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Dispersive shock waves and solitons are fundamental nonlinear excitations in dispersive media, but
dispersive shock wave studies to date have been severely constrained. Here, we report on a novel dispersive
hydrodynamic test bed: the effectively frictionless dynamics of interfacial waves between two high viscosity
contrast, miscible, low Reynolds number Stokes fluids. This scenario is realized by injecting from below a
lighter, viscous fluid into a column filled with high viscosity fluid. The injected fluid forms a deformable pipe
whose diameter is proportional to the injection rate, enabling precise control over the generation of symmetric
interfacial waves. Buoyancy drives nonlinear interfacial self-steepening, while normal stresses give rise to the
dispersion of interfacial waves. Extremely slow mass diffusion and mass conservation imply that the
interfacial waves are effectively dissipationless. This enables high fidelity observations of large amplitude
dispersive shock waves in this spatially extended system, found to agree quantitatively with a nonlinear wave
averaging theory. Furthermore, several highly coherent phenomena are investigated including dispersive
shock wave backflow, the refraction or absorption of solitons by dispersive shock waves, and the multiphase
merging of two dispersive shock waves. The complex, coherent, nonlinear mixing of dispersive shock waves
and solitons observed here are universal features of dissipationless, dispersive hydrodynamic flows.
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The behavior of a fluidlike, dispersive medium that
exhibits negligible dissipation is spectacularly realizedduring
the process of wave breaking that generates coherent non-
linear wave trains called dispersive shock waves (DSWs). A
DSW is an expanding, oscillatory train of amplitude-ordered
nonlinear waves composed of a large amplitude solitonic
wave adjacent to a monotonically decreasing wave envelope
that terminates with a packet of small amplitude dispersive
waves. Thus, DSWs coherently encapsulate a range of
fundamental, universal features of nonlinear wave systems.
More broadly, DSWs occur in dispersive hydrodynamic
media that exhibit three unifying features: (i) nonlinear
self-steepening, (ii) wave dispersion, (iii) negligible dissipa-
tion (cf. the comprehensive DSW review article [1]).
Dispersive shock waves and solitons are ubiquitous

excitations in dispersive hydrodynamics, having been
observed in many environments, such as quantum shocks
in quantum systems (ultracold atoms [2,3], semiconductor
cavities [4], electron beams [5]), optical shocks in nonlinear
photonics [6], undular bores in geophysical fluids [7,8], and
collisionless shocks in rarefied plasma [9]. However, all
DSW studies to date have been severely constrained by
expensive laboratory setups [2,3,5,7] or challenging field
studies [8], difficulties in capturing dynamical information
[2,3,6], complex physical modeling [8], or a loss of
coherence due to multidimensional instabilities [2,4] or
dissipation [5,9]. Here, we report on a novel dispersive
hydrodynamic test bed that circumvents all of these diffi-
culties: the effective superflow of interfacial waves between

two high viscosity contrast, low Reynolds number Stokes
fluids. The viscous fluid conduit system was well studied in
the 1980s as a simplified model of magma transport through
Earth’s partially molten upper mantle [10–12] (see also the
Supplemental Material [13]). This system enables high
fidelity studies of large amplitude DSWs, which are found
to agree quantitatively with nonlinear wave averaging or
Whitham theory [22–24]. We then report the first exper-
imental observations of highly coherent phenomena includ-
ing DSW backflow, the refraction or absorption of solitons
interacting with DSWs, and a multiphase DSW-DSW
merger. In addition to its fundamental interest, the nonlinear
mixing of mesoscopic-scale solitons and macroscopic-scale
DSWs could play a major role in the initiation of
decoherence and a one-dimensional, integrable turbulent
state [25] that has recently been observed in optical fibers
[26] and surface ocean waves [27].
In our experiment, the steady injection of an intrusive

viscous fluid (dyed, diluted corn syrup) into an exterior,
miscible, much more viscous fluid (pure corn syrup) leads to
the formation of a stable fluid filled pipe or conduit [28].
Because of the high viscosity contrast, there is minimal drag
at the conduit interface so the flow is well approximated by
the Poiseulle or pipe flow relationD ∝ Q1=4, whereQ is the
injection rate and D is the conduit diameter. By modulating
the injection rate, interfacial wave dynamics ensue. Dilation
of the conduit gives rise to buoyancy induced nonlinear self-
steepening regularized by normal interfacial stresses that
manifest as interfacial wave dispersion [29,30]. Negligible
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mass diffusion implies a sharp conduit interface and con-
servation of injected fluid. By identifying the azimuthally
symmetric conduit interface as our one-dimensional disper-
sive hydrodynamic medium, we arrive at the counterintuitive
behavior that viscous dominated, Stokes fluid dynamics
exhibit dissipationless or frictionless interfacialwave dynam-
ics. This will be made mathematically precise below.
By gradually increasing the injection rate, we are able to

initiate the spontaneous emergence of interfacial wave
oscillations on an otherwise smooth, slowly varying conduit.
See the Supplemental Material [13] for additional experi-
mental details. Figure 1(a) displays a typical time lapse of our
experiment. At time 0 s, the conduit exhibits a relatively sharp
transition between narrower and wider regions. Because of
buoyancy, the fluid in thewider region moves faster than that
of the narrower region. Rather than exhibit folding over upon
itself, the interface begins to oscillate due to dispersive
effects, as shown in Fig. 1(a) at 30 s. As later times in
Fig. 1(a) attest, the oscillatory region expands, while the
oscillation amplitudes maintain a regular, rank ordering from
large to small. By extracting the spatial variation of the
normalized conduit cross-sectional area a from a one frame
per second image sequence, we display in Fig. 1(b) the full
spatiotemporal interfacial dynamics as a contour plot. This
plot reveals two characteristic fronts associated with the
oscillatory dynamics: a large amplitude leading edge and a
small amplitude, oscillatory envelope trailing edge.
We can interpret these dynamics as a DSW resulting from

the physical realization of the Gurevich-Pitaevskii (GP)
problem [23], a standard textbook problem for the study of
DSWs [1] that has been inaccessible in other dispersive
hydrodynamic systems. Here, the GP problem is the dis-
persive hydrodynamics of an initial jump in conduit area.
Although we only have boundary control of the conduit
width, our carefully prescribed injectionprotocol [13] enables
delayed breaking far from the injection site. This allows for
the isolated creation and longtime propagation of a “pure”

DSWconnecting twouniform, distinct conduit areas. Related
excitations in the conduit system were previously interpreted
as periodic wave trains modeling mantle magma transport
[11]. As we now demonstrate, the interfacial dynamics
observed here exhibit a solitonlike leading edge propagating
with a well-defined nonlinear phase velocity, an interior
described by a modulated nonlinear traveling wave, and a
harmonic wave trailing edge moving with the linear group
velocity. The two distinct speeds of wave propagation in one
nonlinear coherent structure are a striking realization of the
double characteristic splitting from linear wave theory [22].
The long wavelength approximation of the interfacial

fluid dynamics is the conduit equation [11,30]

at þ ða2Þz − ½a2ða−1atÞz%z ¼ 0: ð1Þ

Here, aðz; tÞ is the nondimensional cross-sectional area of
the conduit as a function of the scaled vertical coordinate z
and time t (subscripts denote partial derivatives). Both the
interface of the experimental conduit system and Eq. (1)
exhibit the essential features of frictionless, dispersive
hydrodynamics: the nonlinear self-steepening (second term)
due to buoyant advection of the intrusive fluid, the dispersion
(third term) from normal stresses, and no dissipation due to
the combination of intrusive fluid mass conservation and
negligible mass diffusion [13]. The analogy to frictionless
flow corresponds to the interfacial dynamics, not the
momentum diffusion dominated flow of the bulk. The
conduit equation (1) is nondimensionalized according to
the cross-sectional area, vertical distance, and time in units
of A0 ¼ πR2

0, L0 ¼ R0=
ffiffiffiffiffi
8ϵ

p
, and T0 ¼ μi=L0gΔρϵ, respec-

tively, whereR0 is the downstream conduit radius, ϵ ¼ μi=μe
is the viscosity ratio of the intrusive to the exterior liquid,
Δρ ¼ ρe − ρi is the density difference, and g is the gravity
acceleration. Initially proposed as a simplified model for the
vertical ascent ofmagma along narrow, viscously deformable
dikes and principally used to study solitons [11,29,31], the
conduit equation (1) has since been derived systematically

FIG. 1. Interfacial wave breaking of two Stokes fluids causing the spontaneous emergence of coherent oscillations, a DSW.
The leading, downstream edge is approximately a large amplitude soliton whose phase speed is tied to the upstream conduit area. The
trailing, upstream edge is a small amplitude wave packet moving at the group velocity whose wave number is tied to the downstream
conduit area. (a) 90° clockwise rotated, time-lapse digital images (aspect ratio, 10∶1). (b) Space-time contour plot of the conduit cross-
sectional area from (a). Nominal experimental parameters, Δρ ¼ 0.0928 g=cm3, μi ¼ 91.7 cP, ϵ ¼ 0.030; downstream flow rate,
Q0 ¼ 0.50 mL=min; and a− ¼ 2.5.

PRL 116, 174501 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

29 APRIL 2016

174501-2



from the full set of coupled Navier-Stokes fluid equations
using a perturbative procedure with the viscosity ratio as the
small parameter [30]. The conduit equation (1) was theo-
retically shown to be valid for long times and large
amplitudes under modest physical assumptions on the basin
geometry, background velocities, fluid compositions, weak
mass to momentum diffusion, and characteristic aspect ratio.
The efficacy of this model has been experimentally verified
in the case of solitons [29,31].
The study of DSWs involves a nonlinear wave modu-

lation theory, commonly referred to as Whitham theory
[22], which treats a DSW as an adiabatically modulated
periodic wave [1,23]. Using Whitham theory and Eq. (1),
key conduit DSW physical features such as the leading
soliton amplitude and leading or trailing speeds have been
determined [24]. For the jump in downstream to upstream
area ratio a−, Whitham theory applied to the conduit
equation (1) predicts relatively simple expressions for
the DSW leading sþ and trailing s− edge speeds,

sþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8a−

p
− 1; s− ¼ 3þ 3a− − 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a−ð8þ a−Þ

p
;

ð2Þ

in units of the characteristic speed U0 ¼ L0=T0. The
leading edge approximately corresponds to an isolated
soliton where the modulated periodic wave exhibits a zero
wave number. Given the speed sþ, the soliton amplitude aþ
is implicitly determined from the soliton dispersion relation
sþ ¼ ½a2þð2 ln aþ − 1Þ þ 1%=ðaþ − 1Þ2 [29]. At the trailing
edge, the modulated wave limits to zero amplitude,
corresponding to harmonic waves propagating with the
group velocity s− ¼ ω0ðk−Þ, where ωðkÞ ¼ 2a−k=
ð1þ a−k2Þ is the linear dispersion relation of Eq. (1) on
a background conduit area a− and k2− ¼ ½a− − 4þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a−ð8þ a−Þ

p
%=ð4a−Þ is the distinguished wave number

determined from modulation theory [24] (see also Ref. [1]).
In Fig. 2, we compare the leading edge amplitude and

speed predictions with the experiment, demonstrating
quantitative agreement for a range of jump values a−.
The analytical theory (Whitham theory) is known to break
down at large amplitudes [24], so we also include direct
determination of the speed and the amplitude from numeri-
cal simulation of Eq. (1), demonstrating even better agree-
ment. In order to obtain the reported dimensionless speeds
of Fig. 2(a), we divide the measured speeds by U0 with μi
determined by fitting the downstream conduit area to a
Poiseulle flow relation. This enables us to self-consistently
account for the shear-thinning properties of corn syrup. All
the remaining fluid parameters take their nominal, mea-
sured values. The deviation between experiment and theory
at large jump values is consistent with previous measure-
ments of solitons, where the soliton dispersion relation was
found to underpredict observed speeds at large amplitudes
[29] (see also the Supplemental Material [13]).
In addition to single DSWs, our experimental setup

allows us to investigate exotic, coherent effects predicted

by Eq. (1) for the first time. For example, backflow is a
feature of dispersive hydrodynamic systems whereby a
portion of the DSW envelope propagates upstream. This
feature occurs here when the group velocity of the trailing
edge wave packet is negative. From the expression for s− in
Eq. (2), we predict the onset of backflow when a− exceeds
8=3. In Fig. 3, we utilize our injection protocol to report the
observation of this phenomenon in the viscous conduit
setting (see the Supplemental Material [13] for videos).
Waves with a strictly positive phase velocity are continually
generated at the trailing edge, but the envelope group
velocity is negative. We estimate the crossover to backflow
for the experiments reported in Fig. 2 at a− ≈ 3, consistent
with a slightly larger crossover than theory (8=3) due to the
subimaging resolution of small amplitude waves.
The ease with which DSWs and solitons can be created in

this viscous liquid conduit system enables the investigation
of novel coherent, nonlinear wave interactions. In Fig. 4, we
report soliton-DSW and DSW-DSW interactions from our
conduit experiment (see the Supplemental Material [13] for
videos). As in previous experiments [29,31], an isolated
conduit soliton is created by the pulsed injection of fluid on
top of the steady injection that maintains the background
conduit. Figures 4(a) and 4(b) depict thegenerationof aDSW

FIG. 2. Comparison of observed and predicted leading edge
DSW amplitude and speed. Observations (circles), Whitham
modulation theory (solid curves), and numerical simulation of
the conduit equation (dashed curves) for (a) DSW leading edge
speeds sþ and (b) DSW leading amplitude aþ versus downstream
area ratio a−. Nominal experimental parameters, Δρ ¼
0.1305 g=cm3 μi ¼ 80.4 cP (measured), μi ¼ 104 cP (fitted),
ϵ ¼ 0.0024. See the Supplemental Material [13] for the fitting
procedure.
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followed by a soliton. Because solitons propagate with a
nonlinear phase velocity larger than the linear wave phase
and groupvelocities [29], the soliton eventually overtakes the
DSW trailing edge. The soliton-DSW interaction results in a
sequence of phase shifts between the soliton and the crests of
the modulated wave train. The soliton emerges from the
interaction with a significantly increased amplitude and
decreased speed due to the smaller downstream conduit
upon which it is propagating. The initial and final slopes of

soliton propagation in Fig. 4(b) demonstrate that the soliton
has been refracted by the DSW. Meanwhile, the DSW
experiences a subtle phase shift and is otherwise unchanged.
The opposite problem of a soliton being overtaken by a

DSW is displayed in Fig. 4(c). After multiple phase shifts
during interaction, the soliton is slowed down and effec-
tively absorbed within the interior of the DSW, while the
DSW is apparently unchanged except for a phase shift in its
leading portion. Such behavior is consistent with the
interpretation of a DSW as a modulated wave train with
small amplitude trailing waves that will always move
slower than a finite amplitude soliton.
Figure 4(d) reveals the interaction of two DSWs. The

interaction region results in a series of phase shifts similar
to soliton-soliton interactions that form a quasiperiodic or
two-phase wave train, as shown in the inset. This nonlinear
mixing eventually subsides, leaving a single DSW repre-
senting the merger of the original two. The trailing DSW
has effectively been refracted by the leading DSW.
Wecan interpret the soliton andDSWrefraction as follows.

First, consider the overtaking interaction of two DSWs.
Denote the midstream and upstream conduit areas a1 < a2
relative to the downstream area a0 ¼ 1. Equation (2) implies
that the leading edge speeds of the first and second DSWs
are s1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8a1

p
− 1, s2 ¼ a1(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 8ða2 − 1Þ=a1

p
− 1).

Motivated by previous DSW interaction studies [32], we

FIG. 3. Time-lapse images (aspect ratio, 1∶1) of large amplitude
wave breaking leading to an upstream propagation of the DSW
trailing edge envelope: DSW backflow. Nominal experimental
parameters, Δρ ¼ 0.0983 g=cm3, μi ¼ 93.5 cP, ϵ ¼ 0.029,
a− ¼ 4, and Q0 ¼ 0.50 mL=min.

FIG. 4. Interactions of solitons andDSWs.Time-lapse imageswith (a) the aspect ratio 10∶1 and (b) the space-time contour ofDSW-soliton
interaction revealing soliton refraction by a DSW with a− ¼ 3. (c) Space-time contour of the absorption of a soliton by a DSW with
a− ¼ 3.5. (d)DSW-DSWinteraction andmerger causing themultiphasemixing (inset) and the refraction of the trailingDSWby the leading
DSW with a1 ¼ 2.5, a2 ¼ 5. Nominal experimental parameters, Δρ ¼ 0.0971 g=cm3, μi ¼ 99.1 cP, ϵ ¼ 0.029, Q0 ¼ 0.2 mL=min.
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assume the merger of the two DSWs and thus obtain
the leading edge speed of the merged DSW sm ¼
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ða1 þ a2Þ − 1

q
− 1 connecting the conduit area a0 to

a2. One can verify the interleaving property s1 < sm < s2,
demonstrating the refraction (slowing down) of the second
DSW. If we treat the isolated soliton as the leading edge of a
DSW, then we obtain the same result for soliton-DSW
refraction.
Viscous liquid conduits are a model system for the

coherent dynamics of one-dimensional superfluidlike
media with microscopic-scale fluid dynamics [12], meso-
scopic-scale solitons [31], and macroscopic-scale DSWs as
fundamental nonlinear excitations. Interactions of DSWs
and solitons suggest that soliton refraction, absorption,
multiphase dynamics, and DSW merging are general,
universal features of dispersive hydrodynamics. The vis-
cous liquid conduit system is a new environment in which
to investigate complex, coherent dispersive hydrodynamics
that have been inaccessible in other superfluidlike media.
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In this supplemental material, background information and additional experimental details are
provided.

I. BACKGROUND ON VISCOUS FLUID CONDUITS

Principally driven by the modeling of geological and geophysical processes, Whitehead and Luther in 1975 showed
that the low Reynolds number, buoyant dynamics of two fluids with di↵ering densities and viscosities could lead to
the formation of stable fluid filled pipes or conduits of upwelling fluid [S1]. In 1984, McKenzie derived a system
of equations describing the dynamics of melt (magma) within a deformable matrix (rock) in the upper Earth’s
mantle [S2]. These equations treat the magma dynamics as the flow of a low Reynolds number, incompressible fluid
through a more viscous, permeable matrix that is modeled as a compressible fluid due to compaction and distension.
There are two model parameters (n,m) resulting from constitutive power laws that relate the porosity to the matrix
permeability and viscosity, respectively. Soon after, it was realized that the asymptotically reduced, one-dimensional
McKenzie equations, or magma equation, exhibits solitary wave solutions [S3]. A connection between the laboratory
fluid systems explored by Whitehead and Luther and the magma equation was realized in [S4, S5] where the conduit
equation studied in the present work (eq. 1 in the primary manuscript) was derived from physical arguments, the soliton
amplitude-speed relation was verified experimentally, and the approximately elastic solitonic interaction property was
observed. The conduit equation corresponds exactly to the magma equation when (n,m) = (2, 1). Since that time,
there have been a number of experimental and theoretical works on viscous fluid conduits, principally focused upon
the dynamics of solitons (see, e.g., [S6, S7] and references therein). It is now known that the one- and two-dimensional
solitary wave solutions to McKenzie’s equations are unstable to transverse perturbations, leading to the formation of
fully three-dimensional solitary waves [S8].

In this work, rather than emphasize the connection to McKenzie’s equations and magma dynamics, we consider the
dynamics of viscous fluid conduits as a model dispersive hydrodynamic system where hydrodynamic nonlinearity is
balanced by dispersive e↵ects. Such systems are plentiful in the natural world, as commented upon in the introduction
of the accompanying manuscript. In addition to solitons, dispersive shock waves (DSWs) are fundamental nonlinear
excitations in dispersive hydrodynamic media (see the review [S9]). The first numerical studies of DSWs in the
McKenzie equations was undertaken by Spiegelman [S10]. Whitham modulation theory was later used to describe
DSWs in the small [S11] and large [S12, S13] amplitude regimes of the magma and, in particular, the conduit equation.
The present work represents the first experimental study of conduit DSWs.

II. POISEUILLE FLOW RELATION

The conduit experimental data are obtained by injecting through a 0.22 cm inner diameter nozzle an approximately
7:2:1 mixture of corn syrup (Karo brand light), water, and black food coloring (Regal brand) into the bottom of a 2 m
tall acrylic, 25.8 cm2 square column filled with corn syrup (3:2 mixture of Golden Barrel brand 42 dextrose equivalent
and Karo brand light for data of Figure 2, pure Karo brand light for Figures 1, 3, 4). The fluid temperature near the
top of the fluid column was measured to be 22.2 ± 0.7 deg C across all experimental trials. A computer controlled
piston pump (Global FIA milliGat LF pump with MicroLynx controller) was used to inject fluid through a room
temperature water bath followed by the nozzle. See Fig. S1 for an experimental schematic. When the injected fluid
reaches the top of the fluid column, it pools on top of the external fluid and very slowly begins to di↵use downward.
We periodically removed the pooling fluid with a syringe. Steady injection results in a vertically uniform liquid filled

⇤
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FIG. S1: Schematic of the conduit experimental apparatus.

pipe or conduit conforming to Poiseuille flow [S1, S4]. We allowed the conduit to stabilize (straighten) by steady
injection over a period of 36 hours for the data in Fig. 2 and 15 hours for the other data.

The quantitative data in Fig. 2 exhibits typical conduit diameters of one to four millimetres and Reynolds numbers
in the range Re = ⇢

i

U
0

L
0

/µ
i

2 (0.06, 2.6), where ⇢
i

is the intrusive fluid density. We can set the conduit diameter
D via the volumetric flow rate Q according to a Hagan-Poiseuille relation [S1] D = ↵Q1/4 = (27µ

i

Q)1/4/(⇡g�⇢)1/4.
Digital images of the conduit are processed to extract the conduit diameter. The conduit edges are determined from
local extrema of the di↵erentiated grayscale intensity image using centred di↵erences in the direction normal to the
conduit interface. We confirm the Poiseuille flow relation D = ↵Q1/4 for the trials of Fig. 2 approximately 6 cm
above the fluid injection site with no fitting parameters (Fig. S2). In Fig. S3, we show the fit of the Poiseuille flow
relation to the same conduit, imaged approximately 120 cm above the injection site. The di↵erence between the
externally measured viscosity µ

i

= 80.4 cP and the value µ
i

= 104 cP from a fit to the Poiseuille flow relation can
be explained by the non-Newtonian, thixotropic (shear thinning) properties of corn syrup. At the injection site, the
diluted corn syrup experiences heightened shearing, similar to our rotational viscometer measurements (Brookfield
DV-I prime viscometer). Further up the fluid column, there is less shearing so the fluid increases in viscosity and
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FIG. S2: Demonstration of Poiseuille flow in a steady viscous fluid conduit. Log-log plot of measured conduit diameter D near
injection site versus volumetric flow rate Q (dots) and the relation D = ↵Q1/4 with the measured value ↵ = 0.2557 (cm·min)1/4

(solid) corresponding to µ
i

= 80.4 cP, �⇢ = 0.1305 g/cm3. A least squares fit gives ↵ = 0.2548 (cm·min)1/4, which translates
to the fitted viscosity µ

i

= 79.0 cP, within the 2% error tolerance of our rotational viscometer.
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FIG. S3: Poiseuille flow fit approximately 120 cm up the fluid column. Downstream conduit diameters D extracted from digital
images (dots) and a least squares fit to the Poiseuille flow relation D = ↵Q1/4 with ↵ = 0.2688 (cm·min)1/4 (solid). The fit
corresponds to the interior viscosity µ

i

= 104 cP, an increase from its measured value µ
i

= 80.4 cP. This can be explained by
the shear thinning properties of corn syrup as described in Methods.

leads to a dilation of the conduit. The conduit consistently has a measured diameter in the upper fluid column that
is 7% larger than its value near the injection site as shown in Fig. S4. The results in Fig. 2 of the main text use the
measured value of �⇢ and the fitted value µ

i

= 104 cP.

III. DSW AND SOLITON INJECTION PROTOCOL.

By adiabatically changing Q, we introduce perturbations to the conduit that subsequently propagate along the
interface, allowing for the generation of conduit solitons [S5, S13–S15] and DSWs. The injection rate profile for
solitons is generated by computing a conduit solitary wave solution a

soliton

(z� ct� z
0

) with speed c and initial center
z
0

to eq. (1). This profile is converted to the dimensional diameter D
soliton

= 2
p

a
soliton

A
0

/⇡ and then the volumetric
flow rate profile Q

soliton

= (D
soliton

/↵)4, evaluated at the injection site.
The volumetric flow rate profile Q

DSW

that we use to create DSWs is determined as follows. We initialize the
dispersionless conduit equation at +

�
a2
�
z
= 0 with a step in conduit area from a� to 1, left to right, at a desired

distance from the nozzle z = zb. Evolving this initial value problem backward in time results in a non-centered
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FIG. S4: Comparison of conduit diameter at di↵erent locations along the fluid column. Measurements (dots) and the linear fit
D

top

= mD
bottom

(solid) with m = 1.07 corresponding to a 7% increase in the conduit diameter. The lower (upper) diameter
was measured approximately 6 cm (120 cm) above the injection site.
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FIG. S5: DSW leading edge speed versus amplitude. The observed values (dots) and the theoretical soliton dispersion relation
(solid) corresponding to Fig. 2(a,b) in the main text. The deviation at large amplitudes is consistent with previous studies of
isolated solitons [S5].

rarefaction wave that can be related to the volumetric flow rate profile via

Q
DSW

(⌧) = Q
0

8
><

>:

1 t  0

(1� 2⌧U
0

/Zb)�2 0 < ⌧U
0

/Zb < (a� � 1)/2a�
a2� else

,

where Q
0

is the downstream flow rate, ⌧ is the dimensional time, and Zb = L
0

zb is the dimensional breaking distance
from the injection site. We find that this provides adequate control over the breaking location.

Each DSW trial in Fig. 2 was initiated after a su�cient waiting period, typically 5 minutes, to allow the previous
trial’s conduit diameter to stabilize to the expected steady value. The downstream flow rates utilized for the data in
Fig. 2 were nominally Q

0

2 {0.25, 0.35, 0.5} mL/min. Three digital SLR cameras were utilized, two Canon EOS 70D
camers outfitted with Tamron macro lenses positioned just above the injection site (camera one) and at approximately
120 cm above the injection site (camera two). The third camera (Canon EOS Rebel T5i), outfitted with a zoom lens,
was used to image the entire vertical length of 120 cm from the injection site. The fluid column was backlit with
strip LED lights behind LEE LE251R white di↵usion filter paper. Each DSW trial was initiated with an image of the
conduit at the injection site followed by the injection protocol Q

DSW

. The third camera was then set to image the
full column every second throughout the trial. Just after the injection protocol reached the maximum rate a�Q0

, an
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image of the conduit from camera 1 was taken. Just prior to the arrival of the DSW leading edge within the viewing
area of camera two, an image of the downstream conduit was taken, followed by a dozen or more images taken in
rapid succession of the DSW leading edge.

IV. DETERMINATION OF DSW SPEED AND AMPLITUDE.

The leading edge of the DSW amplitude, normalised to the downstream area, is determined from the digital images
of camera 2 without appealing to any fluid parameters. We compute the conduit edges as for the steady case,
using extrema of the di↵erentiated image intensity normal to the conduit interface. Some image and edge smoothing
is performed to remove pixel noise. The number of pixels across the diameter of the leading edge DSW peak is
calculated and normalized by the diameter of the downstream conduit. Squaring this quantity gives the leading edge
DSW amplitude shown in Fig. 2. We calculated the leading edge DSW speed from the images of camera three toward
the end of the trial. We nondimensionalise the speed by the characteristic speed U

0

= L
0

/T
0

= gA
0

�⇢/(8⇡µ
i

), where
we use the measured values of the downstream flow area A

0

from camera two and �⇢. The fitted value for µ
i

is used,
as described in the earlier section on Poiseuille flow.

V. MASS DIFFUSION.

The injected and external fluids are miscible so there is unavoidable mass di↵usion across an interface between the
two. Using a procedure similar to that described in [S16], we estimate the di↵usion constant D̃ between a 7:3 corn
syrup, water mixture and pure corn syrup (Karo brand light) to be approximately 1.2⇥ 10�6 cm2/s. Combining this
with typical flow parameters, we estimate the Péclet and Schmidt numbers for the trials of Fig. 2 to lie in the range
Pe = L

0

U
0

/D̃ 2 (2.1⇥ 104, 7.9⇥ 105) and Sc = Pe/Re ⇡ 5.2⇥ 105. The advective time scale for Fig. 2 trials is in the
range T

0

2 (1.6, 5.6) s. We therefore estimate that mass di↵usion begins to play a role after approximately 9 hours,
whereas the time scale of an experimental trial is less than 10 minutes.
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