
Theorem: A subset of a metric space is compact if and only if it is
sequentially compact.

Proof:

⇒ Suppose that (X, d) is a compact metric space. Further, suppose that it is not sequen-
tially compact.

• If X is not sequentially compact, there exists a sequence (xn) in X that has no con-
vergent subsequence. Since there is no convergent subsequence, (xn) must contain an
infinite number of distinct points. (If there were only a finite number of distinct points,
the sequence would eventually become constant and would therefore be convergent and
thus all subsequences would be convergent!)

• Let x ∈ X. If, for every ε > 0, the ball Bε(x) contains a point in the sequence (xn)
that is distinct from x, the x will be the limit of a subsequence since we would be able
to choose points from (xn) from shrinking balls around x. So, there is a εx > 0 such
that Bεx(x) contains no points from (xn), except possibly x itself.

• The collection of open balls {Bεx(x) : x ∈ X} is an open cover of X.

• The union of every finite number of these balls contains at most n terms in the se-
quence. Because there are an infinite number of distinct terms in the sequence, no
finite subcollection of these balls will cover X since no finite subcollection will even
cover the terms of the sequence (xn) in X.

• So, we have found an open cover of X that has no finite subcover. This contradicts
that X is compact. Therefore, X must be sequentially compact.

⇐ Now suppose that (X, d) is sequentially compact. Let {Gα} be an arbitrary open cover
of X.

• From the Lemma at the beginning of this solutions, X is separable which means that
X contains a countable dense subset A.

• Let B be the collection of open balls with rational radius and center in A. Since A is
countable and the rationals are countable, B is countable.

• Let C be the subcollection of balls in B that are contained in at least one of the open
sets in the cover {Gα}. Since C is a subset of B and B is countable, C is countable.

• For every x ∈ X there is a Gα such that x ∈ Gα. Since Gα is open, there exists an
ε > 0 such that Bε(x) ⊆ Gα.

• Since A is dense in X, there exists a point y ∈ A that is within ε/3 of x. Note then
that x ∈ Bε/3(y) and that B2ε/3(y) ⊆ Gα.



• Take q ∈ Q such that ε/3 < q < 2ε/3. Then x ∈ Bq(y) ⊆ B2ε/3(y) ⊆ Gα. Since Bq(y)
has rational radius and center in A it is a ball in B. Furthermore, since it is a ball in
B that is contained in a Gα, it is in the collection C.

• Thus, every x ∈ X belongs to a ball in C. So, C is a countable open cover of X!

• Every ball B ∈ C is in at least one set Gα in {Gα}. Pick an index αB such that
B ⊆ GαB

. Since C is countable and covers X and since {GαB
|B ∈ C} covers C,

{GαB
|B ∈ C} countable subcover (of the open cover {Gα}) of X.

• We wanted to show that an open cover of a sequentially compact space has a finite
subcover. So far, we have shown that it has a countable subcover. We will now show
that a countable open cover of a sequentially compact space has a finite subcover.

Ignore all of the previous notation and assume that {Gn} is a countable open cover
of X. Assume that there is no finite subcover. We are going to construct a sequence
in X that has no convergent subsequence, thereby contradicting that X is sequentially
compact.

• Since {Gn} has no finite subcover, ∪nk=1Gk does not contain X for any n.

Construction of the sequence:

– Choose x1 ∈ X. Since {Gn} covers X, there exists an n1 such that x1 ∈ Gn1 .

– Choose x2 ∈ X such that x2 /∈ ∪n1
n=1Gn. We can do this because we have assumed

that X can not be covered by a finite subset of {Gn}. Since {Gn} covers X, there
exists an n2 such that x2 ∈ Gn2 .

– Choose x3 ∈ X such that x3 /∈ ∪n3
n=1Gn. Choose n3 so that x3 ∈ Gn3 .

– Et cetera! Note that

xk ∈ Gnk
and xk /∈ ∪nk−1

n=1 Gn.

So, Gnk
is not equal to Gn for any n = 1, 2, . . . , nk−1, and the sequence (nk) is

strictly increasing.

• Since X is sequentially compact, (xn) must have a subsequence that converges to a
point x ∈ X. Since {Gn} covers X, x ∈ Gn for some n.

• However, by construction of our sequence, there exists an integer Kn such that xk /∈ Gn

for all k ≥ Kn.

• x ∈ Gn yet the sequence (xn), and hence any subsequence of (xn) can not be in Gn

after some point. This contradicts the statement that (xn) must have a subsequence
converging to x and the sequential compactness of X.

• Therefore, the open cover {Gn} must have a finite subcover and X is compact.


