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1.2.2 Elliptic-type PDEs

We restrict our discussion here to the case of Poisson’s equation in 2-D

∂ 2u
∂ x2

+
∂ 2u
∂ y2

= f . (1.15)

Equations in this “elliptic” category arise in numerous situations, such as for a stream-
function in fluid mechanics or from field equations (describing gravitational and electrical
fields, featuring potentials that satisfy Laplace’s equation; equation (1.15) with RHS zero).
Another source of equations of this type is equilibrium processes. For example, (1.15)
arises in the t →∞ limit of the heat equation ∂ u

∂ t =
∂ 2 u
∂ x2 +

∂ 2 u
∂ y2 − f .

Example 1. Create the following compact fourth-order accurate approximation for
the 2-D Poisson’s equation (a 2-D counterpart to (1.8)):⎡⎣ 1 4 1

4 −20 4
1 4 1

⎤⎦ u/(6h2) =

⎡⎣ 1
1 8 1

1

⎤⎦ f /12 +O(h4). (1.16)

To derive this, we follow Collatz’s Mehrstellenverfahren [49, 114]. Because of
�
∂ 2

∂ x2 +
∂ 2

∂ y2

�
u =

f , it also holds that

�
∂ 2
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∂ y2
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f .

∂ 4

∂ x4 + 2 ∂ 4

∂ x2∂ y2 +
∂ 4

∂ y4

Approximation of these two relations to fourth and to second order, respectively, gives⎡⎢⎢⎢⎢⎢⎢⎣
− 1

12
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3− 1

12
4
3 −5 4

3 − 1
12

4
3

− 1
12

⎤⎥⎥⎥⎥⎥⎥⎦ u/h2 = [ f ]+O(h4) , (1.17)

and ⎡⎢⎢⎢⎢⎣
1

2 −8 2
1 −8 20 −8 1

2 −8 2
1

⎤⎥⎥⎥⎥⎦ u/h4 =

⎡⎣ 1
1 −4 1

1

⎤⎦ f /h2+O(h2) , (1.18)

respectively. Adding 1
12 h2 times (1.18) to (1.17) eliminates the “outliers” and produces

(1.16).
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The formula (1.16) achieves its fourth order only thanks to the stencil for f in the
right-hand side (RHS). As an approximation to the Laplace operator, the left-hand side
(LHS) of (1.16) is accurate only to second order, as seen by Taylor expanding it around
the center point:⎡⎣ 1 4 1
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+O(h8).

For solutions to Laplace’s equation, the first three RHS terms vanish, and the approxima-
tion becomes sixth-order accurate. The two key advantages of (1.16) over (1.17) are the
following:

• The compact stencil is easier to use near boundaries.

• The diagonal dominance of coefficient matrix improves numerical stability and
speeds up iterative solution methods.

Example 2. Analyze the accuracy of the hexagonal grid Laplace operator approxima-
tion (1.11).
Series expansion in the same style as in the previous example gives⎡⎣ 1 1
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This expansion confirms that the approximation is only second-order accurate for the
Laplace operator but shows that it supports a compact fourth-order approximation for
(1.15). However, the accuracy improves no further for solutions to Laplace’s equation
since the operator in the h4-term does not factorize. It thus falls short in this regard of
the Cartesian grid compact 9-point operator analyzed in Example 1.

Extending from 2-D to 3-D does not introduce any significant differences. For exam-
ple, the 3-D counterpart to (1.16) becomes
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[0 1 0]
[1 2 1]

[0 1 0]
− − − − −

[1 2 1]
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[1 2 1]
− − − − −

[0 1 0]
[1 2 1]

[0 1 0]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
u/(6h2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[0 0 0]
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[0 0 0]
− − − − −
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− − − − −
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[0 1 0]

[0 0 0]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
f /12 + O(h4),

(1.19)
again combining fourth-order accuracy with diagonal dominance [305]. In this case, the
19-point stencil in the LHS is an O(h2) accurate approximation to the Laplacian opera-
tor, which reaches O(h4) for solutions to Laplace’s equation—as it does for the Poisson’s
equation when used with the shown RHS stencil.

The last several examples have shown that FD approximations can provide higher or-
ders of accuracy for PDEs than the orders by which they approximate individual deriva-
tive operators. This issue will come up again in the context of RBF-FD methods. Numer-
ous generalizations of the compact formulas mentioned above have been described in the
literature, including to variable coefficients, inclusion of lower-order terms, extensions
to the coupled streamfunction-vorticity system for both steady and time-dependent 2-D
Navier-Stokes equations, etc. [62, 175, 134, 176].
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