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ABSTRACT

We study the effect of structured higher-order interactions on the collective behavior of coupled phase oscillators. By combining a hypergraph
generative model with dimensionality reduction techniques, we obtain a reduced system of differential equations for the system’s order
parameters. We illustrate our framework with the example of a hypergraph with hyperedges of sizes 2 (links) and 3 (triangles). For this case,
we obtain a set of two coupled nonlinear algebraic equations for the order parameters. For strong values of coupling via triangles, the system
exhibits bistability and explosive synchronization transitions. We find conditions that lead to bistability in terms of hypergraph properties
and validate our predictions with numerical simulations. Our results provide a general framework to study the synchronization of phase
oscillators in hypergraphs, and they can be extended to hypergraphs with hyperedges of arbitrary sizes, dynamic-structural correlations, and
other features.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0116747

Synchronization of networks of coupled oscillators is one of
the most iconic problems in complex systems, with applica-
tions in biology,1,2 physics,3 and engineering.4–6 Usually, cou-
pling between oscillators is assumed to be mediated by pair
interactions. Recently, motivated by applications in physics7,8

and biology,1,9 there has been much interest in studying the
effect of higher-order interactions, i.e., simultaneous interactions
between multiple oscillators, on synchronization patterns.10–15 In
this paper, we study the synchronization of coupled phase oscil-
lators on complex hypergraphs. We use a hypergraph generative
model and develop a mean-field analysis using dimensionality
reduction techniques to obtain low-dimensional descriptions of
synchronization in terms of hypergraph structural parameters.
We find conditions on the hypergraph that result in bistability.
Our results provide a general and flexible framework to study
synchronization on hypergraphs.

I. INTRODUCTION

Synchronization processes are present in many applications.16,17

Some common examples include collections of flashing fireflies,18,19

crickets chirping in unison,16 neuronal networks,20 cortical brain
rhythms,1 and power grid dynamics.21,22 A paradigmatic model for
synchronization is the Kuramoto model of phase oscillators,23,24 in
which synchronization is mediated by pairwise interactions between
oscillators. The Kuramoto model on complex networks has many
applications and is one of the central models in complex science.25–27

Recently, with motivation from fundamental principles7,8 and appli-
cations to neuroscience,1,9 there has been much attention devoted
to synchronization in networks with higher-order interactions, i.e.,
simultaneous interactions between multiple nodes. Higher-order
interactions in coupled phase oscillator systems result in inter-
esting phenomena like abrupt switching between incoherent and
synchronized states, hysteresis, and bistability.10,12 So far, most of
the analytical results have been obtained for the all-to-all coupling
case, and there is no clear way to predict the effect of complex inter-
action structure on these phenomena. In this paper, we study the
synchronization of phase oscillators on complex hypergraphs, i.e.,
networks with higher-order interactions and non-trivial connectiv-
ity. To do so, we restrict our attention to a specific but flexible
hypergraph generative model that allows us to generate and study
hypergraphs with tunable characteristics. By using this generative
model in combination with the Ott–Antonsen ansatz,28 we are able
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to obtain low-dimensional descriptions of the system’s order param-
eters in terms of the hypergraph’s structural properties. We illustrate
our approach with two examples of a hypergraph with interactions
of sizes 2 (links) and 3 (triangles): a random hypergraph and a
hypergraph constructed in such a way that the numbers of links and
triangles at each node are correlated. We derive analytical conditions
on the properties of these hypergraphs that result in synchroniza-
tion, incoherence, or bistable behavior and validate our results with
numerical simulations.

This paper is organized as follows. In Sec. II, we present our
hypergraph generative model and the Kuramoto model on hyper-
graphs. In Sec. III, we use the Ott–Antonsen ansatz and a mean-field
approximation to obtain low-dimensional descriptions for the local
and global order parameters. In Sec. IV, we demonstrate our frame-
work on two example hypergraphs. In Sec. V, we discuss our results
and their limitations.

II. MODEL

In this section, we introduce the hypergraph generative model
and the Kuramoto model on hypergraphs.

A. Hypergraph model

A hypergraph is a pair of nodes and hyperedges (V, E), where
V is the set of nodes labeled n = 1, 2 . . . , N, and the set of hyper-
edges E is a set of subsets of V. The mth order degree of a node n
is given by k(m)

n , which gives the number of hyperedges with size
m that node n is a part of. The hyperdegree of node n is given
by kn =

{

k(1)
n , k(2)

n , . . . , k(M)
n

}

, where M is the largest hyperedge size.
For simplicity, we refer to hyperedges of sizes 2 and 3 as links and
triangles, respectively. We denote by N(k) the number of nodes
with hyperdegree k, and define the hyperdegree distribution as
P(k) = N(k)/N.

We will consider synchronization on a class of hypergraphs
produced by the following generative model. For a given set of
nodes n = 1, 2, . . . , N and a specified vector of target hyperdegrees
[k1, k2, . . . , kN], the hyperedge {i1, i2, . . . , im} is created with prob-
ability a(m)(ki1 , ki2 , . . . , kim). By counting the expected number of
hyperedges of size m in two different ways, one finds that the
functions a(m) should be normalized such that

1

m!

∑

k1 ,...,km

N(k1) · · · N(km)a(m)
(

ki1 , ki2 , . . . , kim

)

= 1

m

∑

k

N(k)k(m).

(1)

This model is a natural extension of latent feature models29 to hyper-
graphs and allows us to generate hypergraphs with heterogeneous
and correlated hyperdegree distributions.30 The model can be easily
extended to the case where hyperedges connect preferentially nodes
with certain attribute variables such as nodal community index,
oscillator frequency, or other dynamical parameters. On the other
hand, the generative model is not able to capture features beyond
the preference for hyperedges to connect certain types of nodes. An
important class of hypergraphs that is not captured by this gen-
erative model is that of simplicial complexes, where triangles only

connect triads of nodes that form a clique with pairwise connec-
tions (for simplicial complex generative models, see for example,
Refs. 31–34).

Our subsequent results will apply to the “expected” network
generated from this generative model. Such an approach is similar to
the analysis of network processes based on the configuration model
(e.g., Ref. 35) or the annealed network approximation.36–38 A similar
approach has been successfully applied to the Kuramoto model on
pairwise networks.39 The limitations of this approach are discussed
in Sec. V.

B. Higher-order Kuramoto model

The Kuramoto model of phase synchronization can be gener-
alized to account for higher-order interactions in different ways. In
Refs. 13–15, the synchronization of phases defined on the faces of a
simplicial complex is studied. Here, following Refs. 10 and 12, we
will instead consider synchronization mediated by the simultane-
ous, nonlinear interaction of all the phases belonging to the edges
of a hypergraph. In this context, the Kuramoto model for the phases
θn of nodes n = 1, 2, . . . , N on a hypergraph H can be generalized to

dθn

dt
= ωn +

∑

n∈e∈E

Ke

∑

P

sin
(

cT
e PEθe

)

, (2)

where the coupling term sums over all edges e ∈ E containing node
n, Ke is the coupling to edge e, Eθe is the vector of phases of oscillators
in edge e with θn placed in the last component, and P is a permuta-
tion of the remaining components. Adding over all permutations P

ensures symmetric coupling from all the other nodes in the hyper-
edge. The integer-valued vector ce determines how the phases are
combined inside the sine function and satisfies cT

e 1 = 0, where 1 is a
vector of ones. In the case of the pairwise all-to-all Kuramoto model,
for example, Ke = K/N and ce = [1, −1]T.

Here, we will study the case where there are hyperedges only of
sizes 2 (links) and 3 (triangles), Ke = K2, ce = [1, −1]T for links, and
Ke = K3, ce = [2, −1, −1]T for triangles. With these choices, Eq. (2)
can be rewritten as

dθn

dt
= ωn + K2

N
∑

m=1

Anm sin (θm − θn)

+ K3

∑

j,m

Bnjm sin
(

2θj − θm − θn

)

, (3)

where we assume that the hypergraph is described by symmetric
tensors with entries Anm and Bnjm, where Anm = 1 (0) if nodes n, m
are connected (not connected) by a link, and Bnjm = 1(Bnjm = 0) if
nodes n, j, m are connected (not connected) by a triangle. However,
the techniques that we present can be applied to the general case
(2) as long as the hypergraph is generated (or can be approximated)
with a generative model like the one discussed in Sec. II A.

Higher-order interactions of the form of Eq. (3) can arise
when a phase oscillator model is derived from an expansion
beyond the first order of the complex Ginzburg–Landau equation
(e.g., see Refs. 7 and 8). The diffusive-type coupling case where
ce = [1, 1, −2]T for triangles has been studied for the all-to-all case
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in Ref. 12, so here we focus for simplicity on the form of the
interactions in Eq. (3).

III. DIMENSIONALITY REDUCTION

In this section, we use the Ott–Antonsen ansatz28 to derive
a low-dimensional description of the dynamics and use it to find
semi-analytical expressions for the order parameters. In order to
accomplish this, we use a generalization of the ansatz in which
oscillators are divided into subgroups of oscillators with the same
hyperdegree, with oscillators in each subgroup assumed to be sta-
tistically equivalent.39–41 Furthermore, we neglect pair correlations
among oscillators connected in triangles. These approximations are
presented and discussed below. Using this procedure, we obtain a
low-dimensional description in terms of the functions determin-
ing the probabilities of connection between the different subgroups,
i.e., the functions a(m). This low-dimensional description allows us
to find conditions for synchronization and for the appearance of
bistability of the synchronized and incoherent states.

Defining the local order parameters

R(1)
n =

∑

m

Anmeiθm , R(2)
n =

∑

m,j

Bnjme2iθje−iθm , (4)

we can rewrite Eq. (3) as

dθn

dt
= ωn + Im

(

Hne−iθn
)

, (5)

where we defined Hn = K2R
(1)
n + K3R

(2)
n .

Following Ref. 39, now we assume, based on the construction
of the hypergraph from the generative model in Sec. II A, that nodes
with the same hyperdegree k are statistically equivalent, and make
the identification

R(1)
n → R(1)(kn, t),

R(2)
n → R(2)(kn, t).

(6)

Moving to the continuum description in the limit as N → ∞, we
define f(θ , ω, k, t) to be the density of oscillators with phase θ , nat-
ural frequency ω, and hyperdegree k at time t. Thus, we divide the
population of oscillators into subpopulations characterized by their
hyperdegree, which acts as a population parameter as in Refs. 39–41.
In a mean-field approximation, the global order parameter R(1)(k)

can be written in terms of the connection probabilities a(2)(k, k′) and
a(3)(k, k′, k′′) introduced in Sec. II A as

R(1)(k) =
∑

k′
N(k′)a(2)(k, k′)

∫∫

f(θ ′, ω′, k′, t)eiθ ′
dθ ′dω′. (7)

Similarly, the global order parameter R(2)(k) can be written in terms of the joint density of two oscillators, f2(θ , ω, θ ′, ω′, k, k′, t) as

R(2)(k) =
∑

k′ ,k′′
N(k′)N(k′′)a(3)(k, k′, k′′)

∫∫∫∫

f2(θ
′, ω′, θ ′′, ω′′, k′, k′′, t)e2iθ ′

e−iθ ′′
dθ ′dω′dθ ′′dω′′

≈
∑

k′ ,k′′
N(k′)N(k′′)a(3)(k, k′, k′′)

∫∫

f(θ ′, ω′, k′, t)e2iθ ′
dω′dθ ′

∫∫

f(θ ′′, ω′′, k′′, t)e−iθ ′′
dω′′dθ ′′, (8)

where, to make further progress, we have neglected pair correlations
and assumed that the joint density can be written as

f2(θ
′, ω′, θ ′′, ω′′, k′, k′′, t) = f(θ ′, ω′, k′, t)f(θ ′′, ω′, k′′, t). (9)

We offer the following heuristic arguments to support this assump-
tion: first, in the limits of total incoherence and total synchroniza-
tion Eq. (9) is exact. Second, when each oscillator is connected to
many others, the correlations between any specific pair of oscilla-
tors should be small. Thus, we anticipate that this approximation
will be a good one either close to total synchrony or incoherence or
for dense hypergraphs. This approximation is discussed further in
Sec. V. For the regular Kuramoto model the effect of including pair
(and higher) correlations has been studied in Ref. 42.

Due to the conservation of oscillators, the evolution of f is
governed by the continuity equation

∂f

∂t
+ ∂

∂θ

{

(ω + Im[He−iθn ])f

}

= 0. (10)

To reduce the dimensionality of this system, we write f as a Fourier
series,

f = g(ω)

2π

[

1 +
∞

∑

n=1

bn(ω, k, t)e−inθ + c.c.

]

, (11)

where c.c. denotes complex conjugate, and use the Ott–Antonsen
ansatz28 bn(ω, k, t) = (b(ω, k, t))n. Substituting this ansatz in
Eq. (10), one finds that the continuity equation is satisfied if b(ω, k, t)
satisfies the ODE

db

dt
+ iωb − 1

2
[H − H∗b2] = 0. (12)

Substituting Eq. (11) in Eqs. (7) and (8), we obtain

R(1)(k) =
∑

k′
N(k′)a(2)(k, k′)

∫

g(ω′)b(ω′, k′, t)dω′, (13)
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R(2)(k) =
∑

k′ ,k′′
N(k′)N(k′′)a(3)(k, k′, k′′)

∫

g(ω′)b2(ω′, k′, t)dω′

×
∫

g(ω′′)b∗(ω′′, k′′, t)dω′′. (14)

Assuming a Lorentzian distribution of frequencies,
g(ω) = 1/(π[12 + (ω − ω0)

2]) and using contour integration to
evaluate the integrals in Eqs. (13) and (14), we get

R(1)(k) =
∑

k′
N(k′)a(2)(k, k′)b(ω0 − i1, k′, t), (15)

R(2)(k) =
∑

k′ ,k′′
N(k′)N(k′′)a(3)(k, k′, k′′)

× b2(ω0 − i1, k′, t)b∗(ω0 − i1, k′′, t). (16)

Inserting these in Eq. (12) and letting ω = ω0 − i1 and b(k, t)
= b(ω0 − i1, k, t), we get

0 = db(k)

dt
+ i(ω0 − i1)b(k)

− K2

2

∑

k′
N(k′)a(2)(k, k′)[b(k′) − b(k′)∗

b2(k)]

− K3

2

∑

k′ ,k′′
N(k′)N(k′′)a(3)(k, k′, k′′)

× [b2(k′)b(k′′)∗ − b2(k′)∗
b(k′′)b2(k)]. (17)

Equation (17) provides a low-dimensional description of the
dynamics in terms of the hypergraph generative functions a(2) and
a(3). While the number of variables b(k) might still be large, Eq. (17)
allows us to study the bifurcations and fixed points of the system.
For this, it is useful to define the global order parameters

R(1) = 1

N〈k(1)〉
N

∑

n=1

R(1)
n , R(2) = 1

2N〈k(2)〉
N

∑

n=1

R(2)
n , (18)

which can be written in terms of b(k, t) as

R(1)(t) = 1

N〈k(1)〉
∑

k,k′
N(k)N(k′)a(2)(k, k′)b(k′, t), (19)

R(2)(t) = 1

2N〈k(2)〉
∑

k,k′ ,k′′
N(k)N(k′)N(k′′)

× a(3)
(

k, k′, k′′) b2(k′, t)b∗(k′′, t). (20)

The factor of 2 in the definition of R(2) accounts for the fact that
each triangle is counted twice in the calculation of R(2)

n ; note that in
the case of complete synchronization, b = 1, the normalization (1)
ensures R(2) = 1.

In the following, we will demonstrate the application of this
formalism to selected examples.

IV. EXAMPLES

In this section, we apply our theory to two examples: a ran-
dom hypergraph analogous to an Erdös–Rényi network, and a
hypergraph where the triangle and link degrees are correlated.

A. Random hypergraph

We start by considering the hypergraph analog of an
Erdös–Rényi network, i.e., a hypergraph where a link connects every
pair of nodes with probability p2 and a triangle connects every triad
of nodes with probability p3. Synchronization on this hypergraph
was studied numerically in Ref. 10. In terms of the average numbers
of links and triangled per node, 〈k〉 and 〈q〉, using Eq. (1), we obtain

p2 = a(2)(k, k′) = 〈k〉
N

, (21)

p3 = a(3)(k, k′, k′′) = 2〈q〉
N2

, (22)

where we assumed N � 1. Inserting these in Eq. (17), we find that
all b(k) satisfy the same equation,

0 = db(k)

dt
+ 1b(k) + iω0b(k) − K2〈k〉

2
[V1 − b2(k)V∗

1]

− K3〈q〉[V∗
1V2 − b2(k)V∗

2V1], (23)

where

V1 = 1

N

∑

k′
N(k′)b(k′), (24)

V2 = 1

N

∑

k′
N(k′)b(k′)2. (25)

Since all b(k) approach the same attractors, we look for station-
ary rotating solutions of the form b(k) = bei�t, V1(t) = V1e

i�t,
V2(t) = V2e

2i�t. Each b(k) is assumed to have the same complex
phase dictated by the fourth and fifth terms of Eq. (23). After sep-
arating real and imaginary parts, we find that � = −ω0 and that b
satisfies b = 0 or (note that V1 = b, V2 = b2)

0 = b2(K2〈k〉 + 2K3〈q〉b2) + 2 − (K2〈k〉 + 2K3〈q〉b2).

Solving for b and noting that, from Eq. (19), |R(1)| = b, we get

|R(1)| =

√

√

√

√

√

K̂3 − K̂2 ±
√

(

K̂2 + K̂3

)2

− 8K̂3

2K̂3

, (26)

where K̂2 = 〈k〉K2 and K̂3 = 2〈q〉K3. This generalizes the all-to-all
result [Eq. (5) in Ref. 10] to random hypergraphs by properly rescal-
ing the dyadic and triadic coupling strengths. (The factor of 2 in
K̂3 can be understood in the context of the normalization used in
Ref. 10 by noting that in the all-to-all case the mean triangle degree
is 〈q〉 ≈ N2/2.) Depending on the values of K̂2 and K̂3, Eq. (26)
can have zero, one, or two real solutions. As noted in Ref. 10, for
K̂3 < 2, the system undergoes a supercritical pitchfork bifurcation
from incoherence (R(1) = 0) to synchronization (|R(1)| ¿ 0) at K̂2 = 2.
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FIG. 1. Phase diagram for a random hypergraph as a function of the parameters

K̂2 = 〈k〉K2 and K̂3 = 2〈q〉K3. The bistable region is separated from the inco-
herent region by a saddle-node bifurcation and from the synchronized region by
a subcritical pitchfork bifurcation. The incoherent and synchronized regions are
separated by a supercritical pitchfork bifurcation.

For K̂3 > 2, the system is incoherent for K̂2 < 2
√

2
√

K̂3 − K̂3. At

K̂2 = 2
√

2
√

K̂3 − K̂3, there is a saddle-node bifurcation where a pair
of stable and unstable synchronized solutions appear. At K̂2 = 2, the
unstable solution disappears in a subcritical pitchfork bifurcation.
The phase diagram, mirroring that for the all-to-all case in Ref. 10,
is shown in Fig. 1.

B. Correlated links and triangles

Now, we move to an example where the structure of links
is correlated with the structure of triangles. We assume that a
prescribed degree sequence is given, {k1, k2, . . . , kN}, and links are
created between nodes according to the Chung–Lu model,32 so that

a(2)(k, k′) = kk′

N〈k〉 . (27)

Following Ref. 30, we consider a model where the probability that a
triangle connects nodes with degrees k, k′, and k′′ is given by

a(3)(k, k′, k′′) = 2kk′k′′

(N〈k〉)2 . (28)

The normalization is chosen using Eq. (1) so that 〈k(2)〉 = 〈k(3)〉
= 〈k〉. By construction, the expected degrees k(2)

n and k(3)
n for a given

node n coincide, so we call this model correlated links and triangles.30

The model is illustrated in Fig. 2. Since a node is only characterized

by a single degree k, in the rest of this section, we index all quantities
by k only, i.e., we write bk instead of b(k). Using the forms for a(2)

and a(3) above, Eq. (17) becomes

0 = dbk

dt
+ 1bk + iω0bk − K2

2

∑

k′
N(k′)

kk′

N〈k〉
[

bk′ − b∗
k′b

2
k

]

− K3

2

∑

k′ ,k′′
N(k′)N(k′′)

2kk′k′′

(N〈k〉)2

[

b2
k′b

∗
k′′ − b2∗

k′ bk′′b2
k

]

. (29)

Defining

U1 =
∑

k′

k′N(k′)bk′

N〈k〉 , (30)

U2 =
∑

k′

k′N(k′)b2
k′

N〈k〉 , (31)

Eq. (29) can be rewritten as

0 = dbk

dt
+ 1bk + iω0bk − K2

2
kU1

+ K2

2
kb2

kU
∗
1 − K3kU2U

∗
1 + K3kb2

kU
∗
2U1, (32)

where 1 comes from the Lorentzian distribution of frequen-
cies (g(ω) = 1/(π[12 + (ω − ω0)

2])). As compared to Eqs. (13)
and (14), the ODE on Eq. (32) is much simplified. We have reduced
Eqs. (7) and (8) to a closed set of ODEs in terms of variables bk(t)
coupled to two global variables U1 and U2. Now, seeking a sta-
tionary rotating solution, we let bk(t) = bke

i�t, U1(t) = U1e
i�t and

U2(t) = U2e
i�t. Then Eq. (32) becomes

0 = i�bke
i�t + 1bke

i�t + iω0bke
i�t − K2

2
kU1e

i�t

+ K2

2
kb2

kU1e
i�t − K3kU2U1e

i�t + K3kb2
kU2U1e

i�t. (33)

The imaginary part of Eq. (33) gives � = −ω0, and the real part
simplifies to

0 = 1bk − K2

2
kU1 + K2

2
kb2

kU1 − K3kU2U1 + K3kb2
kU2U1. (34)

Solving for bk, we get

bk(U1, U2) =
−1 +

√

12 +
[

K2kU1 + 2K3kU2U1

]2

K2kU1 + 2K3kU2U1
, (35)

where we chose the solution that satisfies bk → 0 when K3 = 0,
K2 → 0. Inserting this expression into the definition of U1 and U2,
we find the self-consistent equations

U1 = 1

N〈k〉
∑

k

N(k)kbk(U1, U2), (36)

U2 = 1

N〈k〉
∑

k

N(k)kb2
k(U1, U2). (37)
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FIG. 2. Schematic representation of the generative model for the correlated links
and triangles hypergraph. (Top) Given a pair of nodes with degrees ki , kj , a link is

created with probability a(2)(k, k′) = kk′/(N〈k〉) (Ref. 32). (Bottom) Given three
nodes with degrees ki , kj , km, a triangle joining them is created with probability

a(3)(k, k′, k′′) = 2kk′k′′/(N〈k〉)2 (Ref. 30).

Using Eqs. (27) and (28) in Eqs. (18) and (19), we find that the order
parameters R(1) and R(2) can be expressed in terms of U1 and U2 as

R(1) = U1, (38)

R(2) = U2U
∗
1 . (39)

Note that setting K3 = 0 in Eq. (35), one recovers after some manip-
ulation the degree-based mean-field approximation for the network
Kuramoto model [i.e., Eq. (25) in Ref. 43 or Eq. (13) in Ref. 44].

With the self-consistent Eqs. (35)–(37), we now proceed
to determine the nature of the bifurcation from incoherence
(U1, U2 = 0) to synchronization (U1, U2 > 0) with a perturbative
approach. Expanding (35) for small U1, U2 we obtain up to cubic
order in U1 (note that U2 ∼ U2

1)

U1 = 〈k2〉
2〈k〉K2U1 + 〈k2〉

〈k〉 K3U1U2 − 〈k4〉
8〈k〉K3

2U
3
1, (40)

U2 = 〈k3〉
4〈k〉K3

2U
2
1. (41)

Letting U1 → 0+ to find the onset of synchronization, the leading
order terms give the critical coupling strength

K2 = Kc
2 = 2〈k〉

〈k2〉 . (42)

Next, solving for U1, we find, after canceling the incoherent solution,
that close to the transition U1 satisfies

aU2
1 = K2

Kc
2

− 1, (43)

where

a =
( 〈k4〉

8〈k〉K3
2 − 〈k2〉〈k3〉

4〈k〉2
K2

2K3

)

. (44)

Thus, a bifurcation occurs at K2 = Kc
2, which is independent of K3

and equal to the critical constant for the network Kuramoto model

in the mean-field approximation.43,44 The bifurcation is supercritical
for a > 0 and subcritical for a < 0. Evaluating Eq. (44) at K2 = Kc

2,
we find that the transition is subcritical (and, therefore, explosive
and with hysteretic behavior) for

K3 > Kc
3 = 〈k4〉〈k〉2

〈k2〉2〈k3〉 = 〈k4〉〈k〉
2〈k2〉〈k3〉Kc

2. (45)

For regular networks with ki = k, there is bistability for
K3 > Kc

2/2 = 1/〈k〉. For networks with a diverging fourth moment

FIG. 3. The order parameter for a correlated hypergraph for two different cases:
(a) K2 < Kc

2 and (b) K2 > Kc
2 . The numerical simulations are shown with the

circled and crossed markers; the blue circles are the order parameter when grad-
ually increasing K2, whereas the pink crosses show the order parameter when
gradually decreasing K2. The solid black line is the stable order parameter and the
dashed black line is the unstable order parameter found using mean-field theory.
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FIG. 4. The time series plot of the order parameter in three different regimes: (a) incoherent regime, (b) bistable regime, and (c) synchronized regime for a correlated
hypergraph. The five different solid lines give the order parameter for five different initial conditions. The red solid line is the stable order parameter predicted by mean-field
theory whereas the dotted line is the unstable order parameter predicted by mean-field theory.

[such as networks with a power-law degree distribution with expo-
nent γ ∈ (4, 5) in the limit N → ∞], Kc

3 diverges and there is no
bistability.

Now, we validate our theoretical results with numerical sim-
ulations. First, we generate a sequence of N = 5000 target degrees
{k1, k2, . . . , kN} drawn randomly from a uniform distribution in
{30, 31, . . . , 70}. Then, we create links and triangles connecting
nodes according to Eqs. (27) and (28) and generate a synthetic
hypergraph. To each oscillator, we assign a frequency drawn
from a Lorentzian distribution with 1 = 1 and ω0 = 0 by setting
ωn = tan (π(2n − N − 1)(N + 1)). For this hypergraph, we have
Kc

2 ≈ 0.038 and Kc
3 ≈ 0.021.

In Fig. 3, we show the steady-state value of |R(1)| as K2 is adia-
batically increased and then decreased (blue circles and pink crosses,
respectively) for K3 = 0.02 < Kc

3 [Fig. 3(a)], and K3 = 0.05 > Kc
3

[Fig. 3(b)]. For each K2, Eq. (3) was solved numerically using Heun’s
method with a time step 1t = 0.002 for 100 time units, and the value

FIG. 5. Phase diagram for the correlated hypergraph obtained from numerical
solution of Eqs. (35)–(37). The vertical solid black line represents Kc

2 . The lower
horizontal solid red line corresponds toK3 = 0.02 [Fig. 3(a)]. The upper horizontal
solid red line corresponds to K3 = 0.05 [Fig. 3(b)].

of |R(1)| was averaged for the last 4 time units. For K3 = 0.02 < Kc
3

[Fig. 3(a)], the transition to synchronization is continuous and there
is no hysteresis. On the other hand, for K3 = 0.05 > Kc

3 [Fig. 3(b)],
the transition is explosive, and there is a hysteresis loop as K2 is
increased and then decreased (indicated with arrows). In general,
the numerical solution of Eq. (3) agrees well with the numerical
solution of the self-consistent Eqs. (36) and (37), shown as black
lines, except for K2 ≈ Kc

2. The dashed black line corresponds to an
unstable solution of Eqs. (36) and (37). The observation that higher-
order interactions promote bistability and hysteresis are consistent
with findings in Refs. 10 and 12, where higher-order interactions
occur via all-to-all simplicial complexes. We note the discrepancy
between the order parameters predicted by the mean-field theory
and those calculated numerically. This could be a result of the finite
network size we used for numerical simulations or our neglect of
pair correlations in Eq. (9).

To further illustrate the bistable nature of the system, in
Fig. 4, we plot |R(1)(t)| vs t for fixed K3 = 0.05 and K2 = 0.005
(a), K2 = 0.03 (b), and K2 = 0.07 (c), corresponding to the inco-
herent, bistable, and synchronized regimes, respectively. For each
value of K2, we use five different initial conditions with |R(1)(0)|
≈ 0, 0.2, 0.4, 0.6, 0.8. The solid (dashed) red lines indicate the sta-
ble (unstable) solutions of the steady-state self-consistent Eqs. (36)
and (37). The values of |R(1)(t)| approach the values predicted by
the mean-field theory, including both stable values in the bistable
regime [Fig. 4(b)].

In Fig. 5, we present the phase diagram for this hypergraph
model obtained from the numerical solution of Eqs. (35)–(37). The
horizontal red lines represent the parameters used in Fig. 3, and the
circles indicate the parameters used in Fig. 4.

V. DISCUSSION

In this paper, we explored the synchronization of phase oscilla-
tors on hypergraphs with heterogeneous structures, generalizing the
results in Refs. 10 and 12 to more complex scenarios. The mean-field
approximation allowed us to predict the onset of synchronization,
explosive transitions between synchronized and incoherent states,
and their bistability as a function of system parameters. In the
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absence of hyperedges of size larger than 2, we recover a smooth
transition between incoherent and synchronized states as found
in the standard network Kuramoto model.25,43 Sufficiently strong
higher-order interactions lead to an abrupt transition and bistabil-
ity of incoherent and synchronized states (see Ref. 45 for a broader
perspective of this issue). For a hypergraph with correlated links and
triangles, we showed that the onset of synchronization and the onset
of bistability depend on the moments of the degree distribution. For
the hypergraph model we considered, higher-order interactions only
affect the onset of bistability, but not the onset of synchronization
(however, see additional discussion on this point below). We have
also verified that similar results hold true for networks with power
law and bimodal degree distributions.

The main limitations of our study are the requirement for
hypergraphs to be produced by the generative model of Sec. II,
the use of the mean-field approximation, and the use of approx-
imation (9). [Here, we refer to the approximation that all nodes
with the same hyperdegree are statistically equivalent as the mean-
field approximation, rather than neglecting pair correlations in
Eq. (9)]. The generative model we used assumes that the pres-
ence of a hyperedge connecting a group of nodes depends only
on a set of pre-determined quantities of these nodes, which might
not capture the generative mechanisms behind some real-world
or model hypergraphs. For example, a simplicial complex model
where triangles only join triples of nodes that are already form-
ing a clique (as assumed in some studies10,46) is not included in
the class of models that the generative model in Sec. II covers. In
such a model, correlations between the states of nodes belonging
to the same triangle could be non-negligible, and, thus, approxima-
tion (9) could break down. In that case, the techniques introduced in
Ref. 42 could be needed to account for pair correlations. For exam-
ple, for the SIS model on a simplicial complex, Ref. 47 finds that
the epidemic threshold is only predicted correctly when accounting
for pair correlations. In addition, Ref. 48 recently noted that syn-
chronization properties in the strongly synchronized regime differ
between simplicial complexes and random hypergraphs. Exploring
the limitations and possible extensions of our method for simplicial
complexes is an interesting problem left for future work.

Despite the limitations discussed above, our framework con-
stitutes a flexible method to study the synchronization of phase
oscillators on complex hypergraphs. While we demonstrated our
framework in a particular case [hypergraphs constructed following
Eqs. (27) and (28)], we emphasize that the techniques presented
here allow for the study of a much larger class of systems. Examples
include hypergraphs with independently chosen link and triangle
degree distributions, correlations between hyperedge degrees and
frequencies, and varying degrees of correlations between link and
triangle degrees. The techniques presented here open a way to
understand the effects that a large class of structural properties of
hypergraph connectivity can have on the synchronization of coupled
oscillators.
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