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INTRODUCTION

Under no-arbitrage pricing, one typically postulates a diffusion
model for the stock X under some risk-neutral measure:

dXSt”X = O‘(Xst’x)dwsa Xtt’x =X 2 07 (1)

with
o(x) =0 for x <0; and o(x) > 0 for x > 0. (2)

This in particular captures the phenomenon of bankruptcy.

For a payoff function g : [0, 00) — R, the value function of a
European contingent claim is given by

U(t,x) == E"[g(X7")]- (3)
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INTRODUCTION

By a heuristic use of 1td's rule, U should potentially be a classical
solution to the Cauchy problem

atu—i— 02(x)Oxxtt = 0, (t,x) €0, T) x (0,00);
u(T,x) = g(x), x € (0,00); (4)
u(t,0) = g(0), te[0, T].

Difficult to verify the smoothness of U, as standard results of
parabolic equations (e.g. Lieberman (1996)) cannot be applied,
mainly due to

o the degeneracy of (4) at the boundary x = 0.

@ the lack of suitable growth condition on o.
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LOCAL STOCHASTIC SOLUTIONS

Observe: f is smooth and satisfies (4)
= f(t A T, XiaT) is a local martingale.

DEFINITION [BAYRAKTAR & SIRBU (2012)]

A measurable function v : [0, T] x [0,00) — R is said to be a
(local) stochastic solution to (4) if

(1) for any (t,x) € [0, T] x R and any weak solution
(XEX, W, Q8% FOX PEX {Fe ™ baxe) of (1),

u(rAT,X55) is a PP(local) martingale.

(1) u(T,x)=g(x) for x € (0,00), u(t,0) = g(0) for t € [0, T].

The notion of stochastic solutions was introduced in Stroock &
Varadhan (1972). Recent developments: Janson & Tysk (2006),
Ekstrom & Tysk (2009), Bayraktar, Kardaras, & Xing (2012).

local stochastic solution + “continuity” = classical solution
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BASIC PROPERTIES

@ A classical solution is a local stochastic solution.
@ There can be at most one stochastic solution.

@ Assume

1. g is of linear growth;
2. uniqueness in law of weak solutions to (1) holds, i.e.

"X+€ 1
dy < oo forsomee >0, V x>0. 5
/H a2(y) ©)

Then U(t, x) = Eb*[g(X+)] is the stochastic solution to (4).
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THE OUTLINE

Standing Assumption:
1. g is of linear growth.

2. uniqueness of weak solutions holds for (1).

Goal: Analyze various properties of the stochastic solution U.
More specifically,

@ Under what condition can we characterize U as the unique
local stochastic solution?

@ What condition guarantees that U is smooth? And when can
U be characterized as the unique classical solution to (4)?

o If U may not be smooth, how should we characterize U?
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UNIQUENESS OF LOCAL STOCHASTIC SOLUTIONS

First, we focus on the special case where g(x) = x. The Cauchy
problem (4) reduces to

Oru + %0’2(X)8XXU =0, (t,x) €0, T) x (0,00);
u(T,x) = x, x € (0,00); (4)
u(t,0) =0, te[0,T].

Consider D := {u: 3K > 0 s.t. [u(t,x)| < K(1+x) ¥ (¢, x)}.

“(4") admits a unique local stochastic solution in D"
= “X is a martingale”

Proof: Suppose X is a strict local martingale. Then
U(t, x) = EY*[X3*] < x and U(t, x) := x are two distinct local
stochastic solutions to (4') in D, a contradiction.
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UNIQUENESS OF LOCAL STOCHASTIC SOLUTIONS

“X is a martingale”
= “(4") admits a unique local stochastic solution in D"

A

Sketch of proof: For any local stochastic solution u to (4') in D,
consider
P i=inf{s>t: X >B}AT. (6)

1. By optional sampling (!7),
“u(s A T, X.75) is a local martingale and 77 < T
= “u(S/\Tﬁ,XSt/’\XTﬁ) is a local martingale”
Note that u(s A TB,X;/’\);ﬂ) is actually bounded, and therefore must
be a true martingale. Hence,

u(t,x) =E[u(T AP X35 )], VB > 0.
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UNIQUENESS OF LOCAL STOCHASTIC SOLUTIONS

2. It follows that

u(t, x) = Blew EXTu(T A% X35 0]
N t, t,x ; t, B
= ﬁImeE X[u( T, XT )]_{Tﬁ:T}] + BImeE X[u(’r ,5)1{Tﬁ<7—}]
— 1 t7 t7X H t7 B
= I|m E X[XT ]‘{Tﬁ:T}] +ﬁll_>mooE X[U(T ’5)]‘{Tﬁ<7—}]

B—o0

= U(t,x) + lim Et’x[u(Tﬁ,ﬁ)l{Tﬁ<T}]-
f—o0

3. Et7X[U(TB,B)1{TB<T}] —07

Since u € D, [E*¥[u(?, B) 15yl < K(1+ B)P(77 < T). Also,
EIX(3) = B8y HEIXG Lrsomy] = im GP(7 < T)E[X}]
Since X is a martingale, conclude

lim BP(r% < T) =0.
B—00
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UNIQUENESS OF LOCAL STOCHASTIC SOLUTIONS

A technical detail:

In Step 1 above, “optional sampling” is actually NOT applicable
to u(s A T,X.7S), as the process may not be right continuous
(note that we do not assume any continuity on u).

We need to
o localize u(s A T, X.’5) (this gives martingality).
o work with the right continuous modifications of these
localized processes. (this give right-continuity).
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UNIQUENESS OF LOCAL STOCHASTIC SOLUTIONS

The Following are equivalent:

(1) (4) admits a unique local stochastic solution in D, Vg € D.

(11) (4) admits a unique local stochastic solution in D (g(x) = x).

(HI) X is a martingale.
)

() [° Sy dx = o0

Note: (iii)<(iv) was identified in Delbaen & Shirakawa (2002),
assuming that o is locally bounded. We generalize their result to
the case where o satisfies the local integrability condition (5).
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A CONSEQUENCE OF MAIN RESULT [

Recall that {classical solutions} C {local stochastic solutions}.

FEYNMAN-KAC FORMULA

Suppose floo a%(x)dx = 00. Then, if u € D is a classical solution to
(4), then u admits the stochastic representation

u(t,x) = E¥[g(X7)] (= U).

Remark:

e Standard Feynman-Kac formula requires continuity and linear
growth condition on ¢ (see Friedman (2006), Karatzas &
Shreve (1991)). Here, no continuity on o is assumed, and
floo U%(X)dx = oo is weaker than linear growth condition.

@ This generalizes Theorem 1 in Bayraktar & Xing (2010) to
the case without local boundedness of o.
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CONNECTION TO CLASSICAL SOLUTIONS

When is U(t,x) := E®¥[g(X3¥)] a classical solution?

classical solution
= interior smoothness + continuity to boundary

Weakest condition in literature: o is locally 1/2-Holder
continuous (Ekstrom & Tysk (2009)).

Standard methodology: Construct a monotone smooth
approximation for U, by using

local stochastic solution + “continuity” = classical solution

@ interior smoothness of U: obtained by Schauder estimates.

@ By exploiting the monotonicity of the approximation,
continuity of U up to the boundary is also obtained
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CONNECTION TO CLASSICAL SOLUTIONS

Claim: o being locally 6-Holder continuous (with § > 0) is
enough.

o Classical PDE literature: ¢-Holder continuous (with 6 > 0)
plays a crucial role in constructing a smooth solution to a
parabolic equation. Yet, whether 6 > 1/2 does not matter.

o locally 1/2-Hélder continuous is the minimal condition which

guarantees the existence of a unique strong solution to
(1). This facilitates deriving a priori continuity of U.

Assume only locally -Hdlder continuous (with 6 > 0) on o
= construction in Ekstrom & Tysk (2009) fails...
= New methodology is needed!
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DERIVING INTERIOR SMOOTHNESS OF U

Assume: o is locally §-Hdlder continuous (with § > 0).

1. Take g, continuous s.t. g, — g. Take an increasing sequence
{En}nen of compact subsets of £ := [0, T] x [0, c0).

On each E,, by classical PDE results (see e.g. Lieberman
(1996)), can construct a classical solution 1, € H**°(E,) to

(PDE,)

orl + %028XXU =0 in E,,
u(t, x) = gn(x) on 0*E,.

Moreover, the Holder constant depends on only E,.
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DERIVING INTERIOR SMOOTHNESS OF U

2. By Arzela-Ascoli-type argument, there exists oI s.t.
for each n € N, {uy}y>, converges to i in H**9(E,).

This in particular implies that o1 € C12([0, T) x (0, 00)).
3. Since uj, is a smooth solution to (PDE,), by Itd's rule

Un(t,x) = E¥¥[ga( X)) for (t,x) € Ey,
where 77 ;= inf{s > t : (s, X.*") ¢ E,} < T. Then
~ T T t,x t,X\1 _ mwt,x t,x
b(t,x) = lim up(t,x) = lim E*[g,(X7:")] = E™*[g(X77)]
= U(t,x).

INTERIOR SMOOTHNESS

Suppose o is locally Holder continuous with exponent
0 € (0,1]. Then, for any nonnegative continuous g € D, the
stochastic solution U belongs to C%2([0, T) x (0, 00)) and solves

(4).
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CONTINUITY OF U UP TO THE BOUNDARY

What about continuity of U up to the boundary??
o We will NOT rely on any smooth approximation.

o We will use the techniques of viscosity solutions developed in
Bayraktar & Sirbu (2012).

Review of Bayraktar & Sirbu (2012):

e We say a measurable function v : [0, T] X [0,00) — R is a
stochastic subsolution to (4) if

(1) For any weak solution to (1) with initial condition (t, x),
u (r A T,X:*XT) is a submartingale.

(1) u(T,x) < g(x) for x € (0,00), u(t,0) < g(0) for t € (0, T].
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CONTINUITY OF U UP TO THE BOUNDARY

Review of Bayraktar & Sirbu (2012) [conti.]:
o U, := {LSC stochastic subsolutions to (4)}.

o Suppose U, # . Given u € Uy,
u(t,x) < E¥¥[g(X7)] = U(t, x). It follows that

vg (t,x) == sup u(t,x) < U(t, x).
uely

By definition, Vg is LSC. Moreover, if g is LSC, then

vg (t,x) is a viscosity supersolution to (4),
vg (T,x) = g(x)

Yu-Jui Huang (Dublin City University) The Stochastic Solution to a Cauchy Problem 18/33



CONTINUITY OF U UP TO THE BOUNDARY

CONTINUITY UP TO THE BOUNDARY

Let g € D be nonnegative and continuous. Then, the stochastic
solution U satisfies the following:

U'(T,x) = U(T,x) = g(x) for x € (0,00),

U*(t,0) = Ui(t,0) = g(0) for t €0, T]. (7)

v

U* := USC envelope of U := smallest USC function > U,
U, :== LSC envelope of U := largest LSC function < U.

Note: g is nonnegative = U, # 0 (u(t,x) =0 belongs to U, ).
= v, (T,x) = g(x
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CONTINUITY OF U UP TO THE BOUNDARY

Sketch of proof:
1. Assume g is concave. Concavity of g implies g(X"*) is a
supermartingale. Thus,

g (£.%) < U(t,x) = Eg(XE)] < g(x).

This implies U*(T, x) < g(x) and U.(T,x) > v, (T,x) = g(x),
and thus U*(T,x) = U.(T, x) = g(x).
Since a concave function bounded from below is nondecreasing,

0 < E%[g(X7) — g(0)] = U(t,x) — £(0) < g(x) — g(0).

This implies U*(t,0) — g(0) < 0 and U,(t,0) — g(0) > 0, and thus
U*(t,0) = U(t,0) = g(0).

2. g = g1 — &, with g1, g concave. The above result easily
extends to this case.
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CONTINUITY OF U UP TO THE BOUNDARY

3. The general case: g is continuous. Approximate g by a
monotone sequence {g"}, with

g" =g{ — g, for some concave g7, g5.

Then, apply results in Step 2 and monotone convergence theorem.

Remark:

o We treat interior smoothness and continuity up to boundary
separately.

o Interior smoothness requires o being locally J-Holder
continuous with ¢ > 0.

e continuity up to boundary requires NO regularity on o.
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MAIN RESULTS

U IS A CLASSICAL SOLUTION

Suppose o is locally 6-Hdlder continuous, with § € (0, 1]. Then,
for any continuous g : [0,00) — [0, 00) belonging to D, the
stochastic solution U is a classical solution to (4) in D.

Together with Feynman-Kac formula, we have

U AS THE UNIQUE CLASSICAL SOLUTION

Suppose o is locally 0-Hdlder continuous, with § € (0,1]. Let

g : [0,00) — [0, 0) be continuous and belong to D. Then, the
stochastic solution U is the unique classical solution to (4) in D
if and only if [° X =

O'
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MAIN RESULTS

COMPARISON THEOREM
. o0 X . A
Suppose o continuous and [; mdx =o00. Letue D bea

subsolution (resp. v € D be a supersolution) to

—Orw — %02(x)8xxw =0 on [0, T) x (0,00).

Ifu<vont=Tandx=0,then u<von]|0,T]x[0,00)

@ No Holder continuity of ¢ is needed.

@ To prove a comparison theorem, linear growth on o is a
standard assumption; see e.g. Pham (2009).

Here, we assume only [;™ U%(X)dx = 00!
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MAIN RESULTS

Suppose o is locally §-Holder continuous, with § € (0, 1]. Then the
following are equivalent:

M [ 7200 @x = oo.
(11

) X is a true martingale.
(111) (4) admits a unique classical solution in D (which is U).
)

(rv) A comparison theorem for (4) holds among
sub(super-)solutions in D.

e This in particular gives the nontrivial relation “(iii)=-(iv)".
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WHAT 1IF U MAY NOT BE SMOOTH...

Suppose o is continuous only, without any Hélder continuity.

= Previous results about smoothness of U no longer holds!

Idea: Approximate o by {o,} of Holder continuous functions.
1. opto.
2. op is locally Holder continuous, with exponent 4, € (0, 1].

3. for any compact K C (0, 00),

ma 1 1 < 1
X ——~— —5—~ =
xeK | 02(x)  o?(x) n

Yu-Jui Huang (Dublin City University) The Stochastic Solution to a Cauchy Problem 25/33



WHAT 1IF U MAY NOT BE SMOOTH...

For any (t, x), X(T")’t’x — X7* in distribution.

It follows that
ESX[f(XF (), 9] — E®X[f(X3¥)] for any bounded continuous f.

In particular,

UM = B [g(X ) A M] — B [g(XE¥) A M] for any M > 0.

Let o be continuous. For any continuous g : [0, 00) — [0, c0),

lim lim UY(t x) = Ii_r)nooEt’X[g(X;-’X)/\ M) = E[g(X+)]

M— o0 n—00
= U(t, x).
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WHAT IF U MAY NOT BE SMOOTH...

Now, suppose ¢ is continuous and floo U%(X)dx =00

Since o, T o, must have floo %dx = 0o. Recall that o, is locally
o-Holder continuous with §, > 0, we conclude

UM = E*¥[g(X5X) A M] is the unique classical solution to

Oeu+ 202(x)0u =0,  (t,x) €[0,T) x (0,00);
u(T,x) =g(x) A x € (0, 00); (8)
u(t,0) = (O)/\/\/l, teo,T].
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Thank you very much for your attention!

Q&A
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