The Stochastic Solution to a Cauchy Problem Associated with Nonnegative Price Processes

> Yu-Jui Huang (Dublin City University)

Joint work with Xiaoshan Chen, Qingshuo Song (City University of Hong Kong) Chao Zhu (University of Wisconsin-Milwaukee)

> Mathematics Colloquium Dublin City University 24th October 2013

Under no-arbitrage pricing, one typically postulates a diffusion model for the stock X under some risk-neutral measure:

$$dX_s^{t,x} = \sigma(X_s^{t,x}) dW_s, \ X_t^{t,x} = x \ge 0, \tag{1}$$

with

$$\sigma(x) = 0 \text{ for } x \le 0; \text{ and } \sigma(x) > 0 \text{ for } x > 0.$$
 (2)

This in particular captures the phenomenon of bankruptcy.

For a payoff function $g : [0, \infty) \mapsto \mathbb{R}$, the value function of a European contingent claim is given by

$$U(t,x) := \mathbb{E}^{t,x}[g(X_T^{t,x})].$$
(3)

By a heuristic use of Itô's rule, U should **potentially** be a classical solution to the Cauchy problem

$$\begin{cases} \partial_t u + \frac{1}{2}\sigma^2(x)\partial_{xx}u = 0, & (t,x) \in [0,T) \times (0,\infty); \\ u(T,x) = g(x), & x \in (0,\infty); \\ u(t,0) = g(0), & t \in [0,T]. \end{cases}$$
(4)

Difficult to verify the smoothness of U, as standard results of parabolic equations (e.g. Lieberman (1996)) cannot be applied, mainly due to

- the **degeneracy** of (4) at the boundary x = 0.
- the lack of suitable growth condition on σ .

LOCAL STOCHASTIC SOLUTIONS

Observe: f is smooth and satisfies (4) $\Rightarrow f(t \land T, X_{t \land T})$ is a local martingale.

DEFINITION [BAYRAKTAR & SÎRBU (2012)]

A measurable function $u: [0, T] \times [0, \infty) \mapsto \mathbb{R}$ is said to be a (local) stochastic solution to (4) if

(I) for any $(t, x) \in [0, T] \times \mathbb{R}$ and any weak solution $(X^{t,x}, W^{t,x}, \Omega^{t,x}, \mathcal{F}^{t,x}, \mathbb{P}^{t,x}, \{\mathcal{F}_s^{t,x}\}_{s \ge t})$ of (1),

 $u\left(r \wedge T, X_{r \wedge T}^{t, x}
ight)$ is a $\mathbb{P}^{t, x}$ -(local) martingale.

(II)
$$u(T,x) = g(x)$$
 for $x \in (0,\infty)$, $u(t,0) = g(0)$ for $t \in [0, T]$.

The notion of stochastic solutions was introduced in Stroock & Varadhan (1972). Recent developments: Janson & Tysk (2006), Ekström & Tysk (2009), Bayraktar, Kardaras, & Xing (2012).

local stochastic solution + "continuity" = classical solution

- A classical solution is a **local** stochastic solution.
- There can be at most one stochastic solution.
- Assume
 - 1. g is of linear growth;
 - 2. uniqueness in law of weak solutions to (1) holds, i.e.

$$\int_{x-\varepsilon}^{x+\varepsilon} \frac{1}{\sigma^2(y)} dy < \infty \text{ for some } \varepsilon > 0, \quad \forall \ x > 0.$$
 (5)

Then $U(t,x) = \mathbb{E}^{t,x}[g(X_T^{t,x})]$ is the stochastic solution to (4).

Standing Assumption:

- 1. g is of linear growth.
- 2. uniqueness of weak solutions holds for (1).

Goal: Analyze various properties of the stochastic solution U. More specifically,

- Under what condition can we characterize *U* as the unique local stochastic solution?
- What condition guarantees that *U* is smooth? And when can *U* be characterized as the unique classical solution to (4)?
- If U may not be smooth, how should we characterize U?

UNIQUENESS OF LOCAL STOCHASTIC SOLUTIONS

First, we focus on the special case where $g(x) \equiv x$. The Cauchy problem (4) reduces to

$$\begin{cases} \partial_t u + \frac{1}{2}\sigma^2(x)\partial_{xx}u = 0, & (t,x) \in [0,T) \times (0,\infty); \\ u(T,x) = x, & x \in (0,\infty); \\ u(t,0) = 0, & t \in [0,T]. \end{cases}$$
(4')

Consider $\hat{D} := \{u : \exists K > 0 \text{ s.t. } |u(t,x)| \leq K(1+x) \forall (t,x)\}.$

Lemma

"(4') admits a unique local stochastic solution in \hat{D} " \Rightarrow "X is a martingale"

Proof: Suppose X is a strict local martingale. Then $U(t,x) = \mathbb{E}^{t,x}[X_T^{t,x}] < x$ and $\tilde{U}(t,x) := x$ are two distinct local stochastic solutions to (4') in \hat{D} , a contradiction.

UNIQUENESS OF LOCAL STOCHASTIC SOLUTIONS

Lemma

"X is a martingale"

 \Rightarrow "(4') admits a unique local stochastic solution in \hat{D} "

Sketch of proof: For any local stochastic solution u to (4') in \hat{D} , consider

$$\tau^{\beta} := \inf\{s \ge t : X_s^{t,x} \ge \beta\} \land T.$$
(6)

1. By optional sampling (!?), " $u(s \wedge T, X_{s \wedge T}^{t,x})$ is a local martingale and $\tau^{\beta} \leq T$ " \Rightarrow " $u(s \wedge \tau^{\beta}, X_{s \wedge \tau^{\beta}}^{t,x})$ is a local martingale" Note that $u(s \wedge \tau^{\beta}, X_{s \wedge \tau^{\beta}}^{t,x})$ is actually bounded, and therefore must be a true martingale. Hence,

$$u(t,x) = \mathbb{E}^{t,x}[u(T \wedge \tau^{\beta}, X^{t,x}_{T \wedge \tau^{\beta}})], \quad \forall \beta > 0.$$

UNIQUENESS OF LOCAL STOCHASTIC SOLUTIONS

2. It follows that

$$u(t,x) = \lim_{\beta \to \infty} \mathbb{E}^{t,x} [u(T \land \tau^{\beta}, X_{T \land \tau^{\beta}}^{t,x})]$$

=
$$\lim_{\beta \to \infty} \mathbb{E}^{t,x} [u(T, X_{T}^{t,x}) \mathbf{1}_{\{\tau^{\beta} = T\}}] + \lim_{\beta \to \infty} \mathbb{E}^{t,x} [u(\tau^{\beta}, \beta) \mathbf{1}_{\{\tau^{\beta} < T\}}]$$

=
$$\lim_{\beta \to \infty} \mathbb{E}^{t,x} [X_{T}^{t,x} \mathbf{1}_{\{\tau^{\beta} = T\}}] + \lim_{\beta \to \infty} \mathbb{E}^{t,x} [u(\tau^{\beta}, \beta) \mathbf{1}_{\{\tau^{\beta} < T\}}]$$

=
$$U(t,x) + \lim_{\beta \to \infty} \mathbb{E}^{t,x} [u(\tau^{\beta}, \beta) \mathbf{1}_{\{\tau^{\beta} < T\}}].$$

3. $\mathbb{E}^{t,x}[u(\tau^{\beta},\beta)1_{\{\tau^{\beta}< T\}}] \to 0$? Since $u \in \hat{D}$, $|\mathbb{E}^{t,x}[u(\tau^{\beta},\beta)1_{\{\tau^{\beta}< T\}}]| \leq K(1+\beta)\mathbb{P}(\tau^{\beta}< T)$. Also, $\mathbb{E}[X_{\tau^{\beta}}^{t,x}] = \mathbb{E}[\beta 1_{\{\tau^{\beta}< T\}}] + \mathbb{E}[X_{T}^{t,x}1_{\{\tau^{\beta}= T\}}] \to \lim_{\beta \to \infty} \beta \mathbb{P}(\tau^{\beta}< T) + \mathbb{E}[X_{T}^{t,x}].$

Since X is a martingale, conclude

$$\lim_{\beta \to \infty} \beta \mathbb{P}(\tau^{\beta} < T) = 0.$$

A technical detail:

In **Step 1** above, "optional sampling" is actually NOT applicable to $u(s \wedge T, X_{s \wedge T}^{t,x})$, as the process may not be right continuous (note that we do not assume any continuity on u).

We need to

- localize $u(s \wedge T, X_{s \wedge T}^{t,x})$ (this gives martingality).
- work with the right continuous modifications of these localized processes. (this give **right-continuity**).

MAIN RESULT I

The Following are equivalent:

(1) (4) admits a unique local stochastic solution in \hat{D} , $\forall g \in \hat{D}$.

- (II) (4') admits a unique local stochastic solution in \hat{D} ($g(x) \equiv x$).
- (III) X is a martingale.

(IV) $\int_1^\infty \frac{x}{\sigma^2(x)} dx = \infty.$

Note: (iii) \Leftrightarrow (iv) was identified in Delbaen & Shirakawa (2002), assuming that σ is locally bounded. We generalize their result to the case where σ satisfies the local integrability condition (5).

A CONSEQUENCE OF MAIN RESULT I

Recall that $\{$ classical solutions $\} \subseteq \{$ local stochastic solutions $\}$.

FEYNMAN-KAC FORMULA

Suppose $\int_{1}^{\infty} \frac{x}{\sigma^{2}(x)} dx = \infty$. Then, if $u \in \hat{D}$ is a classical solution to (4), then u admits the stochastic representation $u(t,x) = \mathbb{E}^{t,x}[g(X_{T}^{t,x})] (= U).$

Remark:

- Standard Feynman-Kac formula requires continuity and linear growth condition on σ (see Friedman (2006), Karatzas & Shreve (1991)). Here, no continuity on σ is assumed, and $\int_{1}^{\infty} \frac{x}{\sigma^{2}(x)} dx = \infty$ is weaker than linear growth condition.
- This generalizes Theorem 1 in Bayraktar & Xing (2010) to the case without **local boundedness** of σ .

CONNECTION TO CLASSICAL SOLUTIONS

QUESTION

When is $U(t,x) := E^{t,x}[g(X_T^{t,x})]$ a classical solution?

classical solution

= interior smoothness + continuity to boundary

Weakest condition in literature: σ is locally 1/2-Hölder continuous (Ekström & Tysk (2009)).

Standard methodology: Construct a monotone smooth approximation for U, by using

local stochastic solution + "continuity" = classical solution

- interior smoothness of *U*: obtained by **Schauder estimates**.
- By exploiting the monotonicity of the approximation, continuity of U up to the boundary is also obtained

Claim: σ being locally δ -Hölder continuous (with $\delta > 0$) is enough.

- Classical PDE literature: δ -Hölder continuous (with $\delta > 0$) plays a crucial role in constructing a smooth solution to a parabolic equation. Yet, whether $\delta \ge 1/2$ does not matter.
- locally 1/2-Hölder continuous is the minimal condition which guarantees the existence of a unique strong solution to (1). This facilitates deriving a priori continuity of U.

Assume only locally δ -Hölder continuous (with $\delta > 0$) on σ \Rightarrow construction in Ekström & Tysk (2009) fails... \Rightarrow New methodology is needed!

Deriving Interior Smoothness of U

Assume: σ is locally δ -Hölder continuous (with $\delta > 0$).

1. Take g_n continuous s.t. $g_n \to g$. Take an increasing sequence $\{E_n\}_{n\in\mathbb{N}}$ of compact subsets of $E := [0, T] \times [0, \infty)$.

On each E_n , by classical PDE results (see e.g. Lieberman (1996)), can construct a classical solution $u_n \in H^{2+\delta}(E_n)$ to

$$\begin{cases} \partial_t u + \frac{1}{2}\sigma^2 \partial_{xx} u = 0 & \text{ in } E_n, \\ u(t, x) = g_n(x) & \text{ on } \partial^* E_n. \end{cases}$$
(PDE_n)

Moreover, the Hölder constant depends on only E_n .

Deriving Interior Smoothness of U

2. By **Arzela-Ascoli-type argument**, there exists \hat{u} s.t.

for each $n \in \mathbb{N}$, $\{u_k\}_{k \ge n}$ converges to \hat{u} in $H^{2+\delta}(E_n)$.

This in particular implies that $\hat{u} \in C^{1,2}([0, T) \times (0, \infty))$. **3.** Since u_n is a smooth solution to (PDE_n) , by Itô's rule

$$u_n(t,x) = \mathbb{E}^{t,x}[g_n(X_{\tau^n}^{t,x})] \quad \text{for } (t,x) \in E_n,$$

where $\tau^n := \inf\{s \ge t : (s, X_s^{x,t}) \notin E_n\} \le T.$ Then
 $\hat{u}(t,x) = \lim_{n \to \infty} u_n(t,x) = \lim_{n \to \infty} \mathbb{E}^{t,x}[g_n(X_{\tau^n}^{t,x})] = \mathbb{E}^{t,x}[g(X_T^{t,x})]$
 $= U(t,x).$

INTERIOR SMOOTHNESS

Suppose σ is locally Hölder continuous with exponent $\delta \in (0, 1]$. Then, for any nonnegative continuous $g \in \hat{D}$, the stochastic solution U belongs to $C^{1,2}([0, T) \times (0, \infty))$ and solves (4).

What about continuity of U up to the boundary??

- We will NOT rely on any smooth approximation.
- We will use the techniques of viscosity solutions developed in Bayraktar & Sîrbu (2012).

Review of Bayraktar & Sîrbu (2012):

We say a measurable function u : [0, T] × [0, ∞) → ℝ is a stochastic subsolution to (4) if

(I) For any weak solution to (1) with initial condition (t, x),

 $u\left(r \wedge T, X_{r \wedge T}^{t,x}\right)$ is a submartingale.

(II) $u(\mathcal{T},x) \leq g(x)$ for $x \in (0,\infty)$, $u(t,0) \leq g(0)$ for $t \in (0,\mathcal{T}]$.

Continuity of U up to the boundary

Review of Bayraktar & Sîrbu (2012) [conti.]:

- $\mathcal{U}_g^- := \{ \text{LSC stochastic subsolutions to } (4) \}.$
- Suppose $\mathcal{U}_g^- \neq \emptyset$. Given $u \in \mathcal{U}_g^-$, $u(t,x) \leq \mathbb{E}^{t,x}[g(X_T^{t,x})] = U(t,x)$. It follows that

$$v_g^-(t,x) := \sup_{u \in \mathcal{U}_g^-} u(t,x) \le U(t,x).$$

By definition, v_g^- is LSC. Moreover, if g is LSC, then

 $v_g^-(t,x)$ is a viscosity supersolution to (4), $v_g^-(T,x) = g(x)$

CONTINUITY UP TO THE BOUNDARY

Let $g \in \hat{D}$ be nonnegative and continuous. Then, the stochastic solution U satisfies the following:

$$egin{aligned} U^*(T,x) &= U_*(T,x) = g(x) & ext{for } x \in (0,\infty), \ U^*(t,0) &= U_*(t,0) = g(0) & ext{for } t \in [0,T]. \end{aligned}$$

(7)

Here,

- $U^* :=$ USC envelope of U := smallest USC function $\geq U$;
- $U_* :=$ LSC envelope of U := largest LSC function $\leq U$.

Note: g is nonnegative $\Rightarrow \mathcal{U}_g^- \neq \emptyset$ $(u(t, x) \equiv 0$ belongs to $\mathcal{U}_g^-)$. $\Rightarrow v_g^-(T, x) = g(x)$

Sketch of proof:

1. Assume g is concave. Concavity of g implies $g(X^{t,x})$ is a supermartingale. Thus,

$$v_g^{-}(t,x) \leq U(t,x) = \mathbb{E}^{t,x}[g(X_T^{t,x})] \leq g(x).$$

This implies $U^*(T, x) \le g(x)$ and $U_*(T, x) \ge v_g^-(T, x) = g(x)$, and thus $U^*(T, x) = U_*(T, x) = g(x)$.

Since a concave function bounded from below is nondecreasing,

$$0 \leq \mathbb{E}^{t,x}[g(X_T^{t,x}) - g(0)] = U(t,x) - g(0) \leq g(x) - g(0).$$

This implies $U^*(t,0) - g(0) \le 0$ and $U_*(t,0) - g(0) \ge 0$, and thus $U^*(t,0) = U_*(t,0) = g(0)$.

2. $g = g_1 - g_2$, with g_1, g_2 concave. The above result easily extends to this case.

3. The general case: g is continuous. Approximate g by a monotone sequence $\{g^n\}$, with

$$g^n = g_1^n - g_2^n$$
, for some concave g_1^n, g_2^n .

Then, apply results in Step 2 and monotone convergence theorem.

Remark:

- We treat interior smoothness and continuity up to boundary separately.
- Interior smoothness requires σ being locally δ-Hölder continuous with δ > 0.
- continuity up to boundary requires NO regularity on σ .

U IS A CLASSICAL SOLUTION

Suppose σ is locally δ -Hölder continuous, with $\delta \in (0, 1]$. Then, for any continuous $g : [0, \infty) \mapsto [0, \infty)$ belonging to \hat{D} , the stochastic solution U is a **classical solution** to (4) in \hat{D} .

Together with Feynman-Kac formula, we have

U as the unique classical solution

Suppose σ is locally δ -Hölder continuous, with $\delta \in (0, 1]$. Let $g : [0, \infty) \mapsto [0, \infty)$ be continuous and belong to \hat{D} . Then, the stochastic solution U is the **unique classical solution** to (4) in \hat{D} if and only if $\int_{1}^{\infty} \frac{x}{\sigma^{2}(x)} dx = \infty$.

COMPARISON THEOREM

Suppose σ continuous and $\int_{1}^{\infty} \frac{x}{\sigma^{2}(x)} dx = \infty$. Let $u \in \hat{D}$ be a subsolution (resp. $v \in \hat{D}$ be a supersolution) to

$$-\partial_t w - \frac{1}{2}\sigma^2(x)\partial_{xx}w = 0 \text{ on } [0,T) \times (0,\infty).$$

If $u \leq v$ on t = T and x = 0, then $u \leq v$ on $[0, T] \times [0, \infty)$

- No Hölder continuity of σ is needed.
- To prove a comparison theorem, linear growth on σ is a standard assumption; see e.g. Pham (2009).

Here, we assume only $\int_1^\infty \frac{x}{\sigma^2(x)} dx = \infty!$

Theorem

Suppose σ is locally δ -Hölder continuous, with $\delta \in (0, 1]$. Then the following are equivalent:

- (I) $\int_1^\infty \frac{x}{\sigma^2(x)} dx = \infty.$
- (II) X is a true martingale.
- (III) (4) admits a unique classical solution in \hat{D} (which is U).
- (IV) A comparison theorem for (4) holds among sub(super-)solutions in \hat{D} .
 - This in particular gives the nontrivial relation "(iii) \Rightarrow (iv)".

Suppose σ is continuous only, without any Hölder continuity.

 \Rightarrow Previous results about smoothness of U no longer holds!

Idea: Approximate σ by $\{\sigma_n\}$ of Hölder continuous functions. 1. $\sigma_n \uparrow \sigma$.

2. σ_n is locally Hölder continuous, with exponent $\delta_n \in (0, 1]$. 3. for any compact $K \subset (0, \infty)$,

$$\max_{x\in K}\left\{\frac{1}{\sigma_n^2(x)}-\frac{1}{\sigma^2(x)}\right\}<\frac{1}{n}.$$

What if U may not be smooth...

Lemma

For any
$$(t, x)$$
, $X_T^{(n),t,x} \to X_T^{t,x}$ in distribution.

It follows that

 $\mathbb{E}^{t,x}[f(X_T^{(n),t,x})] \to \mathbb{E}^{t,x}[f(X_T^{t,x})] \text{ for any bounded continuous } f.$

In particular,

$$U^M_N:=\mathbb{E}^{t,\times}[g(X^{(n),t,\times}_T)\wedge M]\to \mathbb{E}^{t,\times}[g(X^{t,\times}_T)\wedge M] \ \, \text{for any} \ \, M>0.$$

Theorem

Let σ be continuous. For any continuous $g:[0,\infty)\mapsto [0,\infty)$,

$$\lim_{M \to \infty} \lim_{n \to \infty} U_n^M(t, x) = \lim_{M \to \infty} \mathbb{E}^{t, x}[g(X_T^{t, x}) \wedge M] = \mathbb{E}[g(X_T^{t, x})]$$
$$= U(t, x).$$

Now, suppose σ is continuous and $\int_1^\infty \frac{x}{\sigma^2(x)} dx = \infty$.

Since $\sigma_n \uparrow \sigma$, must have $\int_1^\infty \frac{x}{\sigma_n^2(x)} dx = \infty$. Recall that σ_n is locally δ -Hölder continuous with $\delta_n > 0$, we conclude

 $U_n^M = \mathbb{E}^{t, \times}[g(X_T^{t, \times}) \wedge M]$ is the unique classical solution to

$$\begin{cases} \partial_t u + \frac{1}{2} \sigma_n^2(x) \partial_{xx} u = 0, & (t, x) \in [0, T) \times (0, \infty); \\ u(T, x) = g(x) \wedge M, & x \in (0, \infty); \\ u(t, 0) = g(0) \wedge M, & t \in [0, T]. \end{cases}$$
(8)

References I

- E. BAYRAKTAR, C. KARDARAS, AND H. XING, Valuation equations for stochastic volatility models, SIAM Journal on Financial Mathematics, 3 (2012), pp. 351–373.
- E. BAYRAKTAR AND M. SÎRBU, Stochastic Perron's method and verification without smoothness using viscosity comparison: the linear case, Proc. Amer. Math. Soc., 140 (2012), pp. 3645–3654.
- E. BAYRAKTAR AND H. XING, On the uniqueness of classical solutions of cauchy problems, Proceedings of the American Mathematical Society, 138 (6) (2010), pp. 2061–2064.
- F. DELBAEN AND W. SCHACHERMAYER, Arbitrage possibilities in Bessel processes and their relations to local martingales, Probab. Theory Related Fields, 102 (1995), pp. 357–366.

References II

嗪 F. Delbaen and H. Shirakawa, No arbitrage condition for positive diffusion price processes, Asia-Pacific Financial Markets, 9 (2002), pp. 159–168.

N. E. EKSTRÖM AND J. TYSK, Bubbles, convexity and the Black-Scholes equation, Ann. Appl. Probab., 19 (2009), pp. 1369–1384.

- H. J. ENGELBERT AND W. SCHMIDT, Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations. III, Math. Nachr., 151 (1991), pp. 149-197.
- N. FRIEDMAN, Stochastic differential equations and applications, Dover Publications Inc., Mineola, NY, 2006. Two volumes bound as one, Reprint of the 1975 and 1976 original published in two volumes.

References III

S. G. GAL AND J. SZABADOS, On monotone and doubly monotone polynomial approximation, Acta Math. Hungar., 59 (1992), pp. 395-399.

- P. Hsu, Probabilistic approach to the Neumann problem, Comm. Pure Appl. Math., 38 (1985), pp. 445-472.
- S. JANSON AND J. TYSK, Feynman-Kac formulas for Black-Scholes-type operators, Bulletin of the London Mathematical Society, 38 (2006), pp. 268-282.
- No. I. KARATZAS AND J. RUF, Distribution of the time to explosion for one-dimensional diffusions, (2013). preprint, available at http://www.oxford-man.ox.ac.uk/~jruf/papers/Distribution of Time to Explosion.pdf.

References IV

- I. KARATZAS AND S. E. SHREVE, Brownian motion and stochastic calculus, vol. 113 of Graduate Texts in Mathematics, Springer-Verlag, New York, second ed., 1991.
- G. M. LIEBERMAN, Intermediate Schauder theory for second order parabolic equations. IV. Time irregularity and regularity, Differential Integral Equations, 5 (1992), pp. 1219–1236.
- G. M. LIEBERMAN, Second order parabolic differential equations, World Scientific Publishing Co. Inc., River Edge, NJ, 1996.
- H. PHAM, Continuous-time stochastic control and optimization with financial applications, vol. 61 of Stochastic Modelling and Applied Probability, Springer-Verlag, Berlin, 2009.

- J. RUF, Hedging under arbitrage, Mathematical Finance, 23 (2013), pp. 297–317.
- D. STROOCK AND S. R. S. VARADHAN, On degenerate elliptic-parabolic operators of second order and their associated diffusions, Comm. Pure Appl. Math., 25 (1972), pp. 651–713.

Thank you very much for your attention! Q & A