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The free interface separating an exterior, viscous fluid from an intrusive conduit of
buoyant, less viscous fluid is known to support strongly nonlinear solitary waves due
to a balance between viscosity-induced dispersion and buoyancy-induced nonlinearity.
The overtaking, pairwise interaction of weakly nonlinear solitary waves has been
classified theoretically for the Korteweg–de Vries equation and experimentally in
the context of shallow water waves, but a theoretical and experimental classification
of strongly nonlinear solitary wave interactions is lacking. The interactions of large
amplitude solitary waves in viscous fluid conduits, a model physical system for
the study of one-dimensional, truly dissipationless, dispersive nonlinear waves, are
classified. Using a combined numerical and experimental approach, three classes
of nonlinear interaction behaviour are identified: purely bimodal, purely unimodal,
and a mixed type. The magnitude of the dispersive radiation due to solitary wave
interactions is quantified numerically and observed to be beyond the sensitivity of
our experiments, suggesting that conduit solitary waves behave as ‘physical solitons’.
Experimental data are shown to be in excellent agreement with numerical simulations
of the reduced model. Experimental movies are available with the online version of
the paper.
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1. Introduction
Exponentially localized solitary waves arise in nature as a balance between the

steepening effects of nonlinearity and the spreading effects of dispersion. These
fundamental, nonlinear coherent structures exhibit an amplitude-dependent phase
speed, often with larger waves propagating faster than slower ones, e.g. Whitham
(1974). A distinguishing feature of solitary waves in one dimension is the nature
of the resulting interaction when a larger, trailing solitary wave overtakes a smaller,
leading wave, a scenario sometimes referred to as strong interaction of solitary
waves (Miles 1977). A classical model of weakly nonlinear solitary wave interactions
is the Korteweg–de Vries (KdV) equation. Unlike in the case of linear waves,
where superposition applies, the nonlinear interaction is characterized by the larger
wave decreasing in height and experiencing a forward shift in position, while the
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smaller solitary wave increases in amplitude and experiences a negative position shift
(Zabusky & Kruskal 1965). The two solitary waves then emerge from the interaction
with their initial profiles and speeds restored. The absence of interaction-induced
radiation is associated with mathematical solitons and complete integrability of the
governing equation, as is the case for KdV. The exact two soliton KdV solution was
derived in Hirota (1971) and the soliton overtaking interaction has been classified by
amplitude ratio into three distinct regimes according to the qualitative structure during
the interaction (Lax 1968). When the ratio of the trailing and leading amplitudes is
sufficiently close to unity, a bimodal structure persists through the interaction with the
trailing wave passing its mass forward to the leading wave. When the ratio is large,
the interaction is unimodal, with the larger wave engulfing the smaller one before
emitting it. For intermediate ratios, there is a hybrid state, in which the interaction
begins with the larger wave absorbing the smaller one and forming an asymmetric,
unimodal mass. During the peak of the interaction, a distinctly bimodal wave appears
before the process undoes itself (see figure 2 for images of each interaction type
in the context of the model equation considered here). This classification scheme
for KdV depends solely on the ratio of the soliton amplitudes due to the existence
of scaling and Galilean symmetries. It has been confirmed experimentally in the
case of weakly nonlinear, shallow water waves (Weidman & Maxworthy 1978; Craig
et al. 2006; Li 2012). Due to a capillary instability and small dissipation, solitary
water waves are limited to nondimensional amplitudes less than 0.78 (Tanaka 1986;
Ablowitz & Haut 2010), thus water waves are a limited system in which to probe
large amplitude, conservative solitary wave interactions. Moreover, experiments and
numerical simulations of the water wave equations accessed amplitudes only up to
0.4 (Craig et al. 2006). Thus, to the authors’ knowledge, a systematic, quantitative
classification of strongly nonlinear solitary wave interaction behaviours in any physical
system is lacking experimentally and theoretically.

In this work, we extend the classification of overtaking interactions of solitary waves
to a nonintegrable, strongly nonlinear, dissipationless/dispersive wave equation, the so-
called conduit equation (cf. Lowman & Hoefer 2013a) and to experiments involving
solitary wave interactions with nondimensional amplitudes up to ∼ 14. The conduit
equation arises in the study of viscous fluid conduits, a medium in which solitary
waves have been studied experimentally in isolation (Olson & Christensen 1986; Scott,
Stevenson & Whitehead 1986) and post-interaction (Helfrich & Whitehead 1990), but
not during the interaction process. The viscous fluid conduit setting is realized by
introducing a steady source of buoyant, viscous fluid to a quiescent medium of heavier,
more viscous fluid. A stable, fluid-filled pipe is formed. Slow changes in the rate of
injection induce interfacial dynamics involving a maximal balance between buoyancy
of the intrusive fluid and the resistance to motion by the exterior fluid (see figure 1).
The scalar, nonlinear, dispersive conduit equation capturing the interfacial dynamics
has been derived from the full set of coupled fluid equations (Lowman & Hoefer
2013a). Unlike well-known models of small amplitude, weakly nonlinear, interfacial
fluid dynamics such as the KdV (Korteweg & de Vries 1895) and Benjamin–Ono
(Benjamin 1967; Ono 1975) equations, the conduit equation is derived under long
wave assumptions only, valid for large amplitudes (Lowman & Hoefer 2013a), much
like the Green–Naghdi (or Serre, Su–Gardner) equations of large amplitude, shallow
water waves (Serre 1953; Su & Gardner 1969; Green & Naghdi 1976). Moreover,
large amplitude conduit solitary waves are asymptotically stable (Simpson & Weinstein
2008), exhibit good agreement with experiments (Olson & Christensen 1986; Scott
et al. 1986; Helfrich & Whitehead 1990), and are robust, physical features of viscous
fluid conduit interfacial dynamics.
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FIGURE 1. (Colour online) Diagram of the fluid conduit experimental system.

Using careful numerical simulations, we find that although the conduit equation
does not possess the KdV Galilean invariance, the qualitative Lax classification
scheme from KdV theory extends to the strongly nonlinear regime for physically
realizable solitary wave amplitudes. The type of interaction depends on the absolute
amplitudes of the two waves, rather than solely on their ratio. A scaling invariance
of the conduit equation renders a unit solitary wave background but cannot be used
to scale individual solitary wave amplitudes. Our numerical computations demonstrate
small energy loss (10−2 relative change in the solitary wave two-norm) due to
interaction, also numerically observed in a closely related equation (Barcilon &
Richter 1986). This confirms the non-integrability of the conduit equation, as shown
by the Painlevé test (Harris 2006). However, any dispersive radiation following
experimental solitary wave interaction was below the resolution of our imaging
system, a feature also observed in previous experiments (Helfrich & Whitehead
1990). This suggests that while not mathematical solitons, conduit solitary waves
are physical solitons. We support these numerical observations with quantitative
interaction classification experiments, which are in excellent agreement and represent
the first observations of the mixed and unimodal interaction types in viscous fluid
conduits.
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FIGURE 2. Example numerical solutions of the conduit equation (2.5) exhibiting the three
types of overtaking interactions. The initial and final states, as well as the solution at
the time of peak interaction ti, are plotted on the spatial axis while the left and right
insets correspond to the solution just before and just after the peak interaction. The trailing
amplitude is varied, while the leading amplitude is fixed, alead= 1. (a) Bimodal interaction,
atrail = 3.5. (b) Mixed interaction, atrail = 5. (c) Unimodal interaction, atrail = 8.

The importance of this work extends beyond the remarkable agreement between
theoretical and numerical predictions of conduit solitary wave dynamics and
our experimental observations. In particular, the overtaking interaction between
two solitary waves can be seen as a fundamental property of one-dimensional,
dissipationless, dispersive hydrodynamics. As such, these observations further establish
the viscous fluid conduit setting as a practically accessible experimental and theoretical
platform for future investigations into solitary waves, slowly modulated nonlinear
wavetrains, and their interactions, for which quantitative experiments in any physical
system are essentially lacking in the literature. Moreover, the fact that we do not
observe qualitatively new behaviours in the interactions of solitary waves beyond
the weakly nonlinear regime is highly nontrivial due to the lack of integrability and
the increased dimensionality of the parameter space. This suggests there could be
some robustness or universality to the Lax categories for wave equations which
asymptotically reduce to KdV. There is also renewed interest in the nature of
two soliton interactions in integrable and nearly integrable systems in connection
with the theory of soliton gas (or soliton turbulence) (El & Kamchatnov 2005).
Interactions falling into different Lax categories have distinct effects on the statistical
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characteristics of soliton turbulence (Pelinovsky et al. 2013), and thus viscous fluid
conduits provide a promising setting for the experimental study of statistical properties
of incoherent soliton gases.

In the following section, we present the theoretical foundations for the classification
of conduit solitary waves and describe the experimental set-up. Section 3 presents the
details of our findings, and the manuscript is concluded in § 4 with a discussion of
future directions.

2. Theoretical foundations
In this section, we give an overview of the theoretical foundations needed for

classifying viscous fluid conduit solitary wave interactions. We provide intuition
regarding the physical effects that give rise to interfacial dynamics, develop relevant
numerical tools, and describe the experimental set-up.

2.1. Derivation of the conduit equation and solitary wave solutions
A complete mathematical description of the viscous fluid conduit setting requires
the consideration of the full system of Navier–Stokes equations for the intrusive and
exterior fluids, with boundary conditions along a moving, free interface. To subvert
this difficulty, an approximate model governing the interfacial dynamics has been
derived from physical principles (Olson & Christensen 1986; Scott et al. 1986) and
via an asymptotic, multiple scales procedure (Lowman & Hoefer 2013a) using the
ratio of the viscosities as the small parameter,

ε =µ(i)/µ(e)� 1, (2.1)

where µ(i) indicates the (dynamic) viscosity of the intrusive fluid and µ(e) that of the
exterior fluid. Here we outline the asymptotic derivation and identify the additional
key nondimensional quantities and assumptions required to ensure model validity for
comparison with experimental parameters.

The steady injection from below of a buoyant, viscous fluid into a basin of a
much more viscous fluid evolves to form a vertically uniform, axisymmetric conduit,
well-described by the governing equations of Poiseuille-type flow (Whitehead &
Luther 1975). In this unperturbed setting, the vertical velocity of the intrusive fluid
is driven by a vertical pressure gradient due to buoyancy, and the conduit radius is
set by the injection rate, assuming the velocity is O(ε) at the interface. In response
to perturbations of the injection rate, radial velocities are excited along the interface,
inducing a normal, viscous stress, which balances the pressure difference between
the two fluids across the boundary. This dominant balance is satisfied, provided the
following assumptions hold: (i) the vertical variation along the conduit wall is small
relative to the radial, i.e. the vertical length scale L is large relative to the radius of
the unperturbed conduit R0,

L=
(

A0

8πε

)1/2

, A0 =πR2
0, (2.2)

(ii) the two fluids are miscible with negligible mass diffusion across the interface, and
(iii) the Reynolds number of the intrusive fluid, defined to be

Re= ρ
(i)UL
µ(i)

, U = gA01ρ

8πµ(i)
, (2.3)
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for intrusive fluid density ρ(i) and density difference 1ρ= ρ(e)− ρ(i), is no larger than
O(1). Under these provisions, the vertical pressure gradient within the conduit has two
contributions, one from buoyancy and the other from viscous stress. This leads to the
(nondimensional) volumetric flux Q(z, t), with characteristic scale Q0, which can be
written in terms of the nondimensional conduit cross-sectional area, A(z, t) in the form

Q(z, t)= A2(z, t)
{

1− ∂

∂z

[
1

A(z, t)
∂A(z, t)
∂t

]}
, Q0 = A0U. (2.4)

Lastly, the flux is related to the evolution of the conduit area by appealing to the
continuity equation and imposing the kinematic boundary condition along the interface,
yielding ∂tA(z, t)+ ∂zQ(z, t)= 0, or the conduit equation

∂A(z, t)
∂t

+ ∂

∂z

(
A2(z, t)

{
1− ∂

∂z

[
1

A(z, t)
∂A(z, t)
∂t

]})
= 0. (2.5)

The conduit equation can be approximated by the KdV equation in the small
amplitude, long wavelength regime (Whitehead & Helfrich 1986). A key result for
the present study is that (2.5) is valid for long times, t= o(ε−1) and large amplitudes
A= o(ε−1), provided the aforementioned assumptions are satisfied and ε is sufficiently
small (Lowman & Hoefer 2013a).

Conduit solitary waves, first considered by Scott & Stevenson (1984), are derived
by introducing the ansatz A(z, t)=A(ζ ), ζ = z− ct, where c is the wave speed and A
decays exponentially to a background constant, here taken to be unity without loss of
generality. Inserting this form of the solution into (2.5) and integrating twice yields
the ordinary differential equation (ODE) defining the solitary wave profile A(ζ ),

α0

(
dA
dζ

)2

= α1 + α2A+ α3A2 + α4A2 ln A, α0 = 1
2

(
2A2

s ln As − A2
s + 1

)
,

α1 = A2
s ln As − A2

s + As, α2 =−2α0, α3 = A2
s ln As − As + 1,

α4 =−
(
A2

s − 2As + 1
)
, (2.6)

where As is the total height of the solitary wave, i.e. background plus amplitude, and
the amplitude–speed relation is given by

c(As)= 2A2
s ln As − A2

s + 1
A2

s − 2As + 1
. (2.7)

Note that the speed is monotone increasing in As, so larger solitary waves always
move faster.

2.2. Numerical methods
To study the overtaking interaction of conduit solitary waves, we initialize A in
(2.5) with two well-separated solitary waves. The trailing wave has amplitude atrail
(a= As − 1 is the amplitude above the background) and the lead wave has amplitude
alead. We take atrail > alead so that ctrail > clead. The localized solitary waves are
separated initially so that their superposition on a uniform background of unity
exhibits small, O(10−7), difference above background. The ODE (2.6) is integrated
as in Lowman & Hoefer (2013b) with tolerance below O(10−7). The dynamical
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ρ(i) ρ(e) µ(i) µ(e) A0 U Re ε

1.23 g ml−1 1.37 g ml−1 0.789 P 83.6 P 0.017 cm2 0.118 cm s−1 0.049 9.4× 10−3

TABLE 1. Key experimental parameters.

solver for (2.5) has been validated in Lowman & Hoefer (2013b). The width of the
truncated spatial domain is chosen so that, at all times, the solitary waves are 10−8

close to the background state at the end points. The grid spacing is chosen so that
the individual solitary waves are well-resolved, with values selected from the range
1z∈ [0.05, 0.5], with larger amplitude solitary waves requiring higher resolution. The
time step is 1t=1z/2ctrail.

2.3. Experimental set-up
The experimental apparatus, depicted in figure 1, used to study conduit solitary waves
is an acrylic cylinder with square sides 4 cm by 4 cm and a height of 90 cm, filled
to a depth of approximately 75 cm with a generic brand light corn syrup. To ensure
miscibility, the intrusive fluid was taken to be a 70:30 mixture of corn syrup and
water, with food colouring used for imaging. This set-up closely follows previous
experiments by Olson & Christensen (1986), Scott et al. (1986) and Helfrich &
Whitehead (1990). Injection of the intrusive fluid through the base of the apparatus
was precisely controlled by use of an automated syringe pump, with the base injection
rate 0.1 ml min−1 to create a vertically uniform, background conduit. Solitary waves
were formed by producing an additional localized pulse in the rate of injection using
a second syringe pump, connected to the apparatus via a y-junction, hence affording
precision control on the size of the solitary waves generated. Viscosities of the two
fluids were measured by a rotational viscometer, with 2 % measurement uncertainty.
Densities were measured using a scale and graduated cylinder with uncertainty 1 %.
Nondimensional, solitary wave amplitudes relative to background were measured by
counting pixels across the conduit from still frame images captured with a digital
SLR camera. The dimensional radius of the background conduit, held constant
throughout the experiments, was measured by comparing images of the background
conduit with a grid of known size attached to the back wall of the apparatus. To
compute the correction due to the projection of the conduit fluid in the middle of
the apparatus onto the back wall, the grid was compared with a copy of the same
grid submerged within the filled apparatus before injection commenced. Errors due to
imaging techniques and measurement were estimated by measuring the diameter of
the background conduit across a range of images yielding a standard deviation of 2 %,
of the order of the viscosity measurements. Interaction classification was achieved by
high definition video recording of the interaction using a second camera. Still frames
of the interactions were then extracted from the video, and downsampled using bicubic
interpolation in the vertical coordinate by a factor of 0.1≈ ε1/2 in order to enforce an
aspect ratio of 1. Recall that the long wavelength scaling in (2.2) sets an aspect ratio
of the vertical to radial lengths of order ε−1/2. This scaling significantly improves
the fidelity with which we can classify the solitary wave interaction types. In cases
where it was difficult to determine the classification, edge detection algorithms were
also used. Measured and derived fluid properties are provided in table 1.

A major difficulty previously encountered during experiments with this system was
creating and maintaining a straight, vertical conduit. We find the following protocol to
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be effective. The injection line is prepared so that a small amount of air is left in the
line just ahead of the intrusive fluid. The remaining intrusive fluid has no air bubbles.
A well-mixed volume of corn syrup is poured down the side of the cylinder to fill,
minimizing the entrainment of air. The apparatus is allowed to equilibrate overnight.
The experiment is initiated with steady injection at a rate of 0.5 ml min−1. First,
controlled air bubbles are produced so that the initial penetration of the intrusive
fluid follows behind the air bubbles. This latter protocol is similar to the procedure
described in Helfrich & Whitehead (1990). We find the background conduit to be
straight to within 0.2◦ across 60 cm. It merits mention that the conduit equation
(2.5) has been shown to be valid for conduits canted by O(6◦ ≈ ε1/2180◦/π) or
less (Lowman & Hoefer 2013a), which was not violated here due to our controlled
initiation procedure.

3. Overtaking interactions between strongly nonlinear solitary waves
Using the theoretical, experimental, and numerical techniques developed in the

previous section, we now describe the classification of strongly nonlinear solitary
wave interactions in the viscous fluid conduit setting. Long time, high resolution
numerical simulations in figure 2 exhibit the three interaction categories, which are
also found experimentally and displayed in a photo montage in figure 4. It is further
shown that the dispersive tail generated by solitary wave interactions is beyond the
sensitivity of our experiments.

3.1. Classification of interactions: KdV
In the case of the KdV equation, i.e. the weakly nonlinear, long wavelength regime,
properties due to integrability have been used to classify the overtaking interaction
analytically into three distinct categories, based solely on amplitude ratio atrail/alead
(Lax 1968):

1<
atrail

alead
<

3+√5
2
≈ 2.62 : bimodal, (3.1)

3+√5
2

<
atrail

alead
< 3 : mixed, (3.2)

atrail

alead
> 3 : unimodal, (3.3)

where atrail and alead are the trailing and leading soliton amplitudes, respectively for
t→−∞. A bimodal interaction denotes the case where the wave complex maintains
a bimodal structure throughout the interaction. This type of exchange interaction
corresponds to a transfer of mass from the larger, trailing solitary wave to the
smaller, lead solitary wave. In contrast, unimodal interaction involves the complete
fusion of the lead wave by the trailing wave, followed by fission into two waves. The
intermediate, mixed-type interaction, which has a limited range of amplitude ratios in
the weakly nonlinear case, possesses both qualities, a unimodal structure just before
and just after interaction but a distinctly bimodal one at t= ti.

3.2. Classification of interactions: conduit equation
The numerical classification of strongly interacting solitary waves is achieved by
dynamical evolution of the conduit equation (2.5) given initial data consisting of a
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large, trailing solitary wave of amplitude atrail, well separated from a smaller, leading
solitary wave of amplitude alead. The geometry of the wave structure near the time
of peak interaction, ti, defined to be

ti = arg min
t

{
max

z
[A(z, t)]

}
, (3.4)

is examined. The choice of ti is due to the nature of the interaction, in which
the larger solitary wave decreases in amplitude until t = ti before asymptotically
approaching atrail long after the interaction. This behaviour is characteristic of KdV
soliton interactions as well.

We allow the two solitary wave initial profiles to evolve long past the time of
interaction (tfinal≈2ti). Once the numerical solution is obtained, the location and height
of the two solitary wave maxima are obtained for each time step by interpolating the
solution onto a finer grid and examining its derivative to find the local extrema. If only
one maximum is found, the structure at that time is considered unimodal. We classify
interactions as bimodal if two maxima are present throughout and as unimodal if the
interaction possesses only one peak at t = ti. Note that the distinguishing feature of
the mixed interaction is the presence of a single maximum just before and after the
peak interaction time, but the reemergence of two distinct maxima at t= ti. Example
numerical simulations of (2.5) of each type of interaction for a fixed alead = 1 and
varying atrail are presented in figure 2.

The bifurcation diagram in figure 3 presents the key results of our classification
analysis. For a range of leading and trailing amplitude solitary waves, the critical
amplitudes marking phase transition are plotted. This was determined by fixing alead

and monotonically varying atrail in increments of alead/20 until the interaction type had
transitioned from one type to another for three consecutively larger values of atrail. The
critical value then was taken to be the value of atrail midway between the amplitudes
corresponding to the last interaction of one type and the first interaction of the new
type. The x marks on the dashed vertical line along alead = 1 mark the location of
the simulations presented in figure 2. We find that due to a continuous transition, the
precise determination of type I–III requires high resolution simulations.

As pointed out earlier, the behaviour of the conduit equation (2.5) is asymptotically
equivalent to KdV in the small amplitude regime, which is captured in the zoomed
inset of the phase diagram as the conduit transitions limit on the KdV transitions
for sufficiently small atrail / 0.5. However, in this nonintegrable, strongly nonlinear
equation where 2 < atrail < 15, the type of interaction depends not on the amplitude
ratio, but on the values of both amplitudes. This is due to the existence of three
distinct conduit amplitudes, the background and those of the trailing and leading
solitary waves. Only one amplitude can be scaled to unity using symmetry of the
equation, leaving two other free parameters (cf. Lowman & Hoefer 2013b).

The complete, mathematical classification of KdV soliton interactions was enabled
by an explicit representation of the solution. Here, we do not have this luxury. Like
in the integrable setting, though, the structure of the interaction for every amplitude
tested in our simulations (which covers most of the physically relevant range) always
falls into one of the three types. Moreover, the mixed geometry is expected for a much
wider range of amplitudes than in (3.1) as the two initial waves grow larger.
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FIGURE 3. (Colour online) Phase diagram of the numerical and experimental classification
of the overtaking interaction between two conduit solitary waves as a function of the
leading and trailing wave amplitudes. The blue (top) curve indicates the transition from
bimodal interaction to the intermediate/mixed type. The red (bottom) curve marks the
transition from the mixed type to unimodal. The inset represents the boxed portion in
the weakly nonlinear regime showing convergence to the KdV predictions (dashed lines).
Crosses along alead = 1 correspond to simulations in figure 2. The geometric shapes
correspond to experimental classification.

3.3. Radiation emitted due to interaction
It is also of physical interest to consider the magnitude of the dispersive tail resulting
from interactions of conduit solitary waves, which are not exact solitons. Overtaking
interactions of solitary waves in nonintegrable equations have been shown via
numerical simulations to produce a small tail of linear dispersive waves following
their interaction, e.g. (Bona, Pritchard & Scott 1980; Mirie & Su 1982; Barcilon &
Richter 1986), a feature which, if sufficiently large, could be examined experimentally.
To address this issue, we have run simulations of solitary wave interactions for a
fixed alead = 1 and atrail varying between 2 and 8, so that it spans all three interaction
types and also corresponds to the experiments in the following section. The radiation
was quantified in two ways using long time numerical evolution, tfinal≈ 3ti. The first is
the change in the amplitudes of the solitary waves post-interaction and the second is
the change in the profiles. Here we find the maximum change in amplitudes for both
waves is consistently O(10−3). The change in the individual solitary wave profiles is
determined by centring a window about each individual wave, for both the initial and
final times, and then determining the residual between the two profiles, here defined
by the relative two-norm difference, i.e. the two-norm of the residual divided by
the initial two-norm. This metric reveals that the change in profiles from before to
long after the interaction is not larger than O(10−2) across the simulations examined.
These findings are consistent not only with numerical simulations of a closely related
equation (Barcilon & Richter 1986), but also with experimental findings from conduit
solitary wave interactions (Helfrich & Whitehead 1990). Moreover, the amplitude
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FIGURE 4. (Colour online) Data from interaction experiments. (a) Unscaled data showing
the solitary wave profiles from a typical interaction. (b) Examples of the three interaction
types for scaled data used in classifications. From top to bottom, (alead, atrail) are
(1.27, 3.45), (1.53, 9.97), and (1.14, 10.01), respectively. See the online version of the
paper for movies of these experiments.

differences and residuals are beyond the sensitivity of our experimental capabilities,
which suggests that these conduit solitary waves are approximately solitons, at least
in a physical sense. Hence we term them ‘physical solitons’.

3.4. Experimental observation of the three types of interaction
In figure 3, we plot the results of twenty-seven solitary wave interaction classification
experiments. The three distinct types predicted by numerical simulations of the
conduit equation (2.5) are readily observable in the full physical system, and their
dependence on alead and atrail is in excellent agreement with the phase diagram.
Example images of an unscaled interaction experiment and then scaled data used
for classification are given in figure 4. While it is sometimes difficult to distinguish
between the regimes in the unscaled data, scaling the data recovers the aspect ratio
of the nondimensional coordinate system from the numerical simulations and allows
for proper determination. Typical examples of the three interaction types are shown.
Movies in both unscaled and scaled formats are available with the online version of
the paper at http://dx.doi.org/10.1017/jfm.2014.273.

Regarding the agreement with numerical simulations, up to the 2 % error in
measuring conduit diameters, the data all lie in the appropriate regions of the phase
diagram. While this agreement is compelling on its own, it is also possible to compare

http://dx.doi.org/10.1017/jfm.2014.273
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with the approximate model breakdown criteria identified in Lowman & Hoefer
(2013a). The use of miscible fluids meets the negligible surface tension criterion,
and the contributions due to the outer wall are small because the nondimensional
radius of the outer wall satisfies Rwall ≈ 76 � ε−1/2 = 10.3. The Reynolds number
criterion Re = 0.049 � ε−1 = 106 for neglecting inertial effects is also satisfied.
Lastly, the breakdown of the multiple scales assumption occurs when the condition,
A� 1/8ε ≈ 13.3, is violated for large amplitude solitary waves (Lowman & Hoefer
2013a). We note that two of the trials lie beyond this point, though they still fall in
the appropriate classification region. There exists an independent condition for model
validity based on the introduction of inertial effects for sufficiently large amplitude
solitary waves, measured by an effective solitary wave Reynolds number (Helfrich
& Whitehead 1990), but we find the multiple scales condition to be more restrictive
in our case. Our results suggest remarkably robust concurrence between the reduced,
approximate interfacial equation and the full two-fluid system.

4. Summary and conclusions
The qualitative characterization of large amplitude, pairwise solitary wave

interactions in viscous fluid conduits has been shown to permit geometric classification
according to the three Lax categories for KdV. Unlike the weakly nonlinear regime,
however, the expected interaction type depends on the wave amplitudes, rather than
only their ratio, and the mixed unimodal/bimodal interaction type is a more robust,
readily observable feature than for surface water waves.

The long time, large amplitude validity of the conduit equation (2.5) and its
analytical tractability make this two viscous fluid setting an ideal one for the study
of nonlinear dispersive waves. That nonlinear dispersive waves occur at all in a fully
viscous setting is a nontrivial observation, but that the reduced equation captures the
geometry of interacting solitary waves suggests the interfacial dynamics of viscous
fluid conduits are, as predicted, approximately one-dimensional and dissipationless at
the time scales under consideration. Moreover, the absence of dispersive radiation in
the experiments implies that, while the conduit equation is not completely integrable,
its solitary waves practically interact elastically. These results encourage future
experimental studies on nonlinear coherent structures, such as rarefaction waves,
slowly modulated wavetrains (dispersive shock waves) and their interactions.
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