Theorem: A subset of a metric space is compact if and only if it is sequentially compact.

Proof:

 \implies Suppose that (X, d) is a compact metric space. Further, suppose that it is not sequentially compact.

- If X is not sequentially compact, there exists a sequence (x_n) in X that has no convergent subsequence. Since there is no convergent subsequence, (x_n) must contain an infinite number of distinct points. (If there were only a finite number of distinct points, the sequence would eventually become constant and would therefore be convergent and thus all subsequences would be convergent!)
- Let $x \in \mathbb{X}$. If, for every $\varepsilon > 0$, the ball $B_{\varepsilon}(x)$ contains a point in the sequence (x_n) that is distinct from x, the x will be the limit of a subsequence since we would be able to choose points from (x_n) from shrinking balls around x. So, there is a $\varepsilon_x > 0$ such that $B_{\varepsilon_x}(x)$ contains no points from (x_n) , except possibly x itself.
- The collection of open balls $\{B_{\varepsilon_x}(x) : x \in \mathbb{X}\}$ is an open cover of \mathbb{X} .
- The union of every finite number of these balls contains at most n terms in the sequence. Because there are an infinite number of distinct terms in the sequence, no finite subcollection of these balls will cover X since no finite subcollection will even cover the terms of the sequence (x_n) in X.
- So, we have found an open cover of X that has no finite subcover. This contradicts that X is compact. Therefore, X must be sequentially compact.

 \leftarrow Now suppose that (\mathbb{X}, d) is sequentially compact. Let $\{G_{\alpha}\}$ be an arbitrary open cover of \mathbb{X} .

- From the Lemma at the beginning of this solutions, X is separable which means that X contains a countable dense subset A.
- Let \mathcal{B} be the collection of open balls with rational radius and center in A. Since A is countable and the rationals are countable, \mathcal{B} is countable.
- Let \mathcal{C} be the subcollection of balls in \mathcal{B} that are contained in at least one of the open sets in the cover $\{G_{\alpha}\}$. Since \mathcal{C} is a subset of \mathcal{B} and \mathcal{B} is countable, \mathcal{C} is countable.
- For every $x \in \mathbb{X}$ there is a G_{α} such that $x \in G_{\alpha}$. Since G_{α} is open, there exists an $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq G_{\alpha}$.
- Since A is dense in X, there exists a point $y \in A$ that is within $\varepsilon/3$ of x. Note than that $x \in B_{\varepsilon/3}(y)$ and that $B_{2\varepsilon/3}(y) \subseteq G_{\alpha}$.

- Take $q \in \mathbb{Q}$ such that $\varepsilon/3 < q < 2\varepsilon/3$. Then $x \in B_q(y) \subseteq B_{2\varepsilon/3}(y) \subseteq G_\alpha$. Since $B_q(y)$ has rational radius and center in A it is a ball in \mathcal{B} . Furthermore, since it is a ball in \mathcal{B} that is contained in a G_α , it is in the collection \mathcal{C} .
- Thus, every $x \in \mathbb{X}$ belongs to a ball in \mathcal{C} . So, \mathcal{C} is a countable open cover of \mathbb{X} !
- Every ball $B \in \mathcal{C}$ is in at least one set G_{α} in $\{G_{\alpha}\}$. Pick an index α_B such that $B \subseteq G_{\alpha_B}$. Since \mathcal{C} is countable and covers \mathbb{X} and since $\{G_{\alpha_B} | B \in \mathcal{C}\}$ covers \mathcal{C} , $\{G_{\alpha_B} | B \in \mathcal{C}\}$ countable subcover (of the open cover $\{G_{\alpha}\}$) of \mathbb{X} .
- We wanted to show that an open cover of a sequentially compact space has a finite subcover. So far, we have shown that it has a countable subcover. We will now show that a countable open cover of a sequentially compact space has a finite subcover.

Ignore all of the previous notation and assume that $\{G_n\}$ is a countable open cover of X. Assume that there is no finite subcover. We are going to construct a sequence in X that has no convergent subsequence, thereby contradicting that X is sequentially compact.

• Since $\{G_n\}$ has no finite subcover, $\bigcup_{k=1}^n G_k$ does not contain X for any n.

Construction of the sequence:

- Choose $x_1 \in \mathbb{X}$. Since $\{G_n\}$ covers \mathbb{X} , there exists an n_1 such that $x_1 \in G_{n_1}$.
- Choose $x_2 \in \mathbb{X}$ such that $x_2 \notin \bigcup_{n=1}^{n_1} G_n$. We can do this because we have assumed that \mathbb{X} can not be covered by a finite subset of $\{G_n\}$. Since $\{G_n\}$ covers \mathbb{X} , there exists an n_2 such that $x_2 \in G_{n_2}$.
- Choose $x_3 \in \mathbb{X}$ such that $x_3 \notin \bigcup_{n=1}^{n_3} G_n$. Choose n_3 so that $x_3 \in G_{n_3}$.
- Et cetera! Note that

$$x_k \in G_{n_k}$$
 and $x_k \notin \bigcup_{n=1}^{n_k-1} G_n$.

So, G_{n_k} is not equal to G_n for any $n = 1, 2, ..., n_{k-1}$, and the sequence (n_k) is strictly increasing.

- Since X is sequentially compact, (x_n) must have a subsequence that converges to a point $x \in X$. Since $\{G_n\}$ covers X, $x \in G_n$ for some n.
- However, by construction of our sequence, there exists an integer K_n such that $x_k \notin G_n$ for all $k \geq K_n$.
- $x \in G_n$ yet the sequence (x_n) , and hence any subsequence of (x_n) can not be in G_n after some point. This contradicts the statement that (x_n) must have a subsequence converging to x and the sequential compactness of X.
- Therefore, the open cover $\{G_n\}$ must have a finite subcover and X is compact.