1 

s(x, 0.1) ~ {r(0.1)} + d2k(O.1) 2k ~ 0.87692244095761. 

Note that the only terms present in the Taylor and Pad~ approximations are even, due to the 
four-fold symmetry of s(x, e) in the complex 6-plane. 

Table 3 compares the error in s(x, 6) when computed in standard 64-bit floating point with the 
direct method (6) and when computed with the present algorithm. The comparisons were made 
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Table 3. Comparison of the error in s(x__, e) when computed using the direct method 
and the Contour-Padg algorithm. For these comparisons, we have chosen x = 
(0.3, - o . 2 ) .  

Magnitude of the error in s(x_, ~) when computed using the direct method 

e = 0 ~ = 0.01 e -- 0.05 e = 0.1 ~ = 0.12 6 = 0.25 

oo 3.9.10 -3  1.0- 10 -6 4.9 • 10 -1° 1.4- 10 -9  4.6 • 10 -11 

Magnitude of the error in s(x__, e) 
when computed using the Contour-Pad4 algorithm 

M 
~ - + 1  ~ = 0  ¢ = 0.01 ~ = 0.05 ¢ = 0 . 1  e =0 .12  e = 0.25 

33 .. .  1.1 • 10 -13 1.0.10 -13 8.4 .10 -14 7.1 • 10 -14 1.1 • 10 -13 

65 . . .  1.3- 10 -13 1.4.10 -13 1.4.10 -13 1.4.10 -13 1.2.10 -13 

129 . . .  2.1 - 10 -13 2.0.10 -13 1.8.10 -13 1.6 • 10 -13 5.6 .10 -14 

Magnitude of the error s(x_, c) - f (x)  
when s(_x, e) is computed using the Contour-Pad4 algorithm 

M 
-~- + 1 c = 0 e = 0.01 e = 0.05 e = 0.1 ~ = 0.12 6 = 0.25 

33 5.3 • 10 -11 5.2.10 -11 2.5.10 -11 2.3.10 -12 2.5 .10 -13 5.5 .10 -9  

10 -s 

2 
I .  
LU 
- -  10_10 

10-12 
% 

! 
I I I I I I I I I 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 e 0.45 

Figure 5. The error (in magnitude) as a function of e in the interpolant s($_, e) of (3). 
The solid line shows the error when s(x, ~) is computed using (6) and the dashed 
line shows the error when s(x, ~) is computed using the Contour-Pad~ algorithm 
presented in Section 4. Again, we have chosen x = (0.3, -0.2) .  

w i t h  s (x ,  E) c o m p u t e d  v i a  (6) w i t h  h i g h - p r e c i s i o n  a r i t h m e t i c ,  u s i n g  60 d ig i t s  of  accuracy .  T h e  

l a s t  p a r t  of  t h e  t a b l e  c o m p a r e s  t h e  e r r o r  in  t h e  a p p r o x i m a t i o n  o f  (3),  w h e n  s (x ,  c) is c o m p u t e d  

u s i n g  t h e  p r e s e n t  a l g o r i t h m .  

F i g u r e  5 g r a p h i c a l l y  c o m p a r e s  t h e  r e s u l t s  of  t h e  C o n t o u r - P a d 4  a l g o r i t h m  u s i n g  M / 4 +  1 = 33 t o  

t h o s e  u s i n g  t h e  d i r e c t  m e t h o d  (6). Like  T a b l e  3, t h e  f igure  c l ea r ly  shows  t h a t  t h e  C o n t o u r - P a d 4  

a l g o r i t h m  al lows t h e  R B F  i n t e r p o l a n t  to  b e  c o m p u t e d  in  a s t a b l e  m a n n e r  for t h e  full  r a n g e  of  c. 

( T h e  i n c r e a s e d  e r r o r  in  t h e  r e s u l t s  of  t h e  C o n t o u r - P a d ~  a l g o r i t h m  as e falls b e l o w  0.12 is n o t  due  

to  a n y  loss in  c o m p u t a t i o n a l  a ccu racy ;  i t  is a g e n u i n e  f e a t u r e  of  t h e  R B F  i n t e r p o l a n t ,  a n d  wil l  

b e  d i s c u s s e d  in  a s e p a r a t e  s tudy . )  

N e x t ,  we c o m p a r e  t h e  c o m p u t a t i o n a l  effor t  r e q u i r e d  t o  c o m p u t e  s ( x , c )  u s i n g  t h e  d i r ec t  

m e t h o d  (6) a n d  t h e  C o n t o u r - P a d ~  a l g o r i t h m .  To o b t a i n  t h e  s a m e  level  of  a c c u r a c y  ( a r o u n d  

12 d ig i t s )  w i t h  t h e  d i r ec t  m e t h o d  as t h e  p r e s e n t  a l g o r i t h m  p r o v i d e s  r e q u i r e s  t h e  use  of  h igh-  

p rec i s ion  a r i t h m e t i c .  T a b l e  4 s u m m a r i z e s  t h e  t i m e  r e q u i r e d  for c o m p u t i n g  t h e  i n t e r p o l a n t  v i a  t h e  

d i r ec t  m e t h o d  u s i n g  1VIATLAB's v a r i a b l e - p r e c i s i o n  a r i t h m e t i c  ( V P A )  package .  N o t e  t h a t  in  t h i s  

a p p r o a c h ,  c h a n g i n g  c wil l  n e c e s s i t a t e  a n  e n t i r e l y  n e w  ca l cu l a t i on .  Al l  c o m p u t a t i o n s  were  d o n e  

o n  a 500 M H z  P e n t i u m  I I I  p rocessor .  
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Table 4. 

Time for Time for evaluating 
finding Aj s(_x, e) at each x 

Digits 
needed 

10 -2  42 

10 -4  74 

10 -6  106 

10 - s  138 

172.5 sec. 

336.3 sec. 

574.6 sec. 

877.1 sec. 

1.92 sec. 

2.09 sec. 

2.31 sec. 

2.47 sec. 

Table 5. 

Portion of the Algorithm Time 

Finding the expansion coefficients 

around the • circle and the poles 

for the Pad6 rational form 

Evaluating s(_x,e) at a new x value 

Evaluating s(x_, 6) at a new e value 

0.397 sec. 

0.0412 sec. 

0.0022 sec. 

With the Contour-Pad~ algorithm, the problem can be done entirely in standard 64-bit floating 
point. A summary of the time required to compute the various portions of the algorithm using 
MATLAB's standard floating point is shown in Table 5. Note that these times hold true regardless 
of the value of e. 

6. S O M E  A D D I T I O N A L  E X A M P L E S  A N D  C O M M E N T S  

Looking back at the description of the Contour-Padd algorithm, we see that it only relied on 
computing s(x, z) around a contour and was in no way specific to the MQ RBF. In the first part 
of this section, we present some additional results of the algorithm and make some comments not 
only for the MQ RBF, but also for the IQ and GA RBFs. 

We consider RBF approximations of (3) sampled at the 62 data points _xj shown in Figure 6. To 
get a better idea of how the error behaves over the whole region (i.e., the unit disk), we compute 
the root-mean-square (RMS) error of the approximations over a dense set of points covering the 
region. In all cases, we use the Contour-Pad6 algorithm with M -- 512 points around the contour. 

Figure 7a shows the structure in the complex e-plane for s(x, e) based on the MQ RBF (we 
recall that the pole locations are entirely independent of x). Unlike the example from Section 2, 
which resulted in six poles for s(x, z), we see from the figure that the present example only results 
in two poles within the contour (indicated by the dashed line). Figure 8a compares the resulting 
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Figure 6. Distribution of 62 data points for use in the example from Section 6. 
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Figure 7. The structures of s(x_,e) in complex e-plane for the  62 da ta  points shown 
in Figure 6 in the  case of (a) MQ RBF, (b) IQ RBF, and (c) GA RBF (note the 
different scale). The  approximate region of ill-conditioning is marked with a line 
pat tern,  the  poles are marked with solid circles, and singularities due to the  basis 
functions themselves (i.e., branch points for the  MQ RBF and poles for the  IQ RBF) 
are marked with x 's. The  dashed lines indicate the  contours tha t  were used for 
computing s(x_, e) for each of the  three cases. 
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Figure 8. The RMS error in the (a) MQ, (b) IQ, and (c) CA RBF approximations 
s(x, e) of (3). The solid line shows the error when s(x, 6) is computed using (6) and 
the dashed line shows the error when s(x_, z) is computed using the Contour-Pad~ 
algorithm. Note the different scale for the GA RBF results. 

RMS error as a function of e when the MQ R B F  approximat ion  is computed  direct ly  via  (6) 

and computed  using the  Contour-Pad6 algori thm. The  figure shows t ha t  the  direct  computa t ion  

becomes uns table  when e falls below approx imate ly  0.28. Most  a lgor i thms for selecting the 

opt imal  value of z (based on RMS errors) would thus be l imited from below by this value. 

However, the  Contour-Pad~ algor i thm allows us to  compute  the  approx imat ion  accura te ly  for 
every value of z. As the  figure shows, the  t rue op t imal  value of z is approx imate ly  0.119. The 
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RMS error in the approximation at this value is approximately 2 .5 .10  -12, whereas the RMS 
error in the approximation at a -- 0.28 is approximately 6.0 • 1 0  - 9 .  

Figure 7b shows the structure in the complex a-plane for s(x, e) based on the IQ RBF. We notice 
a couple of general differences between the structures based on the IQ RBF and MQ RBF. First, 
the IQ RBF leads to a slightly better conditioned linear system to solve. Thus, the approximate 
area of ill-conditioning is smaller. Second, the IQ basis function contains a pole, rather than 
a branch point, when e = ± i / r .  Thus, for evaluation on the unit disk, there will be trivial 
poles (of unknown strengths) on the imaginary e-axis that  can never get closer to the origin than 
q-i~2. For our 62 point distribution and for an evaluation point x that  does not correspond to 
any of the data points, there could be up to 2 • 62 = 124 trivial poles on the imaginary axis. 
If we combine these with the nontrivial poles that arise from singularities in the A(e) matrix, 
this will be too many for the Contour-Pad~ algorithm to "pick up". So, as in the MQ case, the 
choice of our contour is limited by 1/D,  where D is the maximum distance between the points 
(e.g., 1 / D  = 1/2 for evaluation on the unit disk). One common feature we have observed in the 
structures of s(x_, e) for the IQ and MQ cases is that the location of the poles due to singularities 
of the A(e) matrix are usually in similar locations (cf. the solid circles in Figures 7a and 7b). 

Figure 8b compares the resulting RMS error as a function of e when the IQ RBF approximation 
is computed directly via (6) and computed using the Contour-Pad~ algorithm. Again, we see that 
the direct computation becomes unstable when e falls below approximately 0.21. This is well 
above the optimal value of approximately 0.122. Using the Contour-Pad6 algorithm, we find that 
the RMS error in the approximation at this value of e is approximately 2.5 • 10 -12, whereas the 
RMS error at e = 0.21 is approximately 2.5 • 10 -9. 

Figure 7c shows the structure in the complex e-plane for s(x, e) based on the GA RBF. It differs 
significantly from the structures based on the IQ and MQ RBFs. The first major difference is 
that the GA I%BF possesses no singularities in the finite complex e-plane (it has an essential 
singular point at e = oc). Thus, the contour we choose is not limited by the maximum distance 
between the points. However, the GA RBF grows as e moves farther away from the real axis. 
Thus, the contour we choose for evaluating s(_x, e) is limited by the ill-conditioning that arises for 
large imaginary values of e. This limiting factor has significantly less impact than the "maximum 
distance" limiting factor for the MQ and IQ RBFs, and makes the Contour-Pad~ algorithm based 
on GA RBF able to handle larger data sets (for example, it can easily handle approximations based 
on 100 data points in the unit disk when the computations are done in standard 64-bit floating 
point). Indeed, Figure 7c shows that the contour we used for the GA RBF approximation is 
much farther away from the ill-conditioned region around e = 0, than the corresponding contours 
for the MQ and IQ approximations. The second difference for the GA RBF is that it leads to a 
linear system that  approaches ill-conditioning faster as e approaches zero [3]. The final difference 
we note (from also looking at additional examples) is that the pole structure of s(x, e) based on 
the GA RBF often differs quite significantly from those based on the MQ and IQ RBFs. 

Figure 8c compares the resulting RMS error as a function of e when the GA RBF approximation 
is computed directly via (6) and computed using the Contour-Pad6 algorithm. The figure shows 
that instability in the direct method arises when e falls below 0.48. Again, this is well above the 
optimal value of e = 0.253. The Contour-Pad~ algorithm produces an RMS error of approximately 
1.4.10 -1° at this value, whereas the RMS error at e = 0.48 is approximately 2.0.10 -s .  

We next explore a case where the limit of s(x, e) as e --~ 0 fails to exist. As was reported in [10], 
the 5 × 5 equispaced Cartesian grid over [0, 1] x [0, 1] leads to divergence in s(x,a) of the type 
O(e-2). To see how the Contour-Pad~ algorithm handles this situation, we consider the 5 x 5 
grid as our data points xj  and compute the MQ RBF approximation to (3) (although the choice 
of data values is irrelevant to the issue of convergence or divergence; as we know from (6), this 
depends only on the properties of the matrix C(e) = B ( e ) .  A ( e ) - I ) .  Figure 9 shows a l o g - l o g  
plot of RMS error where the MQ RBF approximation has been evaluated on a much denser grid 
over [0, 1] x [0, 1]. In agreement with the high-precision calculations reported in [10], we again see 
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Figure 9. The RMS error in the MQ RBF approximation s(x_, e) of (3) for the case 
of a 5 × 5 equispaced Cartesian grid over [0, 1] × [0, 1]. 

a slow growth towards infinity for the interpolant. The reason is that this time there is a double 
pole right at the origin of the ~-plane (i.e., ~ -- 0 is not, i n  this case, a removable singularity). 
The Contour-Pad~ algorithm automatically handles this situation correctly, as Figure 9 shows. 

To get a better understanding of how the interpolant behaves for this example, we use the 
algorithm to compute all functions dk (x) in the small ~-expansion 

s(x, s) = d_2(x_.)¢ -2 + d0(x) + d2(x)e 2 + d4(x)¢ 4 + . . . .  (13) 

Figure 10 displays the first six dk (x)-functions over the unit square. Note the small vertical scale 
on the figure for the d_2(x__) function. This is consistent with the fact that divergence occurs 
only for small values of ~ (cf. Figure 9). Each surface in Figure 10 shows markers (solid circles) 
at the 25 data points. Function d0(x) exactly matches the input function values at those points 
(and the other functions are exactly zero there). It also gives very accurate approximation to the 
actual function; the RMS error is 1.27.10 -s.  

We omit the results for the IQ and GA RBF interpolants for this example, but note that the 
IQ also leads to divergence in s(x,¢) of the type O(~ -2) (as reported in [10]), whereas the GA 
RBF actually leads to convergence. 

We conclude this section with some additional comments about other techniques we tried 
related to computing the interpolant for small values of E. 

It is often useful (and sometimes necessary) to augment the RBF interpolant (1) with low-order 
polynomial terms (see, for example, [14]). The addition of these polynomial terms gives the RBF 
interpolation matrix (a slightly modified version of the A(E) matrix found in (4)) certain desirable 
properties, e.g., (conditional) positive or negative definiteness [11]. The Contour-Padd algorithm 
can--without any change be used to compute the RBF interpolant also with the inclusion of 
these polynomial terms. We have found, however, that the behavior of the interpolant is not 
significantly affected by such variations. For example, we found that the pole structure of s(x, ~) 
is not noticeably affected, and there is no significant gain in accuracy at the "optimal" ~ value 
(however, for larger values of ~, there can be some gains). 

Since the RBF interpolant can usually be described for small values of s by (13) but without 
the E -2 term, one might consider using Richardson/Romberg extrapolation at larger values of 
to obtain the interpolant for ~ = 0. However, this idea is not practical. Such extrapolation is only 
effective if the first few expansion terms strongly dominate the later ones. This would only be 
true if we are well inside the expansion's radius of convergence. As Figures 4 and 8 indicate, this 
would typically require computations at ~ values that are too small for acceptable conditioning. 

7. C O N C L U D I N G  R E M A R K S  

The shape parameter c in RBF interpolation plays a significant role in the accuracy of the 
interpolant. The highest accuracy is often found for values of ¢ that make the direct method of 
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Figure 10. The first six terms from expansion (13) of s(_.x, e). The solid circles 
represent the 5 x 5 equispaced Cartesian grid that served as the input data points 
for the interpolant. 

comput ing the  interpolant  suffer from severe ill-conditioning. In this paper,  we have presented 
an algori thm tha t  allows stable computa t ion  of R B F  interpolants  for all values of ~, including 
the limiting case (if it exists) when the basis functions become perfect ly fiat. This  algori thm has 
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also been successfully used in [15] for computing RBF based solutions to elliptic PDEs for the 
full range of e-values. 

The key to the algorithm lies in removing the restriction that ¢ be a real parameter. By 
allowing 6 to be complex, we not only obtain a numerically stable algorithm, but we also gain a 
wealth of understanding about the interpolant, and we can use powerful tools to analyze it, such 
as Cauchy integral formula, contour integration, Lanrent series, and Pad~ approximations. 
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