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Competitive suppression of synchronization and nonmonotonic transitions
in oscillator communities with distributed time delay
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Community structure and interaction delays are common features of ensembles of network coupled oscillators,
but their combined effect on the emergence of synchronization has not been studied in detail. We study the
transitions between macroscopic states in coupled oscillator systems with community structure and time delays.
We show that the combination of these two properties gives rise to nonmonotonic transitions, whereby increasing
the global coupling strength can both inhibit and promote synchronization, yielding both desynchronization and
synchronization transitions. For relatively wide parameter choices, we also observe asymmetric suppression of
synchronization, where communities compete to suppress one another’s synchronization properties until one or
more win, totally suppressing the others to effective incoherence. Using the ansatz of Ott and Antonsen, we
provide analytical descriptions for these transitions that confirm numerical simulations.
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I. INTRODUCTION

Understanding the emergence of collective behavior in
ensembles of interacting dynamical systems remains an im-
portant area of research in the nonlinear dynamics community
because of synchronization’s central role in a wide range of
phenomena [1,2]. Examples from both natural and engineered
systems include cardiac pacemaker dynamics [3], power grids
[4], and Josephson junctions [5]. The Kuramoto phase oscil-
lator model and its variants have proven particularly useful
in building an understanding of collective behavior [6], and
a large body of literature has identified features that give
rise to rich nonlinear behavior, including external forcing
[7], multimodal frequency distributions [8], and mixed sign
coupling [9].

In many applications, oscillators are organized into well-
defined communities, where oscillators in the same com-
munity are more strongly coupled with each other than
with oscillators in other communities. Examples include en-
gineered communities of synchronizing bacteria (so-called
biopixels) [10,11], interconnected regional or national power
grid networks [12,13], microgrids [14], and synchronization
of neuronal oscillations from different brain regions [15,16].
In addition to the topological effects that community struc-
ture has on synchronization dynamics, time delays in the
transmission of information from one community to another
inevitably exist when the network structure is related to an
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underlying geometry, as in the examples listed above. While
the effects of community structure and time delay on the
synchronization dynamics have been studied separately in the
context of the Kuramoto model [17–23], their combined effect
on the collective dynamics remains, with a few exceptions
(e.g., Ref. [24]), relatively unexplored. Here we address this
gap and uncover a number of interesting nonlinear behaviors.

The most notable phenomenon that arises from the combi-
nation of time delays and community structure is a number of
nonmonotonic synchronization transitions, where increasing
the global coupling strength can either inhibit or promote
synchronization. In the case of two communities (illustrated
in Fig. 1), this manifests first in a desynchronization transition
where locally synchronized states give way to incoherence,
followed by a (subcritical) synchronization transition where
incoherence gives way to global synchronization. For more
than two communities, a third transition occurs with inco-
herence giving way to local synchronization, which is then
followed by the transitions described above. In addition to
these nonmonotonic transitions, when system the commu-
nities’ parameters are chosen to be asymmetric, we find
that the oscillator communities compete and asymmetrically
suppress one another until one or more “win out,” totally
suppressing the others’ synchronization properties. The role
played by each community, i.e., which wins out and is able to
remain synchronized longer, depends nonlinearly on the time
delay.

II. OSCILLATOR COMMUNITIES WITH
DISTRIBUTED TIME DELAY

We consider here a system of C � 2 communities of cou-
pled phase oscillators governed by

θ̇ σ
i = ωσ

i +
C∑

σ ′=1

Kσσ ′

Nσ ′

Nσ ′∑
j=1

sin
[
θσ ′

j

(
t − τσσ ′

i j

) − θσ
i (t )

]
, (1)
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FIG. 1. Two oscillator communities. Schematic illustration of
two oscillator communities with intra- and intercommunity coupling
strengths k and K . Interactions between oscillators in different com-
munities have a characteristic delay time T .

where θσ
i represents the phase of oscillator i in community σ ,

ωσ
i is its natural frequency, which is assumed to be drawn from

the distribution gσ (ω), Kσσ ′
is the coupling strength between

oscillators in communities σ and σ ′, τσσ
i j is the time delay

between oscillators i and j in communities σ and σ ′, which is
assumed to be drawn from the distribution hσσ ′ (τ ), and Nσ is
the number of oscillators in community σ .

To begin our analysis of the dynamics of Eq. (1), we
make a few simplifying parameter choices. First, we allow
for two coupling strengths: k = Kσσ and K = CKσσ ′

/2 (for
σ ′ �= σ ) denoting intra- and intercommunity coupling. Next,
we assume that within each community time delays are
zero, i.e., hσσ (τ ) = δ(τ ), but between different communities
the distribution hσσ ′ is exponential with mean Tσ ′ , namely,
hσσ ′ (τ ) ∝ e−τ/Tσ ′ . We also consider the case where all com-
munities are of the same size, i.e., Nσ = N for all σ , and
we assume that frequency distributions are Lorentzian with
community-specific mean �σ and width �, i.e., gσ (ω) =
�/{π [�2 + (ω − �σ )2]}. Next, seeking a description for the
local order parameters zσ = N−1 ∑N

j=1 eiθσ
j describing the

degree of synchronization within each community, we apply
the dimensionality reduction technique of Ott and Antonsen
[25,26] to obtain the following system of reduced equations:

żσ = −zσ + i�σ zσ + k

2

(
zσ − z∗

σ z2
σ

)
(2)

+ K

C

∑
σ ′ �=σ

(
wσ ′ − w∗

σ ′z2
σ

)
, Tσ ẇσ = zσ − wσ , (3)

where wσ represents a time-delayed order parameter for
community σ , with σ = 1, 2, . . . ,C and the width parameter
� of the natural frequency distributions have been scaled
out. (Details of the dimensionality reduction are provided in
Appendix A).

A. Two communities

To illustrate the rich dynamics introduced by the interplay
between time delay and hierarchical community structure in
the simplest setting, we consider the case of two communities
with T1 = T2 = T , illustrated in Fig. 1. We also define κ =
(k − 2)/2, noting that for K = 0 each community undergoes
a transition to synchronization at k = 2. Therefore, κ > 0
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FIG. 2. Synchronization branches: Two communities. Local
order parameters r1 (solid blue) and r2 (dashed red) vs K for κ =
0.02, �1 = −1, �2 = 2, and time delays T = 1 (a) and 0.1 (b).
Vertical dotted lines with arrows indicate hysteresis.

(κ < 0) indicates that the isolated communities would be
synchronized (incoherent). Equations (2) and (3) become

ż1 = κz1 + i�1z1 − (1 + κ )z∗
1z2

1 + K

2

(
w2 − w∗

2z2
1

)
, (4)

ż2 = κz2 + i�2z2 − (1 + κ )z∗
2z2

2 + K

2

(
w1 − w∗

1z2
2

)
, (5)

T ẇ1 = z1 − w1, T ẇ2 = z2 − w2. (6)

Equations (4)–(6) display some remarkable dynamics,
which we illustrate in Fig. 2 for parameters κ = 0.02,
�1 = −1, �2 = 2, and T = 1, T = 0.1 for Figs. 2(a)
and 2(b), respectively. We plot the time-averaged values of
r1 = |z1| (solid blue) and r2 = |z2| (dashed red) obtained from
first slowly increasing K from 0 to 4, then slowly decreasing
it back to 0. (For some parameters, r1 and r2 have oscillatory
or chaotic dynamics, which are not the focus of this paper.)
For sufficiently small K , both communities are partially syn-
chronized with r1, r2 > 0 but are not synchronized with one
another as the angles ψ1, ψ2 do not phaselock (not shown).
We call this state local synchronization. As K is increased, we
observe that one of the communities nearly desynchronizes
(r1 ≈ 0 or r2 ≈ 0) while the other remains synchronized, a
state we call asymmetric suppression. (Although complete
incoherence is not reached because of the pulling effect of the
synchronized community, the transition is easy to see.) More
specifically, for T = 1 community 1 undergoes this transition,
whereas for T = 0.1 it is community 2 that undergoes this
transition. Since the oscillator communities differ only in
their mean frequencies �σ and have the same spread � = 1
(which typically dictates local synchronization properties) the
identity of the desynchronizing community depends on the
characteristic time delay rather than any community-specific
properties. In particular, while both communities suppress
one another’s synchronization properties, one eventually
wins out, remaining synchronized for larger values of K .
Further increasing K yields complete incoherence, i.e.,
both r1, r2 = 0, followed by a subcritical (sometimes called
“explosive” [27]) transition to global synchronization. When
K is decreased, the system undergoes a similarly explosive
desynchronization transition to incoherence at a different
coupling strength (highlighting the existence of a hysteresis
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loop), followed by a return to local synchronization through
the asymmetric suppression state. We note that the results
of the reduced equations presented here are in excellent
agreement with those obtained from direct simulations of a
microscopic system based on Eq. (1) using communities of
size N = 2 × 104, which are presented in Appendix B, and
similarly for results presented below.

To better understand this sequence of bifurcations, we
perform a linear stability analysis of the incoherent state
z1 = z2 = w1 = w2 = 0. Details can be found in Appendix C.
Linearizing Eqs. (4)–(6) and looking for values of K where
solutions have a purely imaginary growth rate, z1 = z̃1eiωt ,
z2 = z̃2eiωt , w1 = w̃1eiωt , and w2 = w̃2eiωt , we obtain the
following equations for ω and K :(

K

2

)2

= − (1 + ω2T 2)2

1 − ω2T 2
[(ω − �1)(ω − �2) + κ2], (7)

κ (2ω − �1 − �2) = 2ωT [κ2 − (ω − �1)(ω − �2)]

1 − ω2T 2
. (8)

In what follows, we will focus on the case 0 < κ � 1. (The
case of general κ is treated exactly for the symmetric case
�1 = −�2 below.) To balance Eq. (8) when κ � 1, there are
three options, to first order in κ: ω = �1 + ω1κ , ω = �2 +
ω2κ , and ω = ω3κ , where ωi are constants to be determined.
Inserting these in Eqs. (7) and (8), we find the corresponding
values of K , to leading order in κ:

K1 = 2
(
1 + �2

1T 2
)√κ (�1 − �2)

2�1T
, (9)

K2 = 2
(
1 + �2

2T 2
)√κ (�2 − �1)

2�2T
, (10)

K3 = 2
√

−�1�2. (11)

These values of K are real and positive if the frequencies
�1 and �2 have opposite sign. In general, depending on
the values of �1, �2, and T , one can have any ordering of
K1, K2, and K3, leading to different bifurcation structures.
In Fig. 3, we obtain the stability diagram for the system by
plotting K1 (solid blue), K2 (dashed red), and K3 (dot-dashed
black) as a function of T for κ = 0.02, �1 = −1, and �2 =
2. The sequence of bifurcations shows regions of stability,
with local synchronization when K < K1, K2, K3, global syn-
chronization when K > K3, asymmetric suppression where
K1 < K < K2, K3 or K2 < K < K1, K3, and incoherence when
K1, K2 < K < K3. (We note that the region of stability for
global synchronization typically stretches below K3, which
we will see below.) Regions of stability are labeled in Fig. 3
and an enlarged view of the small-T region is shown in
Fig. 3(b). We also indicate the time delays T = 1 and T =
0.1 used in Figs. 2(a) and 2(b) using vertical dotted lines.
Lastly, the interplay among K1, K2, and K3 illuminates the
asymmetric suppression state as follows. First, asymmetric
suppression states are only attainable for time delays T where
min(K1, K2) < K3. They are then realized when K surpasses
either K1 or K2, but not both. The mode that becomes unstable
at K = K1 (K = K2) is localized in community 1 (2). More
precisely, at K = K1,2 the mode with imaginary growth rate
satisfies r2,1 ∝ κ1/2r1,2 (see Appendix D), so that for κ � 1
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FIG. 3. Stability diagram: Two communities. (a) Critical cou-
pling values K1, K2, and K3 (solid blue, dashed red, and dot-
dashed black, respectively) given by Eqs. (9)–(11) vs time delay
T for κ = 0.02, �1 = −1, and �2 = 2. Stability regimes of local
synchronization, asymmetric suppression, incoherence, and global
synchronization are indicated between each curve. (b) Enlarged view
of the small-T region.

the synchronized mode is localized in one community. When
K1 < K < K2 or K2 < K < K1, we find that the values of r1,
r2 saturate at values consistent with the mode localization pre-
dicted by the linear stability analysis. In particular, when K1 <

K < K2, community 1 reaches near incoherence, whereas
when K2 < K < K1, community 2 reaches near incoherence.
Moreover, communities 1 and 2 swap roles in the asymmetric
suppression state when K1 and K2 intersect at the critical

time delay Tc =
√√

�2 − √−�1/

√√−�1�
2
2 − √

�2�
2
1, at

which point no asymmetric suppression state exists and the
local synchronization state gives way directly to incoherence.
Assuming that |�2| > |�1|, this shows that for sufficiently
small T it is community 1 that desynchronizes first, while for
larger T it is community 2 that desynchronizes first.

To gain further insight into the hysteretic nature of the
transition to global synchronization, we now focus on the
symmetric case, �2 = −�1 = �. Searching for phase-locked
solutions of Eqs. (4)–(6) of the form z1 = reiψ , z2 = reiψ+α ,
with r, ψ , α constants and w1,2 = z1,2, gives the following
implicit expression for the synchronized branch:(

K

2

)2

= �2

(1 + r2)2
+

(
r2

(1 − r2)
− κ

)2

. (12)

By taking the limit r → 0+, we see that this branch begins at
K = K3, as expected. Whether this bifurcation is subcritical
or supercritical depends on whether K ′′(0) = −4 κ+�2√

κ2+�2 is
negative or positive, respectively, indicating that bistability
exists when κ > −�2. Note that an isolated community (i.e.,
at K = 0) is incoherent (synchronized) for κ < 0 (κ > 0), and
thus the transition at K3 is subcritical if (but not only if) there
is a synchronized branch at K = 0. In Fig. 4(a), we plot the
value of r obtained from Eq. (12) together with the locally
synchronized and incoherent states, with solid and dashed
curves indicating stable and unstable branches. We note that
both stable and unstable branches describe globally synchro-
nized states, i.e., states where the communities are phase
locked, but with the unstable branch displaying smaller degree
of local synchronization. Conditions for the stability of the
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FIG. 4. Symmetric case: Two communities. (a) Local order pa-
rameters r = r1 = r2 vs K for κ = 0.02, � = �1 = −�2 = 2, and
T = 1. Solid and dashed curves indicate stable and unstable solu-
tions; vertical dotted lines with arrows indicate hysteresis. (b) Stabil-
ity diagram in (K, k) space for the symmetric case, using � = 2 and
T = 1.

incoherent state can be determined using the Routh-Hurwitz
criterion on the Jacobian associated with the linearization
of Eqs. (4)–(6) (see Appendix C 1). When 0 � κ � 1, these
conditions reduce to

2(1 + �2T 2)

√
κ

T
< K < 2�. (13)

In Fig. 4(b), we plot these bifurcation curves in the stability
diagram in (K, k) space for the symmetric case, using � = 2
and T = 1. Along with the bifurcations indicated by Eq. (13),
we also indicate the lower bound (in K) for the globally
synchronized state obtained from Eq. (12). In addition to in-
coherence, local synchronization, and global synchronization,
we identify bistable regions between incoherence and global
synchronization and between local and global synchronization
where the globally synchronized branch folds over either of
the other states.

B. Many communities

Lastly, we consider larger systems comprised of many
(C > 2) communities that display even richer dynamics. For
simplicity, we let C be even and consider the case where
� = �even = −�odd. (We note that C > 2 yields a system that
is qualitatively distinct from the C = 2 case because of the in-
clusion of time-delayed interactions between even communi-
ties and time-delayed interactions between odd communities.)
Even for the C = 4 case, the resulting dynamics are more
complicated than the C = 2 case (presented above), most no-
tably due to a richer sequence of nonmonotonic synchroniza-
tion transitions. We illustrate this in Fig. 5(a), where we plot
the local order parameters r = rσ versus coupling K for κ =
−0.05, T = 1, and � = 2. Since κ < 0, the system begins in
the incoherent state when K = 0, but as K is increased the
system undergoes a first bifurcation to local synchronization
followed by a second bifurcation back to incoherence. This
is then followed by a third subcritical bifurcation to global
synchronization. Decreasing K highlights another hysteresis
loop; however, the transitions are again more complicated,
first with a bifurcation from global synchronization to local
synchronization (via explosive desynchronization) and then a
second bifurcation back to the incoherent state.
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FIG. 5. Many communities. (a) Local order parameters r = rσ

vs K for the C = 4 community case for κ = −0.05, T = 1, and
� = �even = −�odd = 2. Solid and dashed curves indicate stable
and unstable solutions; vertical dotted lines with arrows indicate
hysteresis. (b) Stability diagram for the incoherent state in (K, k)
space for the C = 4, 16, and 64 cases along with the C → ∞ limit.

A linear stability analysis of the incoherent state (see
Appendix C 2) yields the critical values

K∗ = 2T 2�2 + 2(T κ − 1)2

nT (T κ − 1)
[(n − 1)(T κ − 1)

±
√

n2(T κ + 1)2 − 2n(T κ − 1)2 + (T κ − 1)2],
(14)

K† = 4κn(n − 1) + 4n
√

n2κ2 + �2(2n − 1)

2n − 1
, (15)

where n = C/2. We note that the ± choice in Eq. (14) cor-
responds to two different branches of the same curve. The
combination of these critical values describes the bifurcation
involving the incoherent state and allows us to sketch the
stability diagram for the incoherent state in Fig. 5(b) illustrat-
ing the C = 4, 16, and 64 cases along with the limiting case
C → ∞. The lower left regions of the diagram represent the
respective regions of stability for the incoherent state and
highlight the potential for nonmonotonic transitions as K is
increased for fixed k. In particular, for the C = 4 and 16
cases, the upper portion of the bifurcation curve (given by
K∗) decreases, then increases, giving rise to nonmonotonic
transitions similar to that observed in Fig. 5(a). This phe-
nomenon does not persist for arbitrarily large numbers of
communities, however, as can be seen for the C = 64 case,
where the K† branch intersects the K∗ branch before the
minimum is reached. In the C → ∞ limit, the bifurcation
comes solely from the K∗ branch (using the + sign), yield-
ing K∗

∞ = 4κ[T 2�2 + (T κ − 1)2]/(T κ − 1). Moreover, the
symmetry �even = �odd allows us to calculate the globally
synchronized branch analytically using similar techniques as
those used in the two community case (see Appendix C 2),
resulting in the implicit equation (defining K in terms of r)

K = 2

(2n − 1)(1 − r2)

{
(n − 1)[κ − r2(1 + κ )]

+ n2(1 − r2)

√
[κ − r2(1 + κ )]2

n2(1 − r2)2
+ (2n − 1)�2

n4(1 + r2)2

}
.

(16)
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The globally synchronized branch plotted in Fig. 5(a) is given
by Eq. (16), with solid and dashed curves indicating stable and
unstable branches.

III. DISCUSSION

Despite the possible presence of both time delays and
community structure in a number of real-world systems with
synchronization properties, e.g., bacteria [10,11], power grids
[12,13], and brain dynamics [15,16], the collective dynamics
that emerge from their combination in heterogeneous systems
has to date remained relatively unexplored. In this work,
we have demonstrated that the combination of these two
important properties in coupled oscillator systems gives rise
to a rich landscape of dynamical phenomena that does not
arise from either of these property in isolation. Using both
numerical simulations and analytical techniques, we have
shown that such systems often go through nonmonotonic
sequences of synchronization transitions, whereby increasing
the coupling strength can first inhibit synchronization and
then promote it. In the two-community case, this manifests in
a first bifurcation from local synchronization to incoherence
and then a second (subcritical) bifurcation from incoherence
to global synchronization. In the presence of more than two
communities, we demonstrated that this sequence is more
complicated, with an initial bifurcation from incoherence to
local synchronization, followed by the sequence described
above. Moreover, when communitywise parameters are cho-
sen to be asymmetric, the communities asymmetrically sup-
press one another’s synchronization properties, leading one
community to win as it forces the other to near incoherence.
Interestingly, the roles of the two communities, in terms of
which one remains synchronized while the other is pushed to
near incoherence, unexpectedly reverse depending on the time
delay. The phenomena observed in this work demonstrate the
rich dynamics that can emerge from different dynamical and
structural properties in oscillator systems.

APPENDIX A: DERIVATION OF THE
LOW-DIMENSIONAL EQUATIONS

First, we present the derivation of the low-dimension equa-
tions, namely Eqs. (2) and (3), from the full high-dimensional
system given by Eq. (1). We begin by considering the contin-
uum limit Nσ → ∞ taken in such a way that the fraction of
oscillator in each community remains constant. In this limit,
the macroscopic system state of each community σ can be
described by the density function fσ (θ, ω, t ) that describes
the fraction of oscillators in each community σ with phase
between θ and θ + dθ and frequency between ω and ω + dω

at time t . We seek to describe the macroscopic dynamics as
described by the local order parameters zσ = N−1

σ

∑Nσ

j=1 eiθσ
j .

We also introduce the set of time-delayed order parameters

wσσ ′
i = N−1

σ ′
∑Nσ ′

j=1 eiθσ ′
(t−τσσ ′

i j ). In the continuum limit, the
order parameters can be written

zσ =
∫∫

fσ (θ, ωσ , t )dθdωσ (A1)

and

wσσ ′
i =

∫
zσ ′ (t − τ )hσσ ′ (τ )dτ ≡ wσ ′ , (A2)

where we used the fact that the time delays τσσ ′
i j in the

definition of wσσ ′
i are chosen from the distribution hσσ ′ (τ ) ∝

s−τ/Tσ ′ , which is independent of i and σ .
Next, because of the conservation of oscillators, the density

functions each satisfy their own continuity equation:

0 = ∂

∂t
fσ + ∂

∂θ
( fσ θ̇σ )

= ∂

∂t
fσ + ∂

∂θ

⎡
⎣ fσ

⎛
⎝ωσ + Kσσ

2i

(
zσ e−iθσ − z∗

σ eiθσ )

+
C∑

σ ′ �=σ

Kσσ ′

2i

(
wσ ′e−iθσ − w∗

σ ′eiθσ )⎞⎠
⎤
⎦. (A3)

Since the natural frequencies remain fixed and are drawn from
the distributions gσ (ωσ ), the density functions can be written
in a Fourier series of the form

fσ (θ, ωσ , t ) = gσ (ωσ )

2π

[
1 +

∞∑
n=1

f̂σ,n(ωσ , t )einθ + c.c.

]
,

(A4)

where c.c. stands for the complex conjugate of the previous
term. Following the dimensionality reduction technique of Ott
and Antonsen [25,26], we propose the ansatz that the Fourier
coefficients decay geometrically, i.e.,

fσ (θ, ωσ , t ) = gσ (ωσ )

2π

[
1 +

∞∑
n=1

an
σ (ωσ , t )einθ + c.c.

]
.

(A5)

Remarkably, the dynamics defined by the infinite collection of
Fourier coefficients collapse onto the low-dimensional mani-
fold describing the evolution of a via the differential equation

∂t aσ = −iωσ aσ + k

2

(
z∗
σ − zσ a2

σ

) + K

C

∑
σ ′ �=σ

(
w∗

σ ′ − wσ ′a2
σ

)
,

(A6)

where we have used Kσσ = k and Kσσ ′ = 2K/C (for σ �= σ ′).
Next, the function aσ can be tied directly to the local order

parameter by inserting Eq. (A5) into Eq. (A1), yielding

zσ =
∫

gσ (ωσ )a∗
σ (ωσ , t )dωσ . (A7)

Assuming that the frequency distributions are Lorentzian,
i.e., gσ (ωσ ) = �/{π [�2 + (ωσ − �σ )2]}, the integral can be
evaluated using Cauchy’s residue theorem, yielding zσ =
a∗

σ (�σ − i�, t ). Evaluating Eq. (A6) at ωσ = �σ − i� and
taking a complex conjugate yield

żσ = (−� + i�σ )zσ + k

2

(
zσ − z∗

σ z2
σ

)
+ K

C

∑
σ ′ �=σ

(
wσ ′ − w∗

σ ′z2
σ

)
. (A8)
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Lastly, to close the dynamics, we convert Eq. (A2) to a
differential equation for wσ . Taking a Fourier transform, we
have that

(1 + Tσ s)wσ (s) = zσ (s), (A9)

and converting back to the time domain yields

Tσ ẇσ = zσ − wσ . (A10)

thereby closing the dynamics.

APPENDIX B: NUMERICAL VALIDATION OF
THE LOW-DIMENSIONAL EQUATIONS

Next, we present simulations validating the low-
dimensional equations. Since it is computationally infeasible
for us to account for both a distribution of time delays and
community structure, we use the hybrid approach proposed
in Ref. [28]. In this approach, the microscopic dynamics
of the oscillators is taken into account, but the effect of the
time delay is accounted via the techniques presented above.
We note that the treatment of distributed time delays via
the Ott-Antonsen ansatz has been validated before [17], so
we focus on validating its interplay with the community
structure. The hybrid approach consists in considering the
equations

θ̇ σ
i = ωσ

i + krσ sin
(
ψσ − θσ

i

) + K
∑
σ ′ �=σ

ρσ ′ sin
(
φσ ′ − θσ

i

)
,

(B1)

ẇσ = (zσ − wσ )/Tσ , (B2)

where zσ = rσ eiψσ , wσ = ρσ eiφσ , and we have taken advan-
tage of the technique used above to deal with the time delays.
Note that the time delays enter in the evolution of oscillator i
by the fact that the input it receives from community σ ′, wσ ′ ,
is effectively a delayed version of the order parameter from
community σ ′. Equations (B1), (B2), and (1) have the same
low-dimensional description, Eqs. (A8)–(A10). For a further
discussion of the hybrid approach, see Ref. [28].

We begin by considering the asymmetric two commu-
nity case with mean frequencies �1 = −1 and �2 = 2 and
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FIG. 6. Numerical validation: Asymmetric case. Local order pa-
rameters r1 (solid blue) and r2 (dashed red) vs K for κ = 0.02, �1 =
−1, �2 = 2, and time delays T = 1 (a) and 0.1 (b). Results from
direct simulations with N = 2 × 104 oscillators in each community
are plotted in blue circles and red crosses.
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FIG. 7. Numerical validation: Symmetric case. Local order
parameters r = rσ vs K with T = 1, for (a) the two-community case
with κ = 0.02 and (�1, �2) = (−2, 2) and (b) the four-community
case with κ = −0.05 and (�1, �2, �3, �4) = (−2, 2,−2, 2).
Results from direct simulations with N = 2 × 104 oscillators in each
community are plotted in blue circles.

κ = 0.02. In Fig. 6, we plot the steady-state values of r1 and r2

in solid blue and dashed red curves, obtained in the same way
to produce Fig. 1, with time delays T = 1 and 0.1 in Fig. 6(a)
and 6(b). We then overlay the results from direct simulations
of Eqs. (B1) and (B2) with N = 2 × 104 oscillators in each
community in blue circles and red crosses. We note that the
results from simulations are in excellent agreement.

Next, we consider the symmetric case with two
and four communities with (�1,�2) = (−2, 2) and
(�1,�2,�3,�4) = (−2, 2,−2, 2), respectively, and T = 1.
In Figs. 7(a) and 7(b), we plot the steady-state values of
r1 (which are indistinguishable from r2, r3, and r4) in blue
for the two- and four-community cases, respectively. Solid
and dashed curves indicating stable and unstable branches,
obtained in the same way to produce Figs. 3(a) and 4(a).
We then overlay the results from direct simulations with
N = 2 × 104 oscillators in each community in blue circles,
again noting excellent agreement.

APPENDIX C: LINEAR STABILITY ANALYSIS
OF THE INCOHERENT STATE

Here, we present linear stability analyses of the incoher-
ent state for different mean frequency configurations. We
restrict our attention to an even number of communities,
σ = 1, 2 . . . , 2n.

1. Two communities with symmetric frequencies:
Exact analysis

First, we consider the case of two communities, n = 1,
with symmetric mean frequencies, i.e., �1 = −�2 ≡ �. The
Jacobian associated with perturbations from the incoherent
solution z1 = z2 = w1 = w2 = 0 of Eqs. (4)–(6) is

J =

⎛
⎜⎜⎜⎜⎜⎝

κ + i� 0 0 K
2

0 κ − i� K
2 0

1
T 0 − 1

T 0

0 1
T 0 − 1

T

⎞
⎟⎟⎟⎟⎟⎠.
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The characteristic equation is given by a0 + a1λ + a2λ
2 +

a3λ
3 + a4λ

4 = 0, with

a0 = 4κ2 − K2 + 4�2, a1 = 8(−κ + κ2T + T �2),

a2 = 4(κ2T 2 + T 2�2 − 4κT + 1),

a3 = 8T (1 − κT ), a4 = 4T 2.

Applying the Routh-Hurwitz criterion [29], we obtain neces-
sary and sufficient conditions for linear stability. The eigenval-
ues have all negative real part, corresponding to linear stability
of the incoherent state, if the Routh-Hurwitz inequalities
ai > 0, a3a2 > a4a1, and a1a2a3 > a2

1a4 + a0a2
3 are satisfied.

These inequalities simplify to

T > 0, κT < 1, T (�2 + κ2) > κ,

K < 2
√

�2 + κ2, 1 + T 2(�2 + κ2) > 4κT,

κT [4 + T 2(�2 + κ2)] < 1 + 4κ2T 2,

K >
2
√

κ[(1 − κT )2 + T 2�2]√
T (1 − κT )

.

When T → 0 with κ > 0, the inequalities are not satisfied,
showing that time delay is necessary to stabilize the incoher-
ent state. For a given positive time delay and sufficiently small
κ , the inequalities reduce to K1,2 < K < K3, with

K1,2 = 2
√

κ[(1 − κT )2 + T 2�2]√
T (1 − κT )

, K3 = 2
√

�2 + κ2.

To leading order in κ , these inequalities reduce to Eq. (13),

2(1 + �2T 2)

√
κ

T
< K < 2�,

and agree with Eqs. (8)–(10) when �1 = −�2.

2. Even communities with symmetric frequencies

Here, we consider the case of an even number C =
2n of communities with mean frequencies �σ = �, σ =
1, 2, . . . , n, �σ = −�, σ = n + 1, . . . , 2n, which corre-
sponds to the case shown in Fig. 4. Linearizing Eqs. (8)–(10)
about the incoherent state, we obtain

δ̇zσ = κδzσ + i�δzσ + K

2n

∑
σ ′ �=σ

δwσ ′ , σ = 1, . . . , n,

(C1)

δ̇zσ = κδzσ − i�δzσ + K

2n

∑
σ ′ �=σ

δwσ ′ , σ = n + 1, . . . , 2n,

(C2)

T ˙δwσ = δzσ − δwσ , σ = 1, . . . , 2n. (C3)

Anticipating that communities with the same frequency will
remain synchronized, we introduce the variables

z+ =
n∑

σ=1

δzσ , w+ =
n∑

σ=1

δwσ ,

z− =
2n∑

σ=n+1

δzσ , w− =
2n∑

σ=n+1

δwσ ,

x j = δz1 − δz j, y j = δw1 − δw j, j = 2, . . . , n

x j = δzn+1 − δz j, y j = δwn+1 − δw j, j = n + 2, . . . , 2n.

(C4)

Perturbations z+ and z− are our main interest. We will show
that the perturbations x j , y j decay, implying that the only rel-
evant synchronization modes are those in which communities
with equal frequencies behave identically. Inserting the new
variables in Eqs. (C1)–(C3), we obtain the decoupled systems

ż+ = κz+ + i�z+ + K

2n
[(n − 1)w+ + nw−], (C5)

T ẇ+ = z+ − w+, (C6)

ż− = κz− − i�z− + K

2n
[(n − 1)w− + nw+], (C7)

T ẇ− = z− − w−, (C8)

and

ẋ j = κx j + i�x j − K

2n
y j, (C9)

T ẏ j = x j − y j, j = 2, . . . , n, (C10)

ẋ j = κx j − i�x j − K

2n
y j, (C11)

T ẏ j = x j − y j, j = n + 2, . . . , 2n. (C12)

First, we focus on the perturbations that leave communities
with the same mean frequencies synchronized, i.e., z± and
w±. We determine the location of potential bifurcations by
finding the values of K where the growth rate associated to
Eqs. (C5)–(C8) is purely imaginary. We set z±(t ) = eiωt z̃±,
w±(t ) = eiωt w̃± and obtain

iωz̃+ = κ z̃+ + i�z̃+ + K

2n
[(n − 1)w̃+ + nw̃−],

iωT w̃+ = z̃+ − w̃+,

iωz̃− = κ z̃− − i�z̃− + K

2n
[(n − 1)w̃− + nw̃+],

iωT w̃− = z̃− − w̃−.

Eliminating z̃± and w̃± leads to the complex equation for K
and ω:

K2

4(1 + iωT )2
=

[
i(ω − �) − κ − K (n − 1)

2n(1 + iωT )

]

×
[

i(ω + �) − κ − K (n − 1)

2n(1 + iωT )

]
.

By separating the equation into real and imaginary parts and
solving the algebraic equations, we find the critical values

K∗ = 2T 2�2 + 2(T κ − 1)2

nT (T κ − 1)
[(n − 1)(T κ − 1)

±
√

n2(T κ + 1)2 − 2n(T κ − 1)2 + (T κ − 1)2],

(C13)

K† = 4κn(n − 1) + 4n
√

n2κ2 + �2(2n − 1)

2n − 1
. (C14)
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To complete the analysis, we need to consider the evolution of
perturbations transversal to the manifold where communities
with the same frequency are synchronized, i.e., x j , y j . By
setting x j (t ) = eiαt x̃ j , y j (t ) = eiαt ỹ j in Eqs. (C9)–(C12) and
eliminating x̃ j , ỹ j , we obtain the critical values

KT = 4κ

[
1 +

(
�T

1 − κT

)2
]
, ω = �

1 − κT
.

From the exact form of the eigenvalues associated to
Eqs. (C9)–(C12), one can check that their real part becomes
negative for K > KT . For κ > 0, the incoherent state is al-
ready incoherent [the cusp in the curves in Fig. 4(b) occurs
at κ = (

√
2n − 1 − n)/(n + √

2n − 1) < 0]. For the region of
interest, κ < 0, we obtain then KT < 0, which means that
the only relevant modes of desynchronization are those in
which communities with the same mean frequency remain
synchronized, which yield the critical values in Eqs. (C13)
and (C14) plotted in Fig. 4(b).

In addition to the linear stability of the incoherent state,
we present here the derivation of Eq. (16) for the globally
synchronized branch. We look for steady-state solutions of
(A8)–(A10) such that communities with the same frequency
have the same order parameters and set zσ = wσ = r for σ =
1, 2 . . . , n and zσ = wσ = reiα for σ = n + 1, . . . , 2n, where
r and α are constants. This ansatz gives

0 = i�r + κr − (1 + κ )r3 + K

2n
(n − 1)(r − r3)

+ K

2
(reiα − r3e−iα ). (C15)

Separating the equation into real and imaginary parts and
solving for K gives Eq. (16) in the main text,

K = 2

(2n − 1)(1 − r2)

{
(n − 1)[κ − r2(1 + κ )]

+ n2(1 − r2)

√
[κ − r2(1 + κ )]2

n2(1 − r2)2
+ (2n − 1)�2

n4(1 + r2)2

}
.

(C16)

APPENDIX D: TWO COMMUNITIES WITH ASYMMETRIC
FREQUENCIES: ASYMMETRIC SUPPRESSION

In this section, we consider the case of two communities
with asymmetric frequencies, i.e., �2 �= −�1. A linear stabil-
ity analysis of the incoherent state allows us to find the critical
coupling constants and the modes of instability that give rise
to the asymmetrically suppressed states.

1. Critical coupling constants

By linearizing Eqs. (A8)–(A10) about the incoherent state
and again defining k/2 = 1 + κ and setting � = 1, we obtain

˙δz1 = κδz1 + i�1δz1 + K

2
δw2,

˙δz2 = κδz2 + i�2δz2 + K

2
δw1,

T ˙δw1 = δz1 − δw1, T ˙δw2 = δz2 − δw2.

We find the location of bifurcations by looking for purely
imaginary growth rates. To this end, we set δz1,2 = eiωt z̃1,2,
δw1,2 = eiωt w̃1,2, and obtain

iωz̃1 = κ z̃1 + i�1z̃1 + K

2
w̃2, (D1)

iωz̃2 = κ z̃2 + i�2z̃2 + K

2
w̃1, (D2)

iωT w̃1 = z̃1 − w̃1, (D3)

iωT w̃2 = z̃2 − w̃2. (D4)

Eliminating z̃1,2 and w̃1,2, we obtain a complex equation for
K and ω, with its real and imaginary parts giving(

K

2

)2 1 − ω2T 2

(1 + ω2T 2)2
= −(ω − �1)(ω − �2) + κ2, (D5)

(
K

2

)2 2ωT

(1 + ω2T 2)2
= κ (2ω − �1 − �2). (D6)

By eliminating K from these equations, we obtain a cubic
equation for ω,

κ (2ω − �1 − �2)(1 − ω2T 2)

= 2ωT [κ2 − (ω − �1)(ω − �2)]. (D7)

In what follows, we will consider the limit κ � 1 and argue
that the three solutions to the cubic are, to leading order, ω ≈
�1, ω ≈ �2, and ω ≈ κ (�1 + �2)/(2T �1�2). When κ � 1,
the leading order terms in (D7) are

κ (2ω − �1 − �2)(1 − ω2T 2) = −2ωT (ω − �1)(ω − �2).

(D8)

Since the left-hand side is of order κ , the right-hand side needs
to be of order κ , which can be accomplished by the three
choices ω = �1 + ω1κ + O(κ2), ω = �2 + ω2κ + O(κ2), or
ω = ω3κ + O(κ2), where ωi are to be determined.

First, consider the case ω = �1,2 + ω1,2κ + O(κ2). By
inserting this in (D8), we obtain

ω1,2 = �2
1,2T 2 − 1

2�1,2T
, (D9)

which, when inserted in Eq. (D5) gives, to leading order in κ ,

K1 = 2
(
1 + �2

1T 2
)√κ (�1 − �2)

2�1T
, (D10)

K2 = 2
(
1 + �2

2T 2
)√κ (�2 − �1)

2�2T
. (D11)

Now consider the case ω = ω3κ + O(κ2). We obtain

ω3 = (�1 + �2)/(2T �1�2), (D12)

and inserting ω = ω3κ in Eq. (D5) gives, to leading order,

K3 = 2
√

−�1�2. (D13)

For K = 0, the communities are decoupled, and since there
is no intracommunity delay, each community synchronizes
at k = 2 (corresponding to κ = 0). Therefore, the incoherent
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state is unstable for sufficiently small positive κ and loses
stability when K first increases beyond the smallest of K1, K2,
and K3.

2. Asymmetric suppression

As discussed in the main text, for small κ we find that
when K1 < K < K2 < K3 community 2 synchronizes while
community 1 remains almost completely incoherent. (An
analogous situation occurs if K2 < K < K1 < K3.) This can
be understood from the linear stability analysis by determin-
ing the form of the modes of instability at the bifurcations
that occur at K = K1 and K = K2. From Eqs. (D1)–(D4), we
obtain

z̃2

z̃1
= 2κ

K
[i(ω − �1) − κ](1 + iωT ). (D14)

At K = K1, ω = �1 + ω1κ , and we get to leading order in κ∣∣∣∣ z̃2

z̃1

∣∣∣∣ = κ1/2

|�1 − �2|
(

1 + �2
1T 2

2�1T

)1/2

. (D15)

Similarly, at K = K2 we get |z̃1| ∼ κ1/2|z̃2|. For the param-
eters used in Fig. 1(a) in the main text, we obtain |z̃1| ≈
0.053|z̃2| at K = K2, and for those used in Fig. 1(b), we obtain
|z̃1| ≈ 0.11|z̃2| at K = K1. For the case of Fig. 1(a), where
K1 < K < K2 < K0, the mode that desynchronizes as K is
decreased past K2 is therefore localized mostly in community
2. We find that this linear analysis still describes the behavior
of the two communities in the interval K1 < K < K2, where
community 2 remains synchronized while community 1 has a
very small degree of synchronization.
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