Theorem: A subset of a metric space is compact if and only if it is sequentially compact.

Proof:
\Rightarrow Suppose that (\mathbb{X}, d) is a compact metric space. Further, suppose that it is not sequentially compact.

- If \mathbb{X} is not sequentially compact, there exists a sequence $\left(x_{n}\right)$ in \mathbb{X} that has no convergent subsequence. Since there is no convergent subsequence, $\left(x_{n}\right)$ must contain an infinite number of distinct points. (If there were only a finite number of distinct points, the sequence would eventually become constant and would therefore be convergent and thus all subsequences would be convergent!)
- Let $x \in \mathbb{X}$. If, for every $\varepsilon>0$, the ball $B_{\varepsilon}(x)$ contains a point in the sequence $\left(x_{n}\right)$ that is distinct from x, the x will be the limit of a subsequence since we would be able to choose points from $\left(x_{n}\right)$ from shrinking balls around x. So, there is a $\varepsilon_{x}>0$ such that $B_{\varepsilon_{x}}(x)$ contains no points from $\left(x_{n}\right)$, except possibly x itself.
- The collection of open balls $\left\{B_{\varepsilon_{x}}(x): x \in \mathbb{X}\right\}$ is an open cover of \mathbb{X}.
- The union of every finite number of these balls contains at most n terms in the sequence. Because there are an infinite number of distinct terms in the sequence, no finite subcollection of these balls will cover \mathbb{X} since no finite subcollection will even cover the terms of the sequence $\left(x_{n}\right)$ in \mathbb{X}.
- So, we have found an open cover of \mathbb{X} that has no finite subcover. This contradicts that \mathbb{X} is compact. Therefore, \mathbb{X} must be sequentially compact.
\Leftarrow Now suppose that (\mathbb{X}, d) is sequentially compact. Let $\left\{G_{\alpha}\right\}$ be an arbitrary open cover of \mathbb{X}.
- From the Lemma at the beginning of this solutions, \mathbb{X} is separable which means that \mathbb{X} contains a countable dense subset A.
- Let \mathcal{B} be the collection of open balls with rational radius and center in A. Since A is countable and the rationals are countable, \mathcal{B} is countable.
- Let \mathcal{C} be the subcollection of balls in \mathcal{B} that are contained in at least one of the open sets in the cover $\left\{G_{\alpha}\right\}$. Since \mathcal{C} is a subset of \mathcal{B} and \mathcal{B} is countable, \mathcal{C} is countable.
- For every $x \in \mathbb{X}$ there is a G_{α} such that $x \in G_{\alpha}$. Since G_{α} is open, there exists an $\varepsilon>0$ such that $B_{\varepsilon}(x) \subseteq G_{\alpha}$.
- Since A is dense in \mathbb{X}, there exists a point $y \in A$ that is within $\varepsilon / 3$ of x. Note then that $x \in B_{\varepsilon / 3}(y)$ and that $B_{2 \varepsilon / 3}(y) \subseteq G_{\alpha}$.
- Take $q \in \mathbb{Q}$ such that $\varepsilon / 3<q<2 \varepsilon / 3$. Then $x \in B_{q}(y) \subseteq B_{2 \varepsilon / 3}(y) \subseteq G_{\alpha}$. Since $B_{q}(y)$ has rational radius and center in A it is a ball in \mathcal{B}. Furthermore, since it is a ball in \mathcal{B} that is contained in a G_{α}, it is in the collection \mathcal{C}.
- Thus, every $x \in \mathbb{X}$ belongs to a ball in \mathcal{C}. So, \mathcal{C} is a countable open cover of \mathbb{X} !
- Every ball $B \in \mathcal{C}$ is in at least one set G_{α} in $\left\{G_{\alpha}\right\}$. Pick an index α_{B} such that $B \subseteq G_{\alpha_{B}}$. Since \mathcal{C} is countable and covers \mathbb{X} and since $\left\{G_{\alpha_{B}} \mid B \in \mathcal{C}\right\}$ covers \mathcal{C}, $\left\{G_{\alpha_{B}} \mid B \in \mathcal{C}\right\}$ countable subcover (of the open cover $\left\{G_{\alpha}\right\}$) of \mathbb{X}.
- We wanted to show that an open cover of a sequentially compact space has a finite subcover. So far, we have shown that it has a countable subcover. We will now show that a countable open cover of a sequentially compact space has a finite subcover.
Ignore all of the previous notation and assume that $\left\{G_{n}\right\}$ is a countable open cover of \mathbb{X}. Assume that there is no finite subcover. We are going to construct a sequence in \mathbb{X} that has no convergent subsequence, thereby contradicting that \mathbb{X} is sequentially compact.
- Since $\left\{G_{n}\right\}$ has no finite subcover, $\cup_{k=1}^{n} G_{k}$ does not contain \mathbb{X} for any n.

Construction of the sequence:

- Choose $x_{1} \in \mathbb{X}$. Since $\left\{G_{n}\right\}$ covers \mathbb{X}, there exists an n_{1} such that $x_{1} \in G_{n_{1}}$.
- Choose $x_{2} \in \mathbb{X}$ such that $x_{2} \notin \cup_{n=1}^{n_{1}} G_{n}$. We can do this because we have assumed that \mathbb{X} can not be covered by a finite subset of $\left\{G_{n}\right\}$. Since $\left\{G_{n}\right\}$ covers \mathbb{X}, there exists an n_{2} such that $x_{2} \in G_{n_{2}}$.
- Choose $x_{3} \in \mathbb{X}$ such that $x_{3} \notin \cup_{n=1}^{n_{3}} G_{n}$. Choose n_{3} so that $x_{3} \in G_{n_{3}}$.
- Et cetera! Note that

$$
x_{k} \in G_{n_{k}} \quad \text { and } \quad x_{k} \notin \cup_{n=1}^{n_{k}-1} G_{n}
$$

So, $G_{n_{k}}$ is not equal to G_{n} for any $n=1,2, \ldots, n_{k-1}$, and the sequence $\left(n_{k}\right)$ is strictly increasing.

- Since \mathbb{X} is sequentially compact, $\left(x_{n}\right)$ must have a subsequence that converges to a point $x \in \mathbb{X}$. Since $\left\{G_{n}\right\}$ covers $\mathbb{X}, x \in G_{n}$ for some n.
- However, by construction of our sequence, there exists an integer K_{n} such that $x_{k} \notin G_{n}$ for all $k \geq K_{n}$.
- $x \in G_{n}$ yet the sequence $\left(x_{n}\right)$, and hence any subsequence of $\left(x_{n}\right)$ can not be in G_{n} after some point. This contradicts the statement that $\left(x_{n}\right)$ must have a subsequence converging to x and the sequential compactness of \mathbb{X}.
- Therefore, the open cover $\left\{G_{n}\right\}$ must have a finite subcover and \mathbb{X} is compact.

