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Introduction

Under no-arbitrage pricing, one typically postulates a diffusion
model for the stock X under some risk-neutral measure:

dX t,x
s = σ(X t,x

s )dWs , X t,x
t = x ≥ 0, (1)

with
σ(x) = 0 for x ≤ 0; and σ(x) > 0 for x > 0. (2)

This in particular captures the phenomenon of bankruptcy.

For a payoff function g : [0,∞) 7→ R, the value function of a
European contingent claim is given by

U(t, x) := Et,x [g(X t,x
T )]. (3)
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Introduction

By a heuristic use of Itô’s rule, U should potentially be a classical
solution to the Cauchy problem

∂tu + 1
2σ

2(x)∂xxu = 0, (t, x) ∈ [0,T )× (0,∞);

u(T , x) = g(x), x ∈ (0,∞);

u(t, 0) = g(0), t ∈ [0,T ].

(4)

Difficult to verify the smoothness of U, as standard results of
parabolic equations (e.g. Lieberman (1996)) cannot be applied,
mainly due to

the degeneracy of (4) at the boundary x = 0.

the lack of suitable growth condition on σ.
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Local Stochastic Solutions

Observe: f is smooth and satisfies (4)
⇒ f (t ∧ T ,Xt∧T ) is a local martingale.

Definition [Bayraktar & Ŝırbu (2012)]

A measurable function u : [0,T ]× [0,∞) 7→ R is said to be a
(local) stochastic solution to (4) if

(i) for any (t, x) ∈ [0,T ]× R and any weak solution
(X t,x ,W t,x ,Ωt,x ,F t,x ,Pt,x , {F t,x

s }s≥t) of (1),

u
(
r ∧ T ,X t,x

r∧T
)

is a Pt,x -(local) martingale.

(ii) u(T , x) = g(x) for x ∈ (0,∞), u(t, 0) = g(0) for t ∈ [0,T ].

The notion of stochastic solutions was introduced in Stroock &
Varadhan (1972). Recent developments: Janson & Tysk (2006),
Ekström & Tysk (2009), Bayraktar, Kardaras, & Xing (2012).

local stochastic solution + “continuity” = classical solution
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Basic Properties

A classical solution is a local stochastic solution.

There can be at most one stochastic solution.

Assume

1. g is of linear growth;
2. uniqueness in law of weak solutions to (1) holds, i.e.∫ x+ε

x−ε

1

σ2(y)
dy <∞ for some ε > 0, ∀ x > 0. (5)

Then U(t, x) = Et,x [g(X t,x
T )] is the stochastic solution to (4).
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The Outline

Standing Assumption:

1. g is of linear growth.

2. uniqueness of weak solutions holds for (1).

Goal: Analyze various properties of the stochastic solution U.
More specifically,

Under what condition can we characterize U as the unique
local stochastic solution?

What condition guarantees that U is smooth? And when can
U be characterized as the unique classical solution to (4)?

If U may not be smooth, how should we characterize U?
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Uniqueness of Local Stochastic Solutions

First, we focus on the special case where g(x) ≡ x . The Cauchy
problem (4) reduces to

∂tu + 1
2σ

2(x)∂xxu = 0, (t, x) ∈ [0,T )× (0,∞);

u(T , x) = x , x ∈ (0,∞);

u(t, 0) = 0, t ∈ [0,T ].

(4’)

Consider D̂ := {u : ∃K > 0 s.t. |u(t, x)| ≤ K (1 + x) ∀ (t, x)}.

Lemma

“(4’) admits a unique local stochastic solution in D̂”
⇒ “X is a martingale”

Proof: Suppose X is a strict local martingale. Then
U(t, x) = Et,x [X t,x

T ] < x and Ũ(t, x) := x are two distinct local

stochastic solutions to (4’) in D̂, a contradiction.
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Uniqueness of Local Stochastic Solutions

Lemma

“X is a martingale”
⇒ “(4’) admits a unique local stochastic solution in D̂”

Sketch of proof: For any local stochastic solution u to (4’) in D̂,
consider

τβ := inf{s ≥ t : X t,x
s ≥ β} ∧ T . (6)

1. By optional sampling (!?),
“u(s ∧ T ,X t,x

s∧T ) is a local martingale and τβ ≤ T ”
⇒ “u(s ∧ τβ,X t,x

s∧τβ ) is a local martingale”

Note that u(s ∧ τβ,X t,x
s∧τβ ) is actually bounded, and therefore must

be a true martingale. Hence,

u(t, x) = Et,x [u(T ∧ τβ,X t,x
T∧τβ )], ∀β > 0.
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Uniqueness of Local Stochastic Solutions

2. It follows that

u(t, x) = lim
β→∞

Et,x [u(T ∧ τβ,X t,x
T∧τβ )]

= lim
β→∞

Et,x [u(T ,X t,x
T )1{τβ=T}] + lim

β→∞
Et,x [u(τβ, β)1{τβ<T}]

= lim
β→∞

Et,x [X t,x
T 1{τβ=T}] + lim

β→∞
Et,x [u(τβ, β)1{τβ<T}]

= U(t, x) + lim
β→∞

Et,x [u(τβ, β)1{τβ<T}].

3. Et,x [u(τβ, β)1{τβ<T}]→ 0 ?

Since u ∈ D̂, |Et,x [u(τβ, β)1{τβ<T}]| ≤ K (1 + β)P(τβ < T ). Also,

E[X t,x
τβ

] = E[β1{τβ<T}]+E[X t,x
T 1{τβ=T}]→ lim

β→∞
βP(τβ < T )+E[X t,x

T ].

Since X is a martingale, conclude

lim
β→∞

βP(τβ < T ) = 0.
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Uniqueness of Local Stochastic Solutions

A technical detail:
In Step 1 above, “optional sampling” is actually NOT applicable
to u(s ∧ T ,X t,x

s∧T ), as the process may not be right continuous
(note that we do not assume any continuity on u).

We need to

localize u(s ∧ T ,X t,x
s∧T ) (this gives martingality).

work with the right continuous modifications of these
localized processes. (this give right-continuity).
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Uniqueness of Local Stochastic Solutions

Main Result I

The Following are equivalent:

(i) (4) admits a unique local stochastic solution in D̂, ∀g ∈ D̂.

(ii) (4’) admits a unique local stochastic solution in D̂ (g(x) ≡ x).

(iii) X is a martingale.

(iv)
∫∞
1

x
σ2(x)

dx =∞.

Note: (iii)⇔(iv) was identified in Delbaen & Shirakawa (2002),
assuming that σ is locally bounded. We generalize their result to
the case where σ satisfies the local integrability condition (5).
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A Consequence of Main Result I

Recall that {classical solutions} ⊆ {local stochastic solutions}.

Feynman-Kac formula

Suppose
∫∞
1

x
σ2(x)

dx =∞. Then, if u ∈ D̂ is a classical solution to

(4), then u admits the stochastic representation
u(t, x) = Et,x [g(X t,x

T )] (= U).

Remark:

Standard Feynman-Kac formula requires continuity and linear
growth condition on σ (see Friedman (2006), Karatzas &
Shreve (1991)). Here, no continuity on σ is assumed, and∫∞
1

x
σ2(x)

dx =∞ is weaker than linear growth condition.

This generalizes Theorem 1 in Bayraktar & Xing (2010) to
the case without local boundedness of σ.
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Connection to Classical Solutions

Question

When is U(t, x) := E t,x [g(X t,x
T )] a classical solution?

classical solution
= interior smoothness + continuity to boundary

Weakest condition in literature: σ is locally 1/2-Hölder
continuous (Ekström & Tysk (2009)).

Standard methodology: Construct a monotone smooth
approximation for U, by using

local stochastic solution + “continuity” = classical solution

interior smoothness of U: obtained by Schauder estimates.

By exploiting the monotonicity of the approximation,
continuity of U up to the boundary is also obtained
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Connection to Classical Solutions

Claim: σ being locally δ-Hölder continuous (with δ > 0) is
enough.

Classical PDE literature: δ-Hölder continuous (with δ > 0)
plays a crucial role in constructing a smooth solution to a
parabolic equation. Yet, whether δ ≥ 1/2 does not matter.

locally 1/2-Hölder continuous is the minimal condition which
guarantees the existence of a unique strong solution to
(1). This facilitates deriving a priori continuity of U.

Assume only locally δ-Hölder continuous (with δ > 0) on σ
⇒ construction in Ekström & Tysk (2009) fails...

⇒ New methodology is needed!
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Deriving Interior Smoothness of U

Assume: σ is locally δ-Hölder continuous (with δ > 0).

1. Take gn continuous s.t. gn → g . Take an increasing sequence
{En}n∈N of compact subsets of E := [0,T ]× [0,∞).

On each En, by classical PDE results (see e.g. Lieberman
(1996)), can construct a classical solution un ∈ H2+δ(En) to{

∂tu + 1
2σ

2∂xxu = 0 in En,

u(t, x) = gn(x) on ∂∗En.
(PDEn)

Moreover, the Hölder constant depends on only En.
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Deriving Interior Smoothness of U

2. By Arzela-Ascoli-type argument, there exists û s.t.

for each n ∈ N, {uk}k≥n converges to û in H2+δ(En).

This in particular implies that û ∈ C 1,2([0,T )× (0,∞)).
3. Since un is a smooth solution to (PDEn), by Itô’s rule

un(t, x) = Et,x [gn(X t,x
τn )] for (t, x) ∈ En,

where τn := inf{s ≥ t : (s,X x ,t
s ) /∈ En} ≤ T . Then

û(t, x) = lim
n→∞

un(t, x) = lim
n→∞

Et,x [gn(X t,x
τn )] = Et,x [g(X t,x

T )]

= U(t, x).

Interior Smoothness

Suppose σ is locally Hölder continuous with exponent
δ ∈ (0, 1]. Then, for any nonnegative continuous g ∈ D̂, the
stochastic solution U belongs to C 1,2([0,T )× (0,∞)) and solves
(4).
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Continuity of U up to the boundary

What about continuity of U up to the boundary??

We will NOT rely on any smooth approximation.

We will use the techniques of viscosity solutions developed in
Bayraktar & Ŝırbu (2012).

Review of Bayraktar & Ŝırbu (2012):

We say a measurable function u : [0,T ]× [0,∞) 7→ R is a
stochastic subsolution to (4) if

(i) For any weak solution to (1) with initial condition (t, x),

u
(
r ∧ T ,X t,x

r∧T
)

is a submartingale.

(ii) u(T , x) ≤ g(x) for x ∈ (0,∞), u(t, 0) ≤ g(0) for t ∈ (0,T ].
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Continuity of U up to the boundary

Review of Bayraktar & Ŝırbu (2012) [conti.]:

U−g := {LSC stochastic subsolutions to (4)}.
Suppose U−g 6= ∅. Given u ∈ U−g ,

u(t, x) ≤ Et,x [g(X t,x
T )] = U(t, x). It follows that

v−g (t, x) := sup
u∈U−

g

u(t, x) ≤ U(t, x).

By definition, v−g is LSC. Moreover, if g is LSC, then

v−g (t, x) is a viscosity supersolution to (4),

v−g (T , x) = g(x)
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Continuity of U up to the boundary

Continuity up to the boundary

Let g ∈ D̂ be nonnegative and continuous. Then, the stochastic
solution U satisfies the following:

U∗(T , x) = U∗(T , x) = g(x) for x ∈ (0,∞),

U∗(t, 0) = U∗(t, 0) = g(0) for t ∈ [0,T ].
(7)

Here,

U∗ := USC envelope of U := smallest USC function ≥ U;

U∗ := LSC envelope of U := largest LSC function ≤ U.

Note: g is nonnegative ⇒ U−g 6= ∅ (u(t, x) ≡ 0 belongs to U−g ).
⇒ v−g (T , x) = g(x)
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Continuity of U up to the boundary

Sketch of proof:
1. Assume g is concave. Concavity of g implies g(X t,x

· ) is a
supermartingale. Thus,

v−g (t, x) ≤ U(t, x) = Et,x [g(X t,x
T )] ≤ g(x).

This implies U∗(T , x) ≤ g(x) and U∗(T , x) ≥ v−g (T , x) = g(x),
and thus U∗(T , x) = U∗(T , x) = g(x).

Since a concave function bounded from below is nondecreasing,

0 ≤ Et,x [g(X t,x
T )− g(0)] = U(t, x)− g(0) ≤ g(x)− g(0).

This implies U∗(t, 0)− g(0) ≤ 0 and U∗(t, 0)− g(0) ≥ 0, and thus
U∗(t, 0) = U∗(t, 0) = g(0).

2. g = g1 − g2, with g1, g2 concave. The above result easily
extends to this case.
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Continuity of U up to the boundary

3. The general case: g is continuous. Approximate g by a
monotone sequence {gn}, with

gn = gn
1 − gn

2 , for some concave gn
1 , g

n
2 .

Then, apply results in Step 2 and monotone convergence theorem.

Remark:

We treat interior smoothness and continuity up to boundary
separately.

Interior smoothness requires σ being locally δ-Hölder
continuous with δ > 0.

continuity up to boundary requires NO regularity on σ.
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Main Results

U is a classical solution

Suppose σ is locally δ-Hölder continuous, with δ ∈ (0, 1]. Then,
for any continuous g : [0,∞) 7→ [0,∞) belonging to D̂, the
stochastic solution U is a classical solution to (4) in D̂.

Together with Feynman-Kac formula, we have

U as the unique classical solution

Suppose σ is locally δ-Hölder continuous, with δ ∈ (0, 1]. Let
g : [0,∞) 7→ [0,∞) be continuous and belong to D̂. Then, the
stochastic solution U is the unique classical solution to (4) in D̂
if and only if

∫∞
1

x
σ2(x)

dx =∞.
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Main Results

Comparison theorem

Suppose σ continuous and
∫∞
1

x
σ2(x)

dx =∞. Let u ∈ D̂ be a

subsolution (resp. v ∈ D̂ be a supersolution) to

−∂tw −
1

2
σ2(x)∂xxw = 0 on [0,T )× (0,∞).

If u ≤ v on t = T and x = 0, then u ≤ v on [0,T ]× [0,∞)

No Hölder continuity of σ is needed.

To prove a comparison theorem, linear growth on σ is a
standard assumption; see e.g. Pham (2009).

Here, we assume only
∫∞
1

x
σ2(x)

dx =∞!
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Main Results

Theorem

Suppose σ is locally δ-Hölder continuous, with δ ∈ (0, 1]. Then the
following are equivalent:

(i)
∫∞
1

x
σ2(x)

dx =∞.

(ii) X is a true martingale.

(iii) (4) admits a unique classical solution in D̂ (which is U).

(iv) A comparison theorem for (4) holds among
sub(super-)solutions in D̂.

This in particular gives the nontrivial relation “(iii)⇒(iv)”.

Yu-Jui Huang (Dublin City University) The Stochastic Solution to a Cauchy Problem 24 / 33



What if U may not be smooth...

Suppose σ is continuous only, without any Hölder continuity.

⇒ Previous results about smoothness of U no longer holds!

Idea: Approximate σ by {σn} of Hölder continuous functions.

1. σn ↑ σ.

2. σn is locally Hölder continuous, with exponent δn ∈ (0, 1].

3. for any compact K ⊂ (0,∞),

max
x∈K

{
1

σ2n(x)
− 1

σ2(x)

}
<

1

n
.
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What if U may not be smooth...

Lemma

For any (t, x), X
(n),t,x
T → X t,x

T in distribution.

It follows that

Et,x [f (X
(n),t,x
T )]→ Et,x [f (X t,x

T )] for any bounded continuous f .

In particular,

UM
N := Et,x [g(X

(n),t,x
T ) ∧M]→ Et,x [g(X t,x

T ) ∧M] for any M > 0.

Theorem

Let σ be continuous. For any continuous g : [0,∞) 7→ [0,∞),

lim
M→∞

lim
n→∞

UM
n (t, x) = lim

M→∞
Et,x [g(X t,x

T ) ∧M] = E[g(X t,x
T )]

= U(t, x).
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What if U may not be smooth...

Now, suppose σ is continuous and
∫∞
1

x
σ2(x)

dx =∞.

Since σn ↑ σ, must have
∫∞
1

x
σ2
n(x)

dx =∞. Recall that σn is locally

δ-Hölder continuous with δn > 0, we conclude

UM
n = Et,x [g(X t,x

T ) ∧M] is the unique classical solution to
∂tu + 1

2σ
2
n(x)∂xxu = 0, (t, x) ∈ [0,T )× (0,∞);

u(T , x) = g(x) ∧M, x ∈ (0,∞);

u(t, 0) = g(0) ∧M, t ∈ [0,T ].

(8)
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Thank you very much for your attention!
Q & A
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