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Distinct Excitatory and Inhibitory Bump Wandering in a Stochastic Neural Field*

Heather L. Cihak\dagger , Tahra L. Eissa\dagger , and Zachary P. Kilpatrick\dagger 

Abstract. Localized persistent cortical neural activity is a validated neural substrate of parametric working
memory. Such activity ``bumps"" represent the continuous location of a cue over several seconds.
Pyramidal (excitatory (E)) and interneuronal (inhibitory (I)) subpopulations exhibit tuned bumps
of activity, linking neural dynamics to behavioral inaccuracies observed in memory recall. However,
many bump attractor models collapse these subpopulations into a single joint E/I(lateral inhibitory)
population and do not consider the role of interpopulation neural architecture and noise correlations.
Both factors have a high potential to impinge upon the stochastic dynamics of these bumps, ulti-
mately shaping behavioral response variance. In our study, we consider a neural field model with
separate E/I populations and leverage asymptotic analysis to derive a nonlinear Langevin system
describing E/I bump interactions. While the E bump attracts the I bump, the I bump stabilizes but
can also repel the E bump, which can result in prolonged relaxation dynamics when both bumps
are perturbed. Furthermore, the structure of noise correlations within and between subpopulations
strongly shapes the variance in bump position. Surprisingly, higher interpopulation correlations
reduce variance.
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1. Introduction. Storing information ``in mind"" for short periods of time is essential for
the performance of daily tasks [24]. Parametric working memory (as used in tasks requiring
a delayed estimate of a continuous quantity) uses spatially localized persistent neural activity
in the prefrontal cortex, parietal cortex, and frontal eye fields [16, 24] generated in neural
circuits with strong local recurrent excitation and broad inhibition [9, 31, 44]. Neurophysio-
logical recordings from nonhuman primate subjects performing visuospatial working memory
tasks have shown that localized bumps of persistent activity encode remembered parametric
quantities for a few seconds [9, 31, 21, 24]. For example, in the oculomotor delayed response
task, a location cue is momentarily presented on a circle displayed on a monitor, then a de-
lay period occurs during which the video is blank, and finally the subject is prompted to
report their memory of the cued location. During the delay period, neural recordings identify
cells tuned to specific cue locations around the circle and reveal that the strongest (peak)
firing neurons represent the encoded location [24, 21, 22]. Peaked and localized activity
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wanders stochastically during the delay period, representing a time-dependent degradation of
cue location memory consistent with subsequent response errors [8, 48].

Neural field and spiking models are capable of producing peaked, localized activity that
wanders via spatially structured connectivity that weakens as the distance between neural cue
location preference increases with excitation having a narrower spatial footprint [47, 27, 44,
31]. Bumps can be defined as standing pulse solutions usually with two key dynamical proper-
ties important for encoding memories of continuum variables: (1) they are self-sustained in the
absence of stimulus (representing memory over a delay period) and (2) they exhibit marginal
stability such that they can occur at any location in the network and integrate translational
perturbations [27]. Such solutions have garnered interest due to the rich dynamical features
that arise when varying the form of connectivity, introducing propagation delays, adding slow
negative feedback, or considering stochasticity [4, 27, 31, 12, 19]. Response statistics and
neural activity during oculomotor delayed response tasks are also well characterized by the
output of bump attractor models with some form of stochasticity incorporated [48, 9, 3].

Previous psychophysical studies of delayed estimation of continuous quantities show sub-
ject errors scale linearly with the delay period [43, 46]. Such behavior can be accounted for by
models whose low-dimensional dynamics evolve as Brownian motion, like a particle subject
to diffusion. This is consistent with a bump attractor stochastically perturbed by noise, wan-
dering along a marginally stable ring attractor [31, 8]. Extended models have also considered
neural circuit mechanisms that help stabilize the movement of bumps to noise perturbations
by breaking the marginal stability of the ring attractor. For example, spatially heterogeneous
recurrent excitation leads to low-dimensional dynamics akin to a particle stochastically per-
turbed along a washboard potential, slowing the rate of diffusion [32]. Likewise, short-term
facilitation locally potentiates synaptic excitation where the bump is istantiated, akin to a
slowly moving local potential well that traps the particle near the true location of the original
stimulus [44, 30]. In addition to stabilizing bumps within trials, short-term facilitation also
transfers memory of the previous trial stimulus to the next, creating systematic errors referred
to as serial dependence [35, 7].

Despite advancements in understanding how these modifications to bump attractor models
affect their stochastic dynamics, a detailed examination of the role of separate excitatory and
inhibitory (E and I) population dynamics has been overlooked, and I-I interactions are often
ignored entirely. Inhibition is often assumed to be flat and global in stochastic bump attractor
models [9], but we know prefrontal cortical synaptic inhibition exhibits nontrivial preference-
dependent interactions [24], which could have yet unidentified effects on the dynamics of
bumps and the fidelity of memory systems that rely on them.

Here, we use a stochastic neural field model to investigate the wandering dynamics and
interactions of separate E and I activity bumps. We focus on how a separate and spatially
extended I population shapes the variance of a bump attractor encoding a remembered location
along a continuum. First, we introduce the neural field equations, notation conventions, and
parameters whose effects on the variance of the bumps' final position will be analyzed (section
2). We then review the existence and stability of both E and I bump solutions [47, 27, 4, 14,
37, 20], paving the way for examining how deterministic and stochastic perturbations deform
and shift the attractor solution. We examine the impact of modifying both the amplitude
and spatial extent of neural architecture, as well as the firing rate thresholds on the stability

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

1/
23

 to
 1

32
.1

74
.2

50
.1

43
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



DISTINCT EXCITATORY/INHIBITORY BUMP WANDERING 2581

of solutions (section 3). Stable and unstable branches of bumps annihilate at a discontinuous
saddle node bifurcation given sufficiently high firing rate thresholds.

Our stochastic analysis involves two different methods of identifying the impact of noise on
the bump attractor: (1) a linear perturbative analysis (strongly coupled limit between the E
and I bumps) in the limit of weak noise and (2) an interface-based analysis where we track the
threshold crossing points of the E/I bumps (section 4). Thus, we develop two corresponding
theoretical predictions of bump position variance, the second of which captures nonlinear
interactions between the E/I bumps in a Langevin system that is a better match to full model
simulations. This higher-order analysis starts by obtaining distinct and nonlinearly coupled
equations for the bump interfaces. Bump position variance changes nonmonotonically as a
function of most model parameters, so intermediate tuning of network architecture maximizes
memory degradation. Finally, we identify the impact of noise correlations between the E and
I populations, finding they actually serve to reduce bump position variance.

2. The model. To determine the effects of separately evolving E and I populations on
bump attractor dynamics, we analyze a stochastic neural field model: a coupled system of
nonlinear integro-differential equations describing interactions of spatially extended E and I
neural subpopulations (Figure 1(a) and [47]). Recurrent connectivity targeting position x
from y at time t is described by convolving (a(x) \ast b(x) =

\int \infty 
 - \infty a(x  - y)b(y)dy) the synaptic

kernel and the firing rate output of the neurons from which synapses originate. Along with
additive noise terms, we obtain the stochastic neural field equations:

du(x, t) = [ - u(x, t) + wee(x) \ast f(u(x, t)) - wei(x) \ast f(v(x, t))] dt+ \epsilon 
1

2dWe,(2.1a)

\tau dv(x, t) = [ - v(x, t) + wie(x) \ast f(u(x, t)) - wii(x) \ast f(v(x, t))] dt+ \epsilon 
1

2dWi,(2.1b)

where u(x, t) and v(x, t) denote the E and I synaptic input profiles at location x at time
t. We assume each unit of the time variable t is equivalent to 10ms on the order of typical
E membrane and synaptic time constants [25]. The sigmoidal firing rate function f(u) =

1
1+e - \eta (u - \theta ) with threshold \theta and gain \eta determines the strength of the firing rate output based
on the input u. Analytical results can be obtained in the high gain limit (\eta \rightarrow \infty ) such that

f(u) = H(u - \theta ) =

\Biggl\{ 
1, u - \theta \geq 0,

0, u - \theta < 0,
(2.2)

is the Heaviside function. The E and I population firing rate thresholds, \theta u and \theta v, can differ.
Given a Heaviside firing rate nonlinearity, it is possible to exactly characterize the dynamics
of the model using interface equations that track the evolution of level sets u = \theta u and v = \theta v
in space and time [14, 18]. The strength of synaptic connectivity weakens with the spatial
distance between positions x and y and is given by the distance-dependent synaptic weight
profile functions wab(x  - y) (a, b \in \{ e, i\} ). For explicit calculations, we take these to be
symmetric exponentials

wab(x) = Aabe
 - | x| 

\sigma ab ,(2.3)

where a, b \in \{ e, i\} and Aab, \sigma ab \in \BbbR \geq 0 (nonnegative constants). Commonly used values
throughout for the weight profiles are presented in Table 1. Parameters for wee were chosen to
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2582 H. L. CIHAK, T. L. EISSA, AND Z. P. KILPATRICK

(a)

(d)

(b) (c)

Figure 1. Independence of excitatory and inhibitory bumps. (a) Model schematic with separate E and I
populations and the synaptic connections between them. Note the actual model (2.1) lies on a continuum with
noise posed directly at the continuum limit. (b) An example pair of E and I bump profiles with firing rate
thresholds \theta u = 0.35 and Aii = 0. (c) Example plot of solution half-widths as thresholds are varied, obtained by
numerically solving the threshold conditions (3.4), for au and av. The particular half-width solution from panel
B is identified by the corresponding dots. (d) Example bumps from panel B wandering over time with noise
amplitude \epsilon = 0.002. Traces represent the center of mass (green) and the E/I interfaces (red/blue, respectively).
Colorscales represent the profile amplitude of u(x, t) and v(x, t). The centers of mass \Delta u and \Delta v are computed
using the formula (2.4), after the interfaces xj(t) ( j = 1, 2, 3, 4) are identified numerically. Other parameters
are as in Table 1.

Table 1
Model parameters for (2.1).

Parameter Aee Aei, Aie Aii \sigma ee \sigma ei, \sigma ie, \sigma ii \tau 
Definition E-E strength I-E strength I-I strength E-E spatial scale Other spatial scales I time constant
Value 0.5 0.15 0 or 0.01 1 2 1

Parameter \theta u \theta v \epsilon 
Definition E firing threshold I firing threshold Noise amplitude
Value [0,0.5] [0,0.5] 0.001 or 0.002

nondimensionalize the E to E connectivity (setting Aee = 0.5 and \sigma ee = 1). Other parameters
for the I to I and cross-population synaptic profiles were generally chosen to be broader
than the synaptic footprint of E to E connections, and we generally assume the commonly
identified 80\% E and 20\% I neuron ratio [1] in turn approximately determines the effective
synaptic amplitude from those populations.
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DISTINCT EXCITATORY/INHIBITORY BUMP WANDERING 2583

The spatially structured multiplicative noise terms dWe =
\sqrt{} 

| u(x, t)| dWu(x, t) and dWi =\sqrt{} 
| v(x, t)| dWv(x, t) are introduced with small amplitude 0 < \epsilon \ll 1, allowing asymptotic

approximations of their stochastic effects. Multiplicative noise is predicted in neural fields by
linearly approximating noise arising in a system-size expansion of a fully stochastic model [5].
Increments of spatially extended Wiener processes have zero mean \langle dWa(x, t)\rangle = 0 (a \in \{ u, v\} )
and local spatial correlations \langle dWa(x, t)dWa(y, s)\rangle = Caa(x  - y)\delta (t  - s)dtds. For simplicity,
we start by assuming there are no correlations between the noise to the E and I populations
\langle dWu(x, t)dWv(y, s)\rangle \equiv 0.

Based on prior studies of deterministic E/I population models [42, 4, 8] bump (standing
pulse) solutions emerge in parameter regions we can identify using an existence/stability
analysis. Recurrent excitation sustains both the E and I populations, and inhibition prevents
the spread of the E population activity. In the absence of noise, we obtain bump profiles
that are even symmetric and translation symmetric. Using threshold crossing conditions, we
develop implicit formulas for the half-width variable au (av) for the E (I) bump, which ensure
existence, defined as the distance from the bump's center of mass to the interface (Figure 1(b)).
The I bump's half-width av (Figure 1(c)) can vary nonmonotonically along certain parameter
axes, such as increasing firing rate thresholds, \theta u and \theta v, simultaneously. When noise is applied
to stable E/I activity bumps, they ``wander"" due to their neutral stability. In addition to
small deformations of the bump profile itself, a bump's center of mass wanders stochastically
(Figure 1(d), and see Figure A.1 for an additional example). While past asymptotic analyses
assumed this wandering was roughly Brownian motion [8, 31], we will show that by relaxing
this assumption we can better characterize nonlinear interactions between the bumps in the
distinct E and I populations and how this shapes wandering dynamics.

Each bump has a region over which neural activity (u or v) is superthreshold (above \theta u
or \theta v). We define the corresponding E/I population active regions to be [x1(t), x2(t)] and
[x3(t), x4(t)], respectively [27]. These active regions are bounded by the interfaces (threshold
crossings) since u(x1,2(t), t) = \theta u and v(x3,4(t), t) = \theta v. Note, large deviations could lead
to multiple disjoint active region segments in each layer, but we assume each bump's active
region is fully connected here (see [14, 18, 36] for elaborations on this problem). In the
absence of noise, the interfaces relate directly to the half-widths in that au = (x2  - x1)/2 and
av = (x4  - x3)/2.

Stochastic motion of the bumps will be tracked by estimating the center of mass \Delta u(t)
(\Delta v(t)) of the active region of the E (I) bump

\Delta u(t) =
x1(t) + x2(t)

2
, \Delta v(t) =

x3(t) + x4(t)

2
.(2.4)

Overall, we are interested in both how network parameters shape the form and stability of
bumps and how this translates into the bump's stochastic dynamics in the presence of noise.
Our ensuing analysis will initially rely on techniques in local stability, as well as weak perturba-
tions, but a major advancement will be the use of interface techniques to provide higher-order
corrections to the effective nonlinear equations describing stochastic bump motion.

3. Deterministic analysis. Our estimates for expected bump wandering (variance of cen-
ter of mass) utilizes linearization about stable stationary solutions. This necessitates an
analysis of stationary bump solutions' (static bump solutions in the absence of perturbations)
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2584 H. L. CIHAK, T. L. EISSA, AND Z. P. KILPATRICK

existence and stability in varying parameter regimes for the deterministic system. Using (2.1)
without noise [4, 27], we demonstrate the existence of stationary solutions through direct
construction. For proofs of uniqueness of solutions with a Heaviside firing rate see [4, 10].

3.1. Stationary solutions. Assuming solutions are stationary (u(x, t) = U(x) and v(x, t) =
V (x)) and using the Heaviside firing rate function (2.2), (2.1) becomes

U(x) =

\int 
\BbbR 
wee(x - y)H(U(y) - \theta u)dy  - 

\int 
\BbbR 
wei(x - y)H(V (y) - \theta v)dy,(3.1a)

V (x) =

\int 
\BbbR 
wie(x - y)H(U(y) - \theta u)dy  - 

\int 
\BbbR 
wii(x - y)H(V (y) - \theta v)dy.(3.1b)

We seek bumps with simply connected active regions (U > \theta u and V > \theta v) [ - au, au] and
[ - av, av]. Exploiting the solutions' translational invariance along \BbbR (opting for a center of
mass at x = 0) and expected evenness (i.e., U( - x) = U(x) and V ( - x) = V (x)) we obtain the
system

U(x) =

\int au

 - au

wee(x - y)dy  - 
\int av

 - av

wei(x - y)dy,(3.2a)

V (x) =

\int au

 - au

wie(x - y)dy  - 
\int av

 - av

wii(x - y)dy.(3.2b)

Integrating our chosen exponential synaptic weight functions (wab(x) = Aabe
 - | x| 
\sigma ab , a, b \in \{ e, i\} ),

we find the explicit formulas for c \in \{ au, av\} :

\int c

 - c
wab(x - y)dy =

\left\{         
2Aab\sigma abe

 - x

\sigma ab sinh
\Bigl( 

c
\sigma ab

\Bigr) 
, x > c,

2Aab\sigma ab

\Bigl[ 
1 - e

 - c

\sigma ab cosh
\Bigl( 

x
\sigma ab

\Bigr) \Bigr] 
, | x| < c,

2Aab\sigma abe
x

\sigma ab sinh
\Bigl( 

c
\sigma ab

\Bigr) 
, x <  - c.

(3.3)

Substituting (3.3) into (3.2) and utilizing the threshold crossing conditions \theta u = U(\pm au) and
\theta v = V (\pm av), we obtain an implicit set of equations for the half-widths, which depends on
whether the E or I bump is wider:

\theta u = 2Aee\sigma eee
 - au
\sigma ee sinh

\biggl( 
au
\sigma ee

\biggr) 
 - 

\left\{   2Aei\sigma eie
 - au
\sigma ei sinh

\Bigl( 
av

\sigma ei

\Bigr) 
, au \geq av,

2Aei\sigma ei

\Bigl[ 
1 - e

 - av
\sigma ei cosh

\Bigl( 
au

\sigma ei

\Bigr) \Bigr] 
, au < av,

(3.4a)

\theta v =  - 2Aii\sigma iie
 - av
\sigma ii sinh

\biggl( 
av
\sigma ii

\biggr) 
+

\left\{   2Aie\sigma iee
 - av
\sigma ie sinh

\Bigl( 
au

\sigma ie

\Bigr) 
, av \geq au,

2Aie\sigma ie

\Bigl[ 
1 - e

 - au
\sigma ie cosh

\Bigl( 
av

\sigma ie

\Bigr) \Bigr] 
, av < au.

(3.4b)

Equation (3.4) is thus defined piecewise continuously (Figure 2(a), gold circle indicates where
the change in cases occurs), and as we will show, cusps appear at these case switches in plots
of eigenvalues and variance estimates.
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DISTINCT EXCITATORY/INHIBITORY BUMP WANDERING 2585

Note, the above set of threshold conditions assume that both the E and I populations have
nontrivial active regions. There is a second class of bump solutions where there is no active
region in the I population. As we will show, these bumps always tend to be linearly unstable,
as there is no active inhibition to prevent the spread of excitation upon perturbation. Applying
this assumption to (3.2), we obtain the simplified system,

U(x) =

\int au

 - au

wee(x - y)dy,(3.5a)

V (x) =

\int au

 - au

wie(x - y)dy,(3.5b)

with E bump half-width given by

\theta u = U(\pm au) =
\int au

 - au

wee(\pm au  - y)dy

or (for our particular weight functions) the formula

\theta u = 2Aee\sigma eee
 - au
\sigma ee sinh

\biggl( 
au
\sigma ee

\biggr) 
.(3.6)

For such a solution to be self-consistent, we also must ensure that V < \theta v everywhere.
Assuming the peak of the subthreshold I bump occurs at x = 0, this is ensured by the
condition

V (0) =

\int au

 - au

wie(y)dy = 2Aie\sigma ie

\Bigl[ 
1 - e

 - au
\sigma ie

\Bigr] 
< \theta v.

There are, thus, two branches of bump solutions. One branch of ``broad"" bumps has su-
perthreshold active regions in both the E and I populations (au > 0 and av > 0). For
sufficiently high thresholds, we typically obtain marginally stable solutions, but these destabi-
lize through a Hopf bifurcation for sufficiently low firing rate thresholds (see Figure 2(a) and
subsequent stability analysis). In contrast, when the I bump is subthreshold (V (0) < \theta v), we
obtain unstable ``narrow"" solutions that create a separatrix between the broad solutions and
the rest state (Figure 2(a)). Under each set of assumptions we obtain two distinct systems
that approach the same solution defining a discontinuous saddle node bifurcation. The dis-
continuity arises from there being either two or one threshold condition and the peak of the
I narrow bump grazing the threshold \theta v. We derive these results in detail in the following
subsection.

3.2. Eigenvalues and noiseless perturbations. Our stability analysis utilizes linearization
about stationary solutions and localizes the perturbation evolution problem to the bump edges,
as in several previous analyses of bump dynamics in neural fields [4, 12, 19, 42, 27]. Since
there are four threshold crossing points, analysis of the broad solution's stability results in four
corresponding eigenvalues and equations associated with the degrees of freedom in the stability
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2586 H. L. CIHAK, T. L. EISSA, AND Z. P. KILPATRICK

(a)

(d)

(e) (f)

(b) (c)

Figure 2. Half-widths of bump solutions and linear stability. (a) Broad/narrow half-width solutions au and
av as a function of firing rate threshold \theta u = \theta v = \theta . There is a subcritical Hopf bifurcation (HB, green dots) in
the broad solutions and a semi-stable discontinuous saddle node bifurcation (SN, white dots) where the narrow
and broad solutions meet. The gold circle identifies where the E/I bump half-widths exchange size ordering (3.4).
Eigenvalues are plotted in association with stability of the (b) broad and (c) narrow solutions. (d) Examples
of four perturbation types related to the scale and shift broad solution eigenvalues. (e) An example of an
unstable broad solution destabilized via the oscillatory instability emerging from the subcritical Hopf bifurcation.
\theta u = \theta v = 0.1. The left panels represent the E bump and the right panels the I bump. (f) A perturbed narrow
(unstable) bump collapsing near the SN, where the E bump of the broad and narrow solutions have nearly
the same width. Threshold parameters were set near the discontinuous SN, \theta u = \theta v = 0.4996, and a small
perturbation was applied to the initial bump-like solutions causing solutions to become unstable. The left panels
represent the E bump and the right panels the I bump. The I-I connectivity Aii = 0 in all. Other parameters
are as in Table 1.

problem (Figure 2(b)). To derive our linearized system whose spectrum defines the stability
of bumps, we start by perturbing with small smooth functions, u(x, t) \approx U(x) + \epsilon \psi (x, t) and
v(x, t) \approx V (x) + \epsilon \phi (x, t). Substituting into (3.1), expanding about the stationary solution,
and simplifying to first order we obtain the system
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DISTINCT EXCITATORY/INHIBITORY BUMP WANDERING 2587

\psi t + \psi = wee(x) \ast [H \prime (U(x))\psi (x, t)] - wei(x) \ast [H \prime (V (x))\phi (x, t)],(3.7a)

\tau \phi t + \phi = wie(x) \ast [H \prime (U(x))\psi (x, t)] - wii(x) \ast [H \prime (V (x))\phi (x, t)],(3.7b)

where the distributional derivatives are given:

H \prime (U(x)) =
1

| U \prime (au)| 
(\delta (x - au) + \delta (x+ au)),

H \prime (V (x)) =
1

| V \prime (av)| 
(\delta (x - av) + \delta (x+ av)).

Assuming separability of our perturbations, \psi (x, t) = \psi (x)e\lambda t and \phi (x, t) = \phi (x)e\lambda t, and
substituting our exponential weight functions and H \prime (U(x)) and H \prime (V (x)), we obtain the
corresponding eigenvalue problem:

(\lambda + 1)\psi (x) =
Aee

| U \prime (au)| 

\Bigl[ 
e

 - | x - au| 
\sigma ee \psi (au) + e

 - | x+au| 
\sigma ee \psi ( - au)

\Bigr] 
 - Aei

| V \prime (av)| 

\Bigl[ 
e

 - | x - av| 
\sigma ei \phi (av) + e

 - | x+av| 
\sigma ei \phi ( - av)

\Bigr] 
,

(3.8a)

(\tau \lambda + 1)\phi (x) =
Aie

| U \prime (au)| 

\Bigl[ 
e

 - | x - au| 
\sigma ie \psi (au) + e

 - | x+au| 
\sigma ie \psi ( - au)

\Bigr] 
 - Aii

| V \prime (av)| 

\Bigl[ 
e

 - | x - av| 
\sigma ii \phi (av) + e

 - | x+av| 
\sigma ii \phi ( - av)

\Bigr] 
.

(3.8b)

Note, in the above, we have assumed \psi (\pm au) \not = 0 and \phi (\pm av) \not = 0 to obtain an equation
for the point spectrum, but taking these values to vanish would give us an equation for the
essential spectrum which will not contribute to instabilities [13, 45]. We form a system of
equations by evaluating the perturbation functions at the bump edges x = \pm au and x = \pm av
in (3.8). Values \lambda for which the resulting 4 \times 4 system is singular correspond to the four
distinct eigenvalues in the point spectrum. Forming this system, taking the determinant, and
factoring, we find the eigenvalues are the roots of the following pair of quadratics:

\tau \lambda 2  - (I + J + \tau B + \tau C)\lambda + (I + J)(B + C) - (E +D)(F +G),(3.9a)

\tau \lambda 2  - (I  - J + \tau B  - \tau C)\lambda + (I  - J)(B  - C) + (E  - D)(F  - G),(3.9b)

where

B =
Aee

| U \prime (au)| 
 - 1, C =

Aee

| U \prime (au)| 
e - 

2au
\sigma ee,

D =  - Aei

| V \prime (av)| 
e

 - | av - au| 
\sigma ei , E =  - Aei

| V \prime (av)| 
e

 - | av+au| 
\sigma ei ,

F =
Aie

| U \prime (au)| 
e

 - | av - au| 
\sigma ie , G =

Aie

| U \prime (au)| 
e

 - | av+au| 
\sigma ie ,

I =  - Aii

| V \prime (av)| 
 - 1, J =  - Aii

| V \prime (av)| 
e
 - 2av

\sigma ii .
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2588 H. L. CIHAK, T. L. EISSA, AND Z. P. KILPATRICK

Each quadratic could also be obtained by restricting the form of perturbation (scaling and
shifting) at the interfaces (see e.g., Figure 2(d)). Scaling perturbations expand or contract the
bump (\psi (au) = \psi ( - au) and \phi (av) = \phi ( - av)), and we obtain (3.9a) resulting in the associated
``scale"" eigenvalues (Figure 2(b))

\lambda \mathrm{s}\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{e} =
I + J + \tau (B + C)

2\tau 
\pm 
\sqrt{} 

(I + J  - \tau (B + C))2 + 4\tau (E +D)(F +G)

2\tau 
,(3.10)

which are both nonzero in general. The sign of their real part determines the linear stability
of the bumps. For shifting perturbations (\psi (au) =  - \psi ( - au) and \phi (av) =  - \phi ( - av)) we
obtain (3.9b). A straightforward calculation shows (I  - J)(B  - C) + (E  - D)(F  - G) = 0,
resulting in the zero eigenvalue (green) corresponding to the system's translational invariance
(Figure 2(b)). Correlated shifts in the E/I bumps' center of mass simply translate the solution
along the real line. Such perturbations are integrated and neither grow nor decay. The nonzero
shift eigenvalue is given by the simple formula

\lambda =
I  - J + \tau (B  - C)

\tau 
(3.11)

which is real and negative. Hence the bumps are stable with respect to shifts of the E and I
bump in the opposite direction.

Eigenvalues of the narrow solutions are obtained by following the same process, which
is greatly simplified since the I population is subthreshold and perturbations of this part
do not contribute to instabilities or enter into the point spectrum equations. We therefore
investigate the effect of small smooth perturbations to the E population, with the nonzero
part along the bump edges, u(x, t) \approx U(x) + \epsilon \psi (x, t). The resulting two eigenvalues are

\lambda 1 = 0 (corresponding to the marginal stability of shifts) and \lambda 2 = 2e
 - 2au
\sigma ee /(1 - e

 - 2au
\sigma ee ), which

is clearly positive, confirming that narrow solutions are always unstable (Figure 2(c)).
We identify bifurcations in the bump solutions by checking the signs of the real parts

of each solution branch's eigenvalues. We find two types of bifurcations. The first is a Hopf
bifurcation (green dot, HB in Figure 2(a,b)) occurring as the firing threshold is reduced, desta-
bilizing bumps in a pattern-destroying oscillation (Figure 2(e)) [42]. This Hopf bifurcation
boundary occurs when Re(\lambda \mathrm{s}\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{e}) = 0, which is given by the implicit formula

\tau Aee

| U \prime (au)| 
(1 - e

 - 2au
\sigma ee ) = \tau + 1 +

Aii

| V \prime (av)| 
(1 + e

 - 2av
\sigma ii ).(3.12)

The second bifurcation observed is a discontinuous saddle node bifurcation (SN in Figure 2(a))
[15, 39] where the unstable narrow and marginally stable broad solutions meet. The peak of
the narrow I population bump rises to meet the firing threshold, and the broad I bump
active region shrinks to a single point at threshold. The meeting of two linearizations of
different discrete dimension (4 for broad, 2 for narrow) results in a discontinuous change in
the corresponding Jacobian matrices yielding a nonsmooth saddle node bifurcation where the
solution branches annihilate one another (labeled ``contraction instability"" in Figure 2(f)).

3.3. Bounding stability regions in parameter space. To identify how noise degrades
stable representations of parametric working memory, we focus on the effect of stochastic
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DISTINCT EXCITATORY/INHIBITORY BUMP WANDERING 2589

(a) (b)

(c) (d)

Figure 3. Bump stability/instability across parameter space. Main panels take Aii = 0 and insets take
Aii = 0.01. In all plots, blue regions indicate parameters for which a stable bump exists, red regions are where
all bumps are unstable. Black boundaries identify where Hopf bifurcations occur. White regions are where no
bump solutions exist. (a) Stability as the firing rate thresholds \theta are varied. (b) Stability regions with varied
E/I interaction amplitude Aei and Aie. \theta u = \theta v = 0.25. (c) Stability regions with varied inhibition timescale \tau 
and firing thresholds \theta u = \theta v = \theta . (d) Stability regions with varied E/I interaction spatial extent \sigma ei = \sigma ii and
\sigma ie. \theta u = \theta v = 0.15. Other parameters are as in Table 1.

perturbations on bumps along the broad branch. Given that varying certain parameters can
stabilize the deterministic version of (2.1), we identify how the bifurcation boundaries change
and stable solution regions expand/contract as parameters are varied (Figure 3). As discussed
above, stable solutions only exist if broad bumps have nonpositive eigenvalues associated with
their linear stability.

When varying the firing rate thresholds, we find larger I thresholds, \theta v, expand the range of
stable solutions (Figure 3(a)). We speculate that setting the I population firing rate threshold
too low makes it strongly responsive to network activity perturbations, as shown in oscillatory
instability simulations (Figure 2(e)). Varying the strengths of synapses from E to I and I to E
populations, we also observed bumps destabilize if E to I coupling (Aie) is sufficiently strong
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2590 H. L. CIHAK, T. L. EISSA, AND Z. P. KILPATRICK

(Figure 3(b)). Such changes increase the sensitivity of the E drive to the I population as bumps
are expanded, leading to potential I bump overcompensation as E bumps widen, eventually
silencing both bumps.

Setting firing rate thresholds equal (\theta u = \theta v = \theta ) and varying them along with changing
the I timescale, \tau , result in a narrowing of the range of stable bumps as firing rate thresholds
are decreased (Figure 3(c)). Specifically, as the timescale of the I population is increased, the
system reacts more slowly to being out of equilibrium, so the E and I bumps do not restabilize
once perturbed. For instantaneous inhibition (\tau \rightarrow 0), such oscillatory (Hopf) instabilities
never occur.

We also quantified the parameter ranges of stable bumps when varying the spatial scale
of interpopulation synaptic footprints (Figure 3(d)). Stability is again largely dependent on
the profile of E to I population synaptic connectivity; wider connectivity (high \sigma ie) yields
an unstable region. Similar to our previous findings, broadening the E to I profile leads to
overcompensation of the I population in response to dynamical increases in the E population
width.

The main panels of Figure 3 assume Aii = 0, which is common in studies of (2.1) due to
the small amplitude of such connections. We also examined small, nonzero amplitude I to I
connections (Aii = 0.01, see insets in Figure 3) and found stable regions expand likely due to
dampening of I population reactions.

4. Analysis of stochastic bump motion. Considering stochasticity emerging from neural
and synaptic variability [17], multiplicative noise in the neural field model (2.1) (taking \epsilon > 0)
causes stable bumps to wander like a particle subject to Brownian motion. The extent of
this wandering has been linked to subject response errors on delayed estimation tasks [48,
8]. We are primarily interested in identifying how architectural features of the E/I neural
circuit impact wandering [31, 30, 44, 32] as described by the time-dependent variance of
the bumps' center of mass. We can estimate this variance analytically using two different
approaches. The first we refer to as the ``strongly coupled limit"" approximation, motivated
by work from [31], which assumes the E/I bump has a single position (the E and I bumps do
not stray too far from one another). To first order, this approximation treats the bump as
wandering by pure diffusion, and so its stochastic motion is only characterized by a diffusion
coefficient. However, the resulting formulas have limitations for certain parameter regimes on
the timescale of interest since they do not consider that the bumps can drift apart. While
we typically do expect the bump positions to separate from one another, we assume this
separation is small. As we will show when deriving a complementary interface approximation,
this separation is substantial enough to significantly affect the variance. One exception would
be the limit in which the I population responds infinitely rapidly (\tau \rightarrow 0), and so its bump's
position precisely tracks that of the E bump. Our second approach, the ``interface-based
approximation,"" tracks bump interfaces (following threshold crossing points) [36, 14, 27].
Pairing this together with a weak coupling assumption as in [28] allows us to estimate the
time-dependent changes in the distinct E and I bumps centers of mass.

4.1. Strongly coupled limit approximation. In the strongly coupled limit, we assume
solutions to (2.1) take the form of stable bumps with positions weakly perturbed by the same
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DISTINCT EXCITATORY/INHIBITORY BUMP WANDERING 2591

amount (U(x  - \Delta u) and V (x  - \Delta v)) with \Delta u = \Delta v = \Delta . Thus, the E and I bumps are
assumed to move together, and we have

u(x, t) = U(x - \Delta (t)) + \epsilon 1/2\Phi (x - \Delta (t), t) + \epsilon \Phi 1(x - \Delta (t), t) . . . ,(4.1a)

v(x, t) = V (x - \Delta (t)) + \epsilon 1/2\Psi (x - \Delta (t), t) + \epsilon \Psi 1(x - \Delta (t), t) . . . ,(4.1b)

where \Delta (t) is the \scrO (\epsilon 1/2) position perturbation (with d\Delta = \scrO (\epsilon 1/2)); \Phi and \Psi are, respec-
tively, the leading order profile perturbations; and \Phi 1 and \Psi 1 are, respectively, the higher-order
profile perturbations to the E and I bumps. Substituting (4.1) and truncating (2.1) to first
order and taking averages, we find that the stationary solutions remain the same as before.
Moving to \scrO (\epsilon 1/2), we find\biggl( 

d\Phi 
\tau \cdot d\Psi 

\biggr) 
= \scrL 

\biggl( 
\Phi 
\Psi 

\biggr) 
dt+ \epsilon  - 1/2d\Delta (t)

\biggl( 
U \prime (x)
\tau \cdot V \prime (x)

\biggr) 
+

\biggl( \sqrt{} 
| U(x)| dWu\sqrt{} 
| V (x)| dWv

\biggr) 
,(4.2)

where we define the linear operator

\scrL 
\biggl( 
p
q

\biggr) 
=

\biggl( 
 - p+ wee \ast [f \prime (U)p] - wei \ast [f \prime (V )q]
 - q + wie \ast [f \prime (U)p] - wii \ast [f \prime (V )q]

\biggr) 
.

Note that, due to translation symmetry of the noise-free system, the null space of the linear
operator \scrN (\scrL ) (any vector of functions \bfv such that \scrL \bfv = \bfzero ) is spanned by \{ U \prime , V \prime \} . To
briefly show this, recall the stationary solutions take the form

U(x) =

\int 
\BbbR 
wee(x - y)f(U(y))dy  - 

\int 
\BbbR 
wei(x - y)f(V (y))dy,

V (x) =

\int 
\BbbR 
wie(x - y)f(U(y))dy  - 

\int 
\BbbR 
wii(x - y)f(V (y))dy.

Differentiating with respect to x and applying integration by parts yield

U \prime (x) =

\int 
\BbbR 
wee(x - y)f \prime (U(y))U \prime (y)dy  - 

\int 
\BbbR 
wei(x - y)f \prime (V (y))V \prime (y)dy,

V \prime (x) =

\int 
\BbbR 
wie(x - y)f \prime (U(y))U \prime (y)dy  - 

\int 
\BbbR 
wii(x - y)f \prime (V (y))V \prime (y)dy,

exactly the form of the functions p and q spanning the \scrN (\scrL ).
We ensure a bounded solution to (4.2) by requiring the inhomogeneous part to be orthog-

onal to the null space of the adjoint of the linear operator \scrN (\scrL \ast ). There exists a single vector
spanning \scrN (\scrL \ast ), denoted (\varphi 1(x), \varphi 2(x)). Enforcing our conditions for bounded solutions via
requiring the inner product of the nullspace (\varphi 1(x), \varphi 2(x)) and inhomogeneity (h1(x), h2(x))
vanishes

\int 
\BbbR \varphi 1(x)h1(x) + \varphi 2(x)h2(x)dx = 0; we isolate the bump position increment:

d\Delta (t) =  - \epsilon 1/2
\int 
\BbbR [\varphi 1(x)

\sqrt{} 
| U(x)| dWu(x, t) + \varphi 2(x)

\sqrt{} 
| V (x)| dWv(x, t)]dx\int 

\BbbR [\varphi 1(x)U
\prime (x) + \tau V \prime (x)\varphi 2(x)]dx

.

Since the above is simply a weighted integral over the spatiotemporal noises, to first order, we
have a Brownian stochastic differential equation (SDE) for the bump position. Given noise is
white in time, we find that the mean over realizations is \langle \Delta (t)\rangle = 0, and the variance is
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2592 H. L. CIHAK, T. L. EISSA, AND Z. P. KILPATRICK

\langle \Delta (t)2\rangle = \epsilon 

\int 
\BbbR \varphi 1(x)

\sqrt{} 
| U(x)| \cdot [Nu(x) + 2Nc(x)] + \varphi 2(x)

\sqrt{} 
| V (x)| \cdot [Nv(x)] dx\bigl[ \int 

\BbbR \varphi 1(x)U
\prime (x) + \tau V \prime (x)\varphi 2(x)dx

\bigr] 2 t,(4.3)

where

Nu(x) = Cu(x) \ast \varphi 1(x)
\sqrt{} 

| U(x)| ,
Nc(x) = Cc(x) \ast \varphi 2(x)

\sqrt{} 
| V (x)| ,

Nv(x) = Cv(x) \ast \varphi 2(x)
\sqrt{} 

| V (x)| ,

and the spatial correlation functions are defined: \langle Wu(x, t)Wu(y, t)\rangle = Cu(x  - y)t,
\langle Wv(x, t)Wv(y, t)\rangle = Cv(x - y)t, and \langle Wu(x, t)Wv(y, t)\rangle = Cc(x - y)t. Note, there is a weighted
contribution to the linear scaling variance from both the noise of the E and I populations.

To calculate the nullspace of the adjoint linear operator \scrL \ast , we must first derive the adjoint
using the definition based on the L2 inner product \langle \scrL \bfv ,\bfu \rangle = \langle \bfv ,\scrL \ast \bfu \rangle , by which we find

\scrL \ast 
\biggl( 
p
q

\biggr) 
=

\biggl( 
 - p+ f \prime (U) [wee \ast [p] + wie \ast [q]]
 - q  - f \prime (V ) [wei \ast [p] + wii \ast [q]]

\biggr) 
.

We rearrange the equation \scrL \ast (\varphi 1(x), \varphi 2(x))
T = \bfzero , so

\varphi 1(x) = f \prime (U)

\int 
\BbbR 
[wee(x - y)\varphi 1(y) + wie(x - y)\varphi 2(y)]dy,(4.4a)

\varphi 2(x) =  - f \prime (V )

\int 
\BbbR 
[wei(x - y)\varphi 1(y) + wii(x - y)\varphi 2(y)]dy.(4.4b)

In the case of the Heaviside firing rate function we again can determine the distributional
derivative of the Heaviside acting on the bump solution and obtain\biggl( 

\varphi 1(x)
\varphi 2(x)

\biggr) 
=

\biggl( 
\delta (x+ au) +\scrA \delta (x - au)

 - \scrB \delta (x+ av) + \scrC \delta (x - av)

\biggr) 
.(4.5)

Plugging (4.5) into (4.4) and solving for the constants, we find \scrA =  - 1, \scrC = \scrB , and \scrB =
wei(au - av) - wei(au+av)
wie(au - av) - wie(au+av)

. Thus we find that\biggl( 
\varphi 1(x)
\varphi 2(x)

\biggr) 
=

\biggl( 
\delta (x+ au) - \delta (x - au)

 - \scrB [\delta (x+ av) - \delta (x - av)]

\biggr) 
.(4.6)

Finally, substituting (4.6) into (4.3), we have

\langle \Delta (t)2\rangle = \epsilon 
D1  - D2 +D3

2 [| U \prime (au)| + \scrB \tau | V \prime (av)| ]2
t,(4.7)

where

D1 = \theta u[Cu(0) - Cu(2au)],

D2 = 2\scrB 
\sqrt{} 
\theta u\theta v[Cc(au  - av) - Cc(au + av)],

D3 = \theta v\scrB 2[Cv(0) - Cv(2av)].
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DISTINCT EXCITATORY/INHIBITORY BUMP WANDERING 2593

The contributions arising due to noise correlations within the E and I populations, D1 and
D3, are positive. In contrast, the diffusion contribution from the cross-population correlation
term Cc is negative assuming the correlation function is monotone decreasing. Thus, noise
correlations between the E and I populations reduce wandering. Here, we assume Cc \equiv 
0. Later, we discuss the effects of nonzero correlated noise components across the E and I
populations and compare these theoretical results to numerical simulations.

4.2. Interface-based approximation theory. Complementing our strongly coupled limit
approximation of bump wandering, we also derive interface equations that approximate the
stochastic dynamics of the bump in response to multiplicative noise in (2.1). While the
strongly coupled limit approximation assumes the E and I bumps move as one, numerical
simulations reveal that this is not the case (see Figure 4(a,c)). For instance, the I bump tends
to be more susceptible to profile deformations and may wander more, making the strongly
coupled limit less valid. Higher-order corrections of the variance estimate can be obtained
using interface theory to develop nonlinearly coupled Langevin equations for estimating the
E and I bumps' coupled centers of mass.

Interface theory for bumps in neural fields tracks the level sets of neural activity variables
where firing rate thresholds are crossed. This approach was originally pioneered in the case
of noiseless single-bump neural field models [27] and then subsequently for traveling fronts in
inhomogeneous neural fields [11], as well as solutions in planar neural fields [14]. More recently,
these approaches were adapted to obtain higher-order approximations for the timescale of front
initiation [18], as well as the stochastic motion of multiple interacting bumps [36]. Here, we
further adapt this work [36] to account for the motion of separate bumps in the E and I neural
populations of (2.1).

As defined previously, the active regions of the E and I bumps are [x1(t), x2(t)] and
[x3(t), x4(t)], respectively. Without noise perturbations, we would expect these interfaces
to remain constant for the equilibrium bump solution, but noise perturbs these values, so they
wander over time. However, unlike in the strongly coupled limit, we do not expect this wan-
dering to be pure Brownian motion but rather the result of a nonlinearly coupled system of
SDEs. To obtain these SDEs, we start by writing the level set condition for the interfaces in
each neural population (E and I):

u(x1(t), t) = u(x2(t), t) = \theta u, v(x3(t), t) = v(x4(t), t) = \theta v,(4.8)

where \theta u and \theta v are the firing rate thresholds of the E and I populations. For a Heaviside
firing rate, we substitute (4.8) into (2.1) and obtain

du =

\Biggl[ 
 - u+

\int x2(t)

x1(t)
wee(x - y)dy  - 

\int x4(t)

x3(t)
wei(x - y)dy

\Biggr] 
dt+ \epsilon 

1

2dWe,(4.9a)

\tau dv =

\Biggl[ 
 - v +

\int x2(t)

x1(t)
wie(x - y)dy  - 

\int x4(t)

x3(t)
wii(x - y)dy

\Biggr] 
dt+ \epsilon 

1

2dWi.(4.9b)

Differentiating (4.8), we obtain consistency equations for the interfaces xj(t):

\partial xu(xj(t), t)dxj + du(xj(t), t) = 0, j = 1, 2;

\partial xv(xj(t), t)dxj + dv(xj(t), t) = 0, j = 3, 4.
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2594 H. L. CIHAK, T. L. EISSA, AND Z. P. KILPATRICK

We then approximate the above exact evolution equations by assuming the spatial gradients
at the interfaces remain constant and odd symmetric throughout the evolution motivated by
the form of the strongly coupled limit expansion:

| U \prime (au)| \equiv \alpha u(t) \approx 
\partial u(x1(t), t)

\partial x
=  - \partial u(x2(t), t)

\partial x
,

| V \prime (av)| \equiv \alpha v(t) \approx 
\partial v(x3(t), t)

\partial x
=  - \partial v(x4(t), t)

\partial x
.

Subsequently, we drop \scrO (\epsilon ) terms to obtain the relations

du(x1(t), t) =  - \alpha udx1(t),(4.10a)

du(x2(t), t) = \alpha udx2(t),(4.10b)

dv(x3(t), t) =  - \alpha vdx3(t),(4.10c)

dv(x4(t), t) = \alpha vdx4(t).(4.10d)

Plugging the formulas in (4.10) into (4.9), we obtain the following system of nonlinear Langevin
equations describing the stochastic evolution of the interfaces:

dx1 =  - 1

\alpha u

\Bigl( 
[ - \theta u +\scrW ee(x1;x1, x2) - \scrW ei(x1;x3, x4)] dt+ \epsilon 

1

2dWe(x1, t)
\Bigr) 
,(4.11a)

dx2 =
1

\alpha u

\Bigl( 
[ - \theta u +\scrW ee(x2;x1, x2) - \scrW ei(x2;x3, x4)] dt+ \epsilon 

1

2dWe(x2, t)
\Bigr) 
,(4.11b)

\tau dx3 =  - 1

\alpha v

\Bigl( 
[ - \theta v +\scrW ie(x3;x1, x2) - \scrW ii(x3;x3, x4)] dt+ \epsilon 

1

2dWi(x3, t)
\Bigr) 
,(4.11c)

\tau dx4 =
1

\alpha v

\Bigl( 
[ - \theta v +\scrW ie(x4;x1, x2) - \scrW ii(x4;x3, x4)] dt+ \epsilon 

1

2dWi(x4, t)
\Bigr) 
,(4.11d)

where the coupling functions are given by the integrals over the active regions

\scrW jk(x;xa, xb) =

\int xb

xa

wjk(x - y)dy.

To derive estimates for the evolution of the centers of mass of the E and I bumps, we apply
the definitions \Delta u = (x1 + x2)/2 and \Delta v = (x3 + x4)/2 from (2.4) to (4.11) and combine
equations to obtain

d\Delta u =
1

2\alpha u

\Bigl( 
[ - 2\scrW ee(x1;x1, x2) +\scrW ei(x1;x3, x4) - \scrW ei(x2;x3, x4)] dt

+
\sqrt{} 
\epsilon \theta u[dWu(x2, t) - dWu(x1, t)]

\Bigr) 
,

(4.12a)

d\Delta v =
1

2\tau \alpha v

\Bigl( 
[2\scrW ii(x3;x3, x4) +\scrW ie(x4;x1, x2) - \scrW ie(x3;x1, x2)] dt

+
\sqrt{} 
\epsilon \theta v[dWv(x4, t) - dWv(x3, t)]

\Bigr) 
.

(4.12b)
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DISTINCT EXCITATORY/INHIBITORY BUMP WANDERING 2595

Assuming position perturbations remain small we approximate x1 = \Delta u  - au, x2 = \Delta u + au,
x3 = \Delta v  - av, and x4 = \Delta v + av with \Delta u,\Delta v = \scrO (\epsilon 1/2). Plugging in these approximations,
linearizing about the stationary solutions, and simplifying yield the multivariate Ornstein--
Uhlenbeck (OU) process:

d\Delta u(t) =
1

\alpha u

\Bigl( 
(\Delta u  - \Delta v) \cdot [wei(au  - av) - wei(au + av)] dt

+
\sqrt{} 
\epsilon \theta u[dWu(\Delta u + au, t) - dWu(\Delta u  - au, t)]

\Bigr) 
,

(4.13a)

\tau d\Delta v(t) =
1

\alpha v

\Bigl( 
(\Delta v  - \Delta u) \cdot [wie(au + av) - wie(au  - av)] dt

+
\sqrt{} 
\epsilon \theta v[dWv(\Delta v + av, t) - dWv(\Delta v  - av, t)]

\Bigr) 
.

(4.13b)

Note, wei and wie are even and monotonic in distance, so we define the positive quantities

Mu = \alpha  - 1
u \cdot [wei(au  - av) - wei(au + av)] > 0,

Mv = \tau  - 1\alpha  - 1
v \cdot [wie(au  - av) - wie(au + av)] > 0.

Then we have the matrix-vector representation of the multivariate OU process, d\bfDelta = \bfscrK \bfDelta dt+
\bfitd \bfscrW , where \bfDelta =

\bigl( 
\Delta u

\Delta v

\bigr) 
, \bfscrK =

\bigl( 
Mu  - Mu

Mv  - Mv

\bigr) 
is the coupling matrix, and

\bfitd \bfscrW =

\Biggl( \surd 
\epsilon \theta u

2\alpha u
[dWu(\Delta u + au, t) - dWu(\Delta u  - au, t)]\surd 

\epsilon \theta v
2\tau \alpha v

[dWv(\Delta v + av, t) - dWv(\Delta v  - av, t)]

\Biggr) 
is the correlated Wiener process noise. Following methods for solving linear SDEs [23], we
can determine the mean and variance of \Delta u and \Delta v to obtain estimates of the diffusion of
each population. First we diagonalize \bfscrK :

\bfscrK =
1

Mv  - Mu

\biggl( 
1 Mu

1 Mv

\biggr) \biggl( 
0 0
0  - (Mv  - Mu)

\biggr) \biggl( 
 - Mv Mu

 - 1 1

\biggr) 
.

Thus our eigenvalues are \lambda 1,2 = 0, - (Mv  - Mu), and the eigenvectors are \bfv 1 = (1, 1)T and
\bfv 2 = (Mu,Mv)

T , respectively. Note, this implies that there is a marginally stable direction
along perturbations of the bump that move both the E and I bumps the same amount,
and there is an attractive (stable) direction for perturbations that move the E and I bumps
differently. Similar results have been found for coupled lateral I layers for which each layer
individually supports a self-sustaining bump in the absence of cross-population coupling [20,
28, 6]. The mean is given by \langle \bfDelta \rangle = e\bfscrK t\bfDelta (0), and so\biggl( 

\langle \Delta u\rangle 
\langle \Delta v\rangle 

\biggr) 
=

1

Mv  - Mu

\biggl( 
Mv\Delta v(0) - Mu\Delta u(0) - Mu[\Delta u(0) - \Delta v(0)]e

 - (Mv - Mu)t

Mv\Delta v(0) - Mu\Delta u(0) +Mv[\Delta v(0) - \Delta u(0)]e
 - (Mv - Mu)t

\biggr) 
.

Next we seek the covariance \langle \bfDelta (t)\bfDelta T (t)\rangle =
\int t
0 e

\bfscrK (t - s)\bfitD e\bfscrK 
\bfitT (t - s)ds, where the covariance

matrix of the noise term \bfitD is found to be

\bfitD =

\biggl( 
Du Dc

Dc Dv

\biggr) 
(4.14)
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2596 H. L. CIHAK, T. L. EISSA, AND Z. P. KILPATRICK

with

Du =
\epsilon \theta u
2\alpha 2

u

[Cu(0) - Cu(2au)],

Dv =
\epsilon \theta v

2\tau 2\alpha 2
v

[Cv(0) - Cv(2av)],

Dc =
\epsilon 
\surd 
\theta u\theta v

4\tau \alpha u\alpha v
[Cc(\Delta u  - \Delta v + au  - av) - Cc(\Delta u  - \Delta v + au + av)

 - Cc(\Delta u  - \Delta v  - au  - av) + Cc(\Delta u  - \Delta v  - au + av)].

Multiplying out e\bfscrK (t - s)\bfitD e\bfscrK 
\bfitT (t - s) and then integrating yield our predictions of E and I bump

center of mass variance:

\langle \Delta u(t)
2\rangle = DvM

2
u  - 2DcMuMv +DuM

2
v

(Mv  - Mu)2
t

 - 2
e - (Mv - Mu)t  - 1

(Mv  - Mu)3
[DcM

2
u  - DvM

2
u +DcMuMv  - DuMuMv]

 - M2
u

e - 2(Mv - Mu)t  - 1

2(Mv  - Mu)3
[Du +Dv  - 2Dc],

(4.15a)

\langle \Delta v(t)
2\rangle = DvM

2
u  - 2DcMuMv +DuM

2
v

(Mv  - Mu)2
t

 - 2
e - (Mv - Mu)t  - 1

(Mv  - Mu)3
[DcM

2
v  - DuM

2
v +DcMuMv  - DvMuMv]

 - M2
v

e - 2(Mv - Mu)t  - 1

2(Mv  - Mu)3
[Du +Dv  - 2Dc].

(4.15b)

In the limit as t\rightarrow \infty we find that both variances are dominated by the term

\langle \Delta u(t)
2\rangle = \langle \Delta v(t)

2\rangle = DvM
2
u  - 2DcMuMv +DuM

2
v

(Mv  - Mu)2
t,

which is essentially an estimate of the variance derived from assuming the E and I bumps are
co-located as in the strongly coupled limit approximation. Relating these two routes to one
another, we find

\scrB =
wei(au  - av) - wei(au + av)

wie(au  - av) - wie(au + av)
=

\alpha uMu

\tau \alpha vMv
.

Using this relation and plugging in the expressions for Du, Dv, and Dc we find that we obtain
the diffusion coefficient expression from the strongly coupled limit prediction (4.7). At short
times, the interface-based approximation (4.15), has contributions based on the interactions
of the E and I bumps, which decay over time.

The main difference between the strongly coupled limit and interface-based methods is
that the bumps are allowed to drift apart in the interface-based method, which allows us to
separately estimate the I bump's variance. The most general form of the approximation can
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DISTINCT EXCITATORY/INHIBITORY BUMP WANDERING 2597

(a) (b)

(c) (d)

Figure 4. Variance predictions and simulations. Numerical simulations of (2.1) were run using an ap-
proximate version of the interface equations derived from (4.9). Euler-Maruyama was used for time-stepping
with noise amplitude \epsilon = 0.001, the spatial interval was truncated to [ - 3\pi , 3\pi ] with steps dx = 3\pi 

1000
, timesteps

are dt = 1ms, and variances were calculated by marginalizing over 104 realizations per point. (a) The strongly
coupled limit prediction and corresponding simulations over 1 second. Although this prediction works reason-
ably well for small thresholds \theta , it breaks down for higher thresholds where the I bump center of mass differs
considerably, e.g., \theta u+0.05 = \theta v = 0.45. Note the kink and change in the variance trend when \theta passes through
a value at which the half-widths au, av exchange order (gold circle). Insets show single E (top panel) and I
(lower panel) bump simulations at indicated threshold values. x is the horizontal axis and t in seconds is the
vertical axis. The E(I) bump interfaces at each step are shown by the red(blue) lines and the bump centers are
represented by the green lines. (b) When comparing to estimates of variance made using the interface based ap-
proach, the theory more closely tracks the simulation results at higher firing rate threshold \theta . (c) The strongly
coupled limit predicts pure diffusion and linearly scaling variance, which underestimates variance calculated
from simulations at \theta u + 0.05 = \theta v = 0.45. (d) The interface based estimate tracks the drifting apart of the E
and I bump, leading to more accurate variance predictions when \theta u + 0.05 = \theta v = 0.45. All other parameters
are as inTable 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

1/
23

 to
 1

32
.1

74
.2

50
.1

43
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



2598 H. L. CIHAK, T. L. EISSA, AND Z. P. KILPATRICK

further describe stochastic widening and contraction of the bumps, described by a full four-
dimensional and nonlinear approximation. Even collapsing to centers of mass approximations,
using the interface-based interactions as a starting point is more accurate than the strongly
coupled limit, as we will subsequently show. On the other hand, the strongly coupled limit
is more straightforward to obtain, and there are fewer arbitrary assumptions we must make
(e.g., the static gradient approximation). Yet, the interface-based method allows us to obtain
greater precision by using the fully nonlinear approximation over all the interfaces, xj , making
it a better metric for variance predictions.

4.3. Variance predictions and simulations comparison. To validate our strongly cou-
pled limit and interface-based predictions of bump variance, we ran stochastic simulations of
(2.1) using spatiotemporal noises to the E and I populations that are not correlated between
populations; Cc(x) \equiv 0. As firing rate thresholds are increased (Figure 4(a,b)), both our
theoretical predictions and the averaged numerical simulations suggest that variance changes
nonmonotonically. This stands in stark contrast to results from previous studies, which found
that the effective diffusion of bumps generally tends to increase monotonically with the firing
threshold for single-population lateral I networks [31]. Interestingly, we find that the variance
peaks at the precise point in parameter space where the noise-free E and I bumps have the
same width (gold circles, Figure 4(a,b)).

Moreover, we see that the strongly coupled limit approximation adequately captures the
effective motion of the E bump but not the I bump, which tends to stray further (Figure 4(a)).
In contrast, the interface-based approximation is able to capture both the distinct I and E
bumps' variance by accounting for the stochastic dynamics of the I bump being perturbed
away from the E bumps center of mass (Figure 4(b)).

The dynamics of the I bump vary with firing rate thresholds and timescales. At higher
firing rate thresholds, the I bump wanders more than the E bump, and the two bumps tend
to be more weakly coupled. As the timescale increases, the I bumps center of mass relaxes
to wander slightly away from that of the E bump, while the E bumps variance scales linearly
in time like pure diffusion (Figure 4(c,d)). Since the I bump is sustained by the E popula-
tion, the I bump appears to weakly track the E bump's position (see Figure A.1 for single
simulation of such activity), which can be estimated by OU processes [31, 6]. Hence, the I
bump's position variance can be higher than that of the E population.

To further analyze how the variance in bump position depends on changes in parameters,
we determined how it changes along several different parameter axes (Figure 5). For simplicity,
we studied the variations in the E bump's position variance and compared it to the interface-
based approximation. We started by varying the amplitude of interpopulation connectivity,
either E \rightarrow I or I \rightarrow E. Weakening either of these projection amplitudes tended to increase
bump variance (Figure 5(a,b)). Weakening cross-population connectivity leads to less common
movement of the E/I bumps. Thus, the bumps are more weakly stable to noise perturbations
and reequilibrate more slowly, ultimately leading to more wandering.

Aside from nonmonotonicity arising as a function of the firing rate threshold, we also
observe that narrowing the I bump's synaptic profile (varying the spatial extent of the I
projections) yields a peak in variance (Figure 5(c)) which may be due to a greater susceptibility
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DISTINCT EXCITATORY/INHIBITORY BUMP WANDERING 2599

(a) (b)

(c) (d)

Figure 5. Excitatory bump position variances as a function of network connectivity, spatial extent, and
firing rate threshold. Noise amplitude \epsilon = 0.001 throughout. (a) Bump position variance mostly decreases as
connectivity amplitude Aei is increased. Other parameters are Aii = 0, \tau = 1, and \theta u = \theta v = \theta . Inset zooms
in on the plot at lower Aei values. (b) Bump position variance mostly decreases as Aie is increased. Other
parameters are Aii = 0, \tau = 1. \theta u = \theta v = \theta . (c) Bump position variance changes nonmonotonically as the
spatial extent of the I projections (\sigma ei = \sigma ii) are increased. Other parameters are Aii = 0, \theta u = \theta v = 0.3, and
\tau = 1. \sigma ie is varied. Inset zooms in on variance peaks. (d) Bump position variance primarily increases with
I population threshold \theta v. Other parameters are Aii = 0 and \tau = 1. We also vary firing threshold \theta u. Other
parameters are as in Table 1.

to noise perturbations when the width of I to E projections \sigma ei = \sigma ii is decreased, resulting
in a peak of variance. For smaller \sigma ei = \sigma ii, we speculate that the equilibrium E bump width
is narrower and can be more easily stabilized by I feedback. Note that the simulations do
not match the peaks as well as in other panels likely due to approximations made in the
interface-based approach, though the trends are still largely captured.

We also observe that lower I firing rate thresholds lead to bumps that are more stabilized
to noise perturbations (Figure 5(d)). However, the largest peaks in bump position variance
occur where E and I bump half-widths are most similar, i.e., where E (I) threshold crossing
gradients are the lowest (highest) (Figure A.2).

These results assumed I to I connections are nonexistent Aii = 0. However, we found that
even low amounts of I \rightarrow I connectivity, Aii = 0.01, decreased bump variance (Figure A.3).
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Effects of interpopulation noise correlations. (a) Bump position variance as a function of firing
rate threshold \theta u = \theta v = \theta for a network with completely uncorrelated ( c = 0) or completely correlated ( c = 1)
interpopulation noise. Interface-based theory (solid and dashed lines) agrees well with numerical simulations.
(b) Bump position variance for fixed firing rate threshold \theta u = \theta v = 0.45 as a function of interpopulation noise
correlations c. (c) Bump profile evolution in the absence of noise for firing rate threshold \theta u = \theta v = 0.25 given
a correlated center shift perturbation at t = 0. (d) Bump profile evolution in the absence of noise over 1 second
for firing rate threshold \theta u = \theta v = 0.25 given an uncorrelated center shift perturbation at t = 0. (e) Bump
profile evolution for firing threshold \theta u = \theta v = 0.25 given two correlated ``kicks"" ( 0.1 amplitude Gaussian bumps
shifted by random amount) applied to each population. Insets show each kick profile (black) applied to the E
(red) and I (blue) bump profiles, with the left and right insets being the first and second kicks, respectively.
(f) Bump profile evolution for firing rate threshold \theta u = \theta v = 0.25 with two uncorrelated kicks ( 0.1 amplitude
Gaussian bumps shifted by random amount) applied to each population. Insets show each E kick (dark red) and
I kick (dark blue) profile applied to the E (red) and I (blue) bump profiles, with the left and right insets being
the first and second kicks, respectively. Other parameters are Aii = 0, \epsilon = 0.001, and otherwise as in Table 1.
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DISTINCT EXCITATORY/INHIBITORY BUMP WANDERING 2601

4.4. Correlated versus uncorrelated noise. The impact of noise correlations on neural
circuit codes for delayed estimates is varied. Correlated noise within a neural subpopulation
can improve working memory coding [38], but cross-population noise correlations can lead
to an increase in bump attractor wandering that degrades memory [28]. We find in the
subsequent investigation that cross-population noise correlations between E and I populations
lead to less bump wandering than uncorrelated noise.

Our aim is to explore the system when there is cross-population noise (corresponding to
the case where Cc \not = 0). To obtain greater control over the extent of correlated noise we opt
to express our spatiotemporal noise sources in the E and I populations as

dWu,v(x, t) \rightarrow 
\sqrt{} 

1 - c2dWu,v(x, t) + cdWc(x, t),(4.16)

where the independent spatially correlated and temporally white noise process dWc represents
a correlated stochastic component in system (2.1). We define these three noise terms the
same as before though now we have nonzero cross-population spatial correlation Cc(x - y)t =
\langle Wc(x, t)Wc(y, t)\rangle . The correlation parameter c \in [0, 1] such that c = 0 implies uncorrelated
noise and c = 1 fully correlated noise. Correlating noise across the E and I populations
drastically alters our variance predictions (Figures 6(a) and A.4), with increased correlated
noise decreasing the predicted and simulated bump variances (Figure 6(b)).

We analyze the response of the E/I bump structure to correlated as opposed to uncorre-
lated shifts. Correlated shifts translated both bumps centers due to translational invariance of
the system (Figure 6(c)). Uncorrelated shifts move the E and I bumps in opposite directions
but then show an attraction of the I bump to the E bump, while the E bump is repulsed
by the I bump leading the I bump to ``catch up"" to the shifted E bump, and the E bump
moves further away from its original position (Figure 6(d)). Thus, uncorrelated shifts lead
to additional drift of the bump and higher variance. This stands in stark contrast to the
uncorrelated/correlated perturbation analysis carried out for two coupled identical lateral I
layers [28], in which opposing perturbations of two weakly connected bumps are effectively
canceled by the attractive force between the bumps.

We also considered the effects of two small additive Gaussian inputs, more akin to the
noisy kicks arising in stochastic simulations. When the position of these kicks was strongly
correlated (Figure 6(e); i.e., the same application to each population), the E and I bumps
stayed together and relaxed back to their original position. Uncorrelated kicks led to different
perturbations in the position and profile of the E and I bumps (e.g., Figure 6(f)), with a
relaxation where the I bump was attracted the E bump, but the E bump was repelled by the
I bump.

Overall, we found that the separate E/I network model shows parametrically dependent
bump wandering. First, bump position variance depends strongly on the relative widths of the
E and I bumps, and relaxation dynamics from noise perturbations can cause the I bump to
stray from the E bump. Second, nonmonotonic variance trends arise with respect to network
connectivity amplitude and spatial scale parameters. Lastly, increases in interpopulation noise
correlations reduce bump wandering by eliminating the relaxation effects that would otherwise
extend the effects of stochastic perturbations on the E and I bumps.
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5. Discussion. Stochastic bump attractor models have become a useful tool for character-
izing variability of the systems that code for memory-based estimates of continuous variables
[8, 48, 3, 34]. As we show here, it is important to appreciate the nuances of E/I architecture
and noise correlations [24] when making predictions about continuous variable estimates. Our
study has provided a suite of new predictions concerning how interpopulation connectivity
amplitude and spatial profiles impact bump wandering. To obtain tractable expressions for
bump position variance predictions, one form of our approximations relied upon the marginal
stability of solutions to the noise-free system. Prior to performing our variance estimates, we
observed that, along several parameter axes, we obtain nonmonotonic changes in half-widths
and two types of instabilities: an oscillatory (Hopf) instability located in the red unstable
regions and a contraction instability located at discontinuous saddle nodes (Figure 3). Partial
versions of the results have been observed previously in E/I population models [4]. We also
found that stability of solutions was significantly affected by nonzero I\rightarrow I synaptic strength
(compare Figure 3 and insets). Thus, even ``weak"" I\rightarrow I connectivity can strongly affect the
linearized dynamics of stationary bump solutions.

Our asymptotic analysis aimed at predicting the stochastic motion of bumps subject to
noise moved beyond the standard single center-of-mass approximation often used to estimate
the stochastic motion of bumps [37, 8, 31]. While a single center-of-mass approximation works
reasonably well across some parts of parameter space, at high firing rate threshold, close to
the discontinuous saddle node bifurcation, we find this breaks down and is better captured
by a stochastic interface-based approximation previously developed in [36]. In particular, the
I bump diffuses more than the E bump, which is well captured by the nonlinear Langevin
approximation derived by approximating the motion of bump interfaces. The amplitude of
bump wandering changes nonmonotonically in most network parameters, due to the change in
bump half-width amplitudes, well captured by our interface-based approximation. Notably,
interpopulation noise correlations reduced bump wandering. Uncoordinated E and I bump
motion, arising in networks with uncorrelated interpopulation noise, leads to additional bump
drift during relaxation periods while the I bump ``chased"" the E bump.

Note, our variance approximations are relatively accurate over the wide range of param-
eters we chose to analyze, but there are features of the full nonlinear system that can depart
significantly from our basic assumptions, especially those involving linearizations. One rare
but possible source of discrepancy between our asymptotic approximations and the full system
could arise from the emergence of multiple distinct active regions in the E and/or I popula-
tions. Such a situation could emerge from (a) large and rare noise perturbations that activate
a distinct region of the E and/or I population away from the bump and (b) large and rare noise
perturbations that split bumps. While both are possible, they are extremely rare and so do
not have a substantial impact on the numerically estimated variance. However, we could ac-
count for such splitting, nucleation, and annihilation events by extending our approximations
to incorporate the appearance and merging of interfaces as in [18, 36]. Moreover, we could
account for such events in our numerical estimates with a more flexible definition of bumps
which accounts for these transient events. Another approximation made in both the strong
coupling limit and interface approximation is to assume the gradient of the activity variables
at the interfaces is constant, though this is likely not true as shown in [18]. Nevertheless,
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we typically expect any deviation from this constant gradient value to be small and to not
substantially impact the stochastic dynamics of the bump.

There are several other possible extensions of our analysis of bump stochastic motion in
the E/I network. It is important to note that we made multiple approximations to collapse
our stochastically evolving bump interface equations to a pair of SDEs describing the coupling
between the E and I bump. Alternatively, we could have retained a higher-order approximation
of the bump interface gradients in order to obtain a more accurate approximation [18]. Recall,
the interface-based approximation begins as a fully nonlinear description and can be used to
describe dynamics near the oscillatory (Hopf) bifurcation or the discontinuous saddle node.
Alternatively, such near-bifurcation approximations could also be determined by choosing a
scaling for a bifurcation parameter similar to the weak noise amplitude as in [33, 29]. Such
approaches could also describe the stochastic dynamics of traveling pulses that emerge beyond
bifurcations whereby bumps begin to drift at a constant speed due to the negative feedback
brought about by the I population.

Our analysis of bump position variance across multiple parametric axes helped identify a
number of ways to reduce bump wandering via network architectural tuning. We largely chose
parameters roughly assuming 80\% E and 20\% I neurons present in the prefrontal cortex [1],
but we could certainly explore broader ranges of parameter space beyond this typical fraction.
Another natural extension for this work would be to consider more complex mechanisms
for synaptic tuning, such as short-term plasticity in the E and I populations, to reduce the
propensity for bumps to wander. Recent studies in mean field reductions of spiking networks
have demonstrated that short-term facilitation (depression) on the E population with global
inhibition tends to decrease (increase) bump drift and diffusion [44], ultimately improving
parametric working memory. Extensions of our model and present analysis could be used to
further investigate how the introduction of different forms of short-term plasticity into either
the E or I population would impact bump wandering. Not only could short-term plasticity
reduce the effect of stochastic perturbations on bumps but could also make them more robust
to distraction inputs [40].

Finally, our investigation into the role of cross-population noise correlations raises ques-
tions regarding the coding advantages brought about by noise correlations. Noise correlations
can increase, decrease, or not affect the amount of information encoded by a neural circuit
[2]. Most of such results have been derived in network models devoid of spatial structure.
However, recently work has demonstrated how disruptive broadly correlated spatiotemporal
noise can be to information transmission in spatially organized neural circuits [26]. Our work
adds to this ongoing line of inquiry by demonstrating variability-reducing mechanisms possible
via increased correlation in noise between E and I populations. Our bump position variance
predictions and model are sensitive to changes in the structure of noise. An improved un-
derstanding of the precise form and structure of noise in prefrontal cortex and other areas
[41] could help further constrain neural circuit models of memory-encoding persistent activ-
ity. Mechanistic models that connect synaptic architecture, psychophysical performance, and
stochastic and spatiotemporal dynamics, as well as the rich structure of internal and external
noise, can help us further understand the dynamical principles underlying information coding
in the brain.
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Appendix: Additional figures.

(a)

(c)

(b)

Figure A.1. Single simulation of E and I bump wandering. The noise amplitude is \epsilon = 0.001. The I
bump wanders much further in certain parameter regimes. Synaptic weight strength Aii = 0; and firing rate
thresholds \theta u = 0.42, and \theta v = 0.47. (a) Initial and final profiles of E and I bumps. (b) E and I center of
mass positions evolving over time. The I bump generally follows E wandering but also additionally wanders
more wildly about E. (c) Bumps wandering over time. Traces represent the center of mass (green) and the
E/I interfaces (red/blue, respectively). Colorscales represent the profile amplitude of u(x, t) and v(x, t). Other
parameters are as in Table 1.
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(a) (b)

(c) (d)

Figure A.2. Isolating factors affecting variance of bumps' wandering. Synaptic strength Aii = 0.01. (a)
Colorscale represents the difference in relative E and I halfwidths for varying \theta u and \theta v. Bump position
variances are maximized when au = av. (b) Colorscale of E bump position variance for \epsilon = 0.001 amplitude
noise. The black line bounds the unstable region. (c, d) E, I bump threshold crossing gradient ( | U \prime (au)| and
| V \prime (av)| ) as a function of firing rate thresholds. Note, the E variance is largest when the threshold crossing
gradient for E (I) is low (high). Slices further taken through these plots correspond to predictions shown in
Figure 5(d).
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(a) (b)

(c) (d)

Figure A.3. Predicted and simulated center of mass variances. Here, we take I to I connectivity Aii = 0.01
and noise amplitude \epsilon = 0.001. (a) Bump position variance as a function of Aei = A varies, and \theta u = \theta v = \theta is
varied. The inset is a closer view of the variance peaks. (b) Variance as a function of Aie = A as \theta u = \theta v = \theta 
is also varied. (c) Variance as a function of spatial scale \sigma ei = \sigma ii and varying \sigma ie. We fix \theta u = \theta v = 0.3. The
inset is a closer view of the variance peaks. (d) Variance as a function of \theta v as \theta u is varied. Parameters not
mentioned are as defined in Table 1.
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(a) (b)

(c) (d)

Figure A.4. Predicted bump position variances for correlated and uncorrelated noise. Noise amplitude is
set to \epsilon = 0.001, and we take Aii = 0. (a) Bump position variance as a function of \theta u = \theta v = \theta . (b) Bump
position variance as a function Aei = A with \theta u = \theta v = 0.25. (c) \theta u = \theta v = 0.2 and \sigma ie = 3. Bump position
variance as a function of \sigma ei = \sigma ii. (d) Bump position variance as a function of \theta v. We take \theta u = 0.2. Other
parameters are as in Table 1.
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