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We study the effects of network topology on the response of networks of coupled discrete excitable

systems to an external stochastic stimulus. We extend recent results that characterize the response

in terms of spectral properties of the adjacency matrix by allowing distributions in the transmission

delays and in the number of refractory states and by developing a nonperturbative approximation to

the steady state network response. We confirm our theoretical results with numerical simulations.

We find that the steady state response amplitude is inversely proportional to the duration of

refractoriness, which reduces the maximum attainable dynamic range. We also find that

transmission delays alter the time required to reach steady state. Importantly, neither delays nor

refractoriness impact the general prediction that criticality and maximum dynamic range occur

when the largest eigenvalue of the adjacency matrix is unity. VC 2011 American Institute of Physics.

[doi:10.1063/1.3600760]

Networks of coupled excitable systems describe many en-

gineering, biological, and social applications. Recent

studies of how such networks respond to an external, sto-

chastic stimulus have provided insight on information

processing in sensory neural networks.1,2 In agreement

with recent experiments,3 these studies showed that the

dynamic range of neural tissue is maximized in the criti-

cal regime, which is precisely balanced between growth

and decay of propagating excitation. This regime was

studied theoretically for directed random Erdo†s-Rényi

networks in Ref. 1, where it was found to be character-

ized by a network mean degree equal to one. However,

other studies4,7 showed that this condition does not spec-

ify criticality for other network topologies. In this paper,

extending recent results, we present a general framework

for studying the effects of network topology on the

response to a stochastic stimulus. With this framework,

we derive a requirement for criticality and maximum

dynamic range that holds for a wide variety of network

topologies. Moreover, we show that this prediction holds

when refractory states and transmission time delays are

included in the network dynamics, although other aspects

of the response do depend on these properties.

I. INTRODUCTION

Many applications involve networks of coupled excita-

ble systems. Two prominent examples are the spread of in-

formation through neural networks and the spread of disease

through human populations. The collective dynamics of such

systems often defy naive expectations based on the dynamics

of their individual components. For example, the collective

response of a neural network can encode sensory stimuli

which span more than 10 orders of magnitude in intensity,

while the response of a single neuron typically encodes a

much smaller range of stimulus intensities. Likewise, the

collective properties of social contact networks determine

when a disease becomes an epidemic.

Recently, a framework to study the response of a network

of coupled excitable systems to a stochastic stimulus of vary-

ing strength has been proposed. The Kinouchi-Copelli model1

considers the response of an undirected Erdo†s-Rényi random

network of coupled discrete excitable systems to a stochastic

external stimulus. A mean-field analysis of this model pre-

dicted1 that the maximum dynamic range (the range of stim-

uli over which the network’s response varies significantly)

occurs in the critical regime where an excited neuron excites,

on average, one other neuron. This criterion can be stated as

the mean out-degree of the network being one, hdouti ¼ 1,

where the out-degree of a node dout is defined as the expected

number of nodes an excited node excites in the next time step

(Ref. 1 refers to this quantity as the branching ratio).

Subsequent studies explored this system on networks

with power-law degree distributions and hypercubic lattice

coupling, and with a varying number of loops,2,4–7 showing

that the criterion for criticality based on the network mean

degree does not hold for networks with a heterogeneous

degree distribution. However, these studies (except2) do not

take into account features that are commonly found in real

networks, such as, for example, community structure, corre-

lations between in- and out-degree of a given node, or corre-

lations between the degree of two nodes at the ends of a given

edge.8 Furthermore, they do not consider the effect of trans-

mission delays or a distribution in the number of refractory

states.a)Electronic mail: daniel.larremore@colorado.edu.
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In a recent report,2 we presented an analysis of the

Kinouchi-Copelli model that accounts for a complex net-

work topology. We found that the general criterion for crit-

icality is that the largest eigenvalue of the network adjacency

matrix is one, k ¼ 1, rather than hdouti ¼ 1. While this

improved criterion successfully takes into account various

structural properties of networks, our analysis did not

address the effect of delays or multiple refractory states, and

was based on perturbative approximations to the network

response. In this paper, we will extend the results of Ref. 2

by developing a nonperturbative analysis that accounts for

distributions in the transmission delays and number of re-

fractory states.

This paper is organized as follows. In Sec. II, we

describe previous related work and the standard Kinouchi-

Copelli model. In Sec. III, we present the model to be ana-

lyzed and derive a governing equation for its dynamics. In

Sec. IV, we present our main theoretical results. In Sec. V,

we apply our results to estimate the dynamic range of excit-

able networks. In Sec. VI, we present numerical experi-

ments to validate our results. We discuss our results in

Sec. VII.

II. BACKGROUND

In this section, we describe the Kinouchi-Copelli model1

and other relevant previous work. In order to focus on the

effects of network topology, the dynamics of the excitable

systems is taken to be as simple as possible. The model con-

siders N coupled excitable elements. Each element i can be

in one of mþ 1 states, xi. The state xi ¼ 0 is the resting state,

xi ¼ 1 is the excited state, and there may be additional re-

fractory states xi ¼ 2; 3;…;m. At discrete times t ¼ 0; 1;…
the states of the elements xt

i are updated as follows: (i) If ele-

ment i is in the resting state, xt
i ¼ 0, it can be excited by

another excited element j, xt
j ¼ 1, with probability Aij, or in-

dependently by an external process with probability g; (ii)

the elements that are excited or in a refractory state, xt
i � 1,

will deterministically make a transition to the next refractory

state if one is available, or return to the resting state other-

wise (i.e., xtþ1
i ¼ xt

i þ 1 if 1 � xt
i < m, and xtþ1

i ¼ 0 if

xt
i ¼ m).

For a given value of the external stimulation probability

g, which is interpreted as the stimulus strength, the network

response F is defined in Ref. 1 as

F ¼ hf it; (1)

where h�it denotes an average over time and f t is the fraction

of excited nodes at time t. Of interest is the dependence of

the response FðgÞ on the topology of the network encoded

by the connection probabilities Aij. In particular, it is found

that, depending on the network A, the network response can

be of three types:1,2 quiescent, in which the network activity

is zero for vanishing stimulus, limg!0 F ¼ 0; active, in

which there is self-sustained activity for vanishing stimulus,

limg!0 F > 0; and critical, in which the response is still zero

for vanishing stimulus but is characterized by sporadic long

lasting avalanches of activity that cause a much slower decay

in the response, compared with the quiescent case, as the

stimulus is decreased. Recent experiments3 suggest that cul-

tured and acute cortical slices operate naturally in the critical

regime. Therefore, the network properties that characterize

this regime are of particular importance.

In Ref. 1, the response F was theoretically analyzed as a

function of the external stimulation probability, g, using a

mean-field approximation in which connection strengths

were considered uniform, Aij ¼ hdi=N for all i; j. It was

shown that the critical regime is achieved at the value

hdi ¼ 1, with the network being quiescent (active) if

hdi < 1ðhdi > 1Þ. For more general networks (i.e., Aij not

constant), hdi is defined as the mean degree

hdi ¼ 1
N

P
i;j Aij ¼ hdini ¼ hdouti, where din

i ¼
P

j Aij and

dout
i ¼

P
j Aji are the in- and out-degrees of node i, respec-

tively, and h�i is an average over nodes. Such critical branch-

ing processes result in avalanches of excitation with power-

law distributed sizes. Cascades of neural activity with

power-law size and duration distributions have been

observed in brain tissue cultures,3,9–12 awake monkeys,10,13

and anesthetized rats.14–16 While hdi ¼ 1 successfully pre-

dicts the critical regime for Erdo†s-Rényi random networks,1

it does not result in criticality in networks with a more heter-

ogeneous degree distribution.4,7 Perhaps more importantly,

previous theoretical analyses1,4,7 are not able to take into

account features that are commonly found in real networks,

such as, for example, community structure, correlations

between in- and out-degree of a given node, or correlations

between the degree of two nodes at the ends of a given

edge.8 We will generalize the mean-field criterion hdi ¼ 1 to

account for complex interaction topologies encoded in the

matrix A as well as refractoriness and transmission delays.

III. GENERALIZED KINOUCHI-COPELLI MODEL

A. Description of the model

We will analyze a generalized version of the Kinouchi-

Copelli model which includes possibly heterogeneous distri-

butions of delays and refractory periods. The model is as

follows:

• There are N excitable elements, labeled i ¼ 1;…;N.
• At discrete times t ¼ 0; 1;…, each element i can be in one

of mi þ 1 states, xt
i. The state xt

i ¼ 0 is the resting state,

xt
i ¼ 1 is the excited state, and there may be additional re-

fractory states xt
i ¼ 2; 3;…;mi.

• If element i is in the resting state at time t, xt
i ¼ 0, it can be

excited in the next time step, xtþ1
i ¼ 1, by another excited

element j with delay sij (i.e., if x
t�sij

j ¼ 1) with probability

Aij, or independently by an external stimulus with probabil-

ity g.
• The elements that are excited or in a refractory state,

xt
i � 1, will deterministically make a transition to the next

refractory state if one is available, or return to the resting

state otherwise (i.e., xtþ1
i ¼ xt

i þ 1 if 1 � xt
i < mi, and

xtþ1
i ¼ 0 if xt

i ¼ mi).
• The coupling network, encoded by the matrix with entries

Aij, is allowed to have complex topology.
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B. Model dynamics

By considering a large ensemble of realizations of the

above stochastic process on the same network, we can define

the probability that node i is at state xt
i at time t as pt

iðxÞ. The

probabilities pt
i evolve in one time step by

ptþ1
i ð1Þ ¼ pt

ið0Þrt
i; (2)

ptþ1
i ð2Þ ¼ pt

ið1Þ; (3)

� � � (4)

ptþ1
i ðmiÞ ¼ pt

iðmi � 1Þ; (5)

and we also have the normalization condition

pt
ið0Þ ¼ 1�

Xmi

j¼1

pt
iðjÞ; (6)

where rt
i in Eq. (2) is the rate of transitions from the ready to

the excited state, given by

rt
i ¼ E gþ ð1� gÞ 1�

Y
j

ð1� AijI
t�sij

j Þ
( )" #

; (7)

where It
j is one if node j is excited at time t and zero other-

wise, and E½�� denotes an ensemble average. Assuming that

the neighbors of node i being excited are independent events,

we obtain, letting pt
ið1Þ � pt

i,

rt
i ¼ gþ ð1� gÞ 1�

Y
j

ð1� Aijp
t�sij

j Þ
( )

: (8)

We note that the assumption of independence is reasonable

if there are few short loops in the network and has been suc-

cessfully used in similar situations.17,18 However, this

assumption is violated if the number of bidirectional links is

significant and, therefore, we will restrict our attention to

purely directed networks. Inserting the expression above in

Eq. (2) and eliminating pt
iðjÞ in terms of pt

i for j ¼ 2;…;mi,

we obtain the governing equation for the dynamics of pt
i

ptþ1
i ¼ 1�

Xmi

k¼1

ptþ1�k
i

 !
gþð1�gÞ 1�

YN
j

ð1�Aijp
t�sij

j Þ
" # !

:

(9)

In the following, we will analyze the response of the net-

work by studying solutions of this equation as a function of g.

IV. ANALYSIS

In this section we study the solutions of Eq. (9) and the

associated network response. In Sec. IV A, we develop a

nonperturbative approximation to the steady state response

of the network. In Sec. IV B, we analyze limiting cases of

the steady-state response that give us additional qualitative

insight. In Sec. IV C, we study the effect of a distribution in

the transmission time delays on the time scale of relaxation

to the steady state solutions. We then discuss in Sec. IV D

how our results relate to previous work.

A. Steady-state response

First, we will study steady-state solutions to Eq. (9). To

find those, we set pt
i ¼ pi in Eq. (9), which becomes

pi ¼ 1� mipið Þ gþ ð1� gÞ 1�
YN

j

ð1� AijpjÞ
" # !

: (10)

Proceeding as in Ref. 2, by assuming Aijpj is small, we

replace
Q

jð1� AijpjÞ by expð�
P

j AijpjÞ to get

pi ¼ 1� mipið Þ gþ ð1� gÞ 1� e
�
P

j
AijpjÞ

h i� �
: (11)

The assumption that Aijpj is small is motivated as fol-

lows. If the weights Aij are not very different from each other

and each node has many incoming connections (such as in

neural networks, where the number of synapses per neuron is

estimated30 to be of the order of 10000), then near the onset

of self-sustained activity, one should have
P

j Aij � 1 (the

mean-field prediction of Ref. 1, which we refine here, states

that the node average of
P

j Aij is one at criticality), imply-

ing Aij is small. The quantity Aijpj is even smaller, especially

for low levels of activity where pj is small.

To proceed further, we find convenient to define an

alternative network response F̂ as

F̂ ¼ hf̂ it; (12)

where

f̂ t ¼
P

i;j AijI
t
jP

i;j Aij
; (13)

and It
j ¼ 1 if node j is excited at time t and 0 otherwise. The

variable f̂ t can be interpreted as proportional to the number

of excited nodes weighted by their out-degree dout
j ¼

P
i Aij.

In terms of the probabilities pi, F̂ is

F̂ ¼
P

i;j AijpjP
i;j Aij

; (14)

and can be interpreted as the fraction of links that success-

fully transmit an excitation. This is analogous to the interpre-

tation of F in Eq. (1) as the fraction of excited nodes. In

principle, the definitions of f̂ and F̂ preclude their use in

comparing directly against commonly used measures of ac-

tivity because knowledge of the matrix A is required to esti-

mate them. However, we note that in all the numerical

experiments discussed below, F̂ and F were found to be

nearly identical. To develop a nonperturbative approxima-

tion to F̂, we solve Eq. (11) for pi in terms of
PN

j¼1 Aijpj.

Multiplying the resulting expression by Aki and summing

over i, we obtain

XN

i¼1

Akipi ¼
XN

i¼1

Aki
1� ð1� gÞe�

PN

j¼1
Aijpj

1þ mi � mið1� gÞe�
PN

j¼1
Aijpj

: (15)
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Now, we use the fact that the largest eigenvalue of A, k, is

typically much larger than the second eigenvalue,19,20 and

thus Ap 	 su, where s is a scalar to be determined and u is

the right eigenvector of A corresponding to k. The validity of

this approximation will be discussed in Sec. VI C. With this

substitution, the previous equation reduces to

suk ¼
XN

i¼1

Aki
1� ð1� gÞe�sui

1þ mi � mið1� gÞe�sui
: (16)

Noting that

F̂ ¼
P

i;j AijpjP
i;j Aij

	
P

i suiP
j dout

j

¼ s
hui
hdi ;

where hxi �
PN

i¼1 xi=N, we substitute s 	 F̂hdi=hui into Eq.

(16) yielding

F̂ukhdi
hui ¼

XN

i¼1

Aki
1� ð1� gÞe�F̂uihdi=hui

1þ mi � mið1� gÞe�F̂uihdi=hui
:

which may now be summed over k, simplified, and solved

for F̂, yielding the scalar equation

F̂ ¼ dout

hdi
1� ð1� gÞe�F̂uhdi=hui

1þ m� mð1� gÞe�F̂uhdi=hui

* +
: (17)

We note that in the notation above, the outer average h�i cor-

responds to a sum over the index i in Eq. (16). Given the

adjacency matrix A, Eq. (17) can be solved numerically to

obtain the response F̂ as a function of g. We call Eq. (17) the

“nonperturbative approximation” because its derivation does

not rely on a perturbative truncation of the product term of

Eq. (10), and we will numerically test its validity in Sec. VI,

where we will find that Eq. (17) can be a good approximation

for all values of g. In order to gain theoretical insight into

how some features of the network topology and the distribu-

tion of the number of refractory states affect the response,

we will use Eq. (17) to obtain analytical expressions for the

response in various limits.

B. Perturbative approximations

While the nonperturbative approximation developed in

the last section provides information for all ranges of stimu-

lus, it is useful to consider perturbative approximations, for

example, to determine the transition point from quiescent to

active behavior. We will obtain an approximation to F̂ which

is valid for small g and F̂. To do this, we expand the right

hand side of Eq. (16) to second order in s and first order in g
(as we will see, expanding to second order in s is necessary

to treat the g ¼ 0 case) obtaining

suk ¼
XN

i¼1

Aki gð1� suið1þ 2miÞÞ � s2u2
i

1

2
þ mi

� �
þ sui

� �
:

(18)

Multiplying by the left eigenvector entry vk and summing

over k we obtain, using
P

k Akivk ¼ kvi and rearranging,

ks2 vu2 1

2
þ m

� �� 	
¼ gkhvi � sgkhvuð1þ 2mÞi

þ ðk� 1Þshvui: (19)

In terms of F̂, this equation becomes

F̂2hdi2 vu2 1

2
þ m

� �� 	
k ¼ gkhvihui2 � F̂hdigkhvuð1þ 2mÞi


 hui þ ðk� 1ÞF̂hdihvuihui:
(20)

To find the transition from no activity, F̂ ¼ 0, to self-sus-

tained activity, F̂ > 0, for vanishing stimulus, we let g! 0þ

in the previous equation to find

F̂g¼0ðkÞ ¼
0 k < 1;
ðk�1Þhvuihui

khdi vu2 mþ1
2ð Þh i k � 1;

(
(21)

where the solution F̂ ¼ 0 was chosen for k < 1 to satisfy

F̂ � 0. This equation shows that the transition from a quies-

cent network to one with self-sustained activity has, if the

response F̂ is interpreted as an order parameter, the signa-

tures of a second order (continuous) phase transition. In addi-

tion, while the eigenvalue k determines when this transition

occurs (at k ¼ 1), its associated eigenvectors u and v deter-

mine the significance of the observed response past the tran-

sition. If hvu2i � huvihui, for example, the response might

be initially too small to be of importance. One aspect that

was not considered in Ref. 2 is how the distribution of refrac-

tory periods affects the response. If the refractory periods mi

are strongly positively correlated with the product viu
2
i , they

can significantly increase the term hmvu2i in the denomina-

tor, decreasing the response. This can be intuitively under-

stood by noting that this amounts to preferentially increasing

the refractory period of the nodes that are more likely to be

active (as measured by the approximation pi / ui valid close

to the critical regime), thus removing them from the avail-

able nodes for longer times.

The response F̂ for small stimulus and response in Eq.

(21) agrees with the perturbative expression derived for F
directly from Eq. (9) in Ref. 2 if mi ¼ 1 and k! 1 and con-

firms the findings in Ref. 2 that the critical point is deter-

mined by k ¼ 1. Henceforth, we will refer to networks with

k < 1 as quiescent, to networks with k > 1 as active, and to

networks with k ¼ 1 as critical.
The behavior of the system for high stimulation is also

of interest. When g ¼ 1, node i cycles deterministically

through its mi þ 1 available states, and so pi ¼ ð1þ miÞ�1
.

The question is how this behavior changes as g decreases

from 1. This information can be extracted directly from Eq.

(11) by linearizing around the solution g ¼ 1 and

�pi ¼ ð1þ miÞ�1
. Setting g ¼ 1� dg and pi ¼ �pi � dpi with

dg� 1 and dpi � �pi, we obtain

dpi 	 �p2
i e
�
P

j
Aij �pjdg: (22)

Thus, the response of the nodes to a decreased stimulus

depends on a combination of their refractory period (which
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determines �pi) and decays exponentially with the number of

expected excitations from its neighbors. In terms of the ag-

gregate response F̂, Eq. (22) becomes, after multiplying by

Aki, summing over k and i, and normalizing,

dF̂

dg
¼ hd

out �p2e�A�pi
hdi : (23)

C. Dynamics near the critical regime

As in Ref. 2, we will study the transition from no activity to

self-sustained activity in the limit of vanishing stimulus by

linearizing Eq. (9) around pt
i ¼ 0 for g ¼ 0. Assuming pt

i is

small, we obtain to first order

ptþ1
i ¼

XN

j¼1

Aijp
t�sij

j : (24)

Assuming exponential growth, pt
i ¼ atwi, we obtain

awi ¼
XN

j¼1

Aija
�sij wj: (25)

The critical regime, determined as the boundary between no

activity and self-sustained activity as g! 0, i.e., between

the solution pt
i ¼ 0 being stable and unstable, can be found

by setting a ¼ 1, obtaining

wi ¼
XN

j

Aijwj: (26)

This implies that the onset of criticality occurs when k ¼ 1

and in this case w ¼ u. This conclusion agrees with the

results in Ref. 2 and those in Sec. IV B. Although the critical

regime is not affected by the presence of delays or refractory

states, the rate of growth (decay) a of perturbations for the

active (quiescent) regime depends on the distribution of

delays. To illustrate this, we consider the case when the net-

work deviates slightly from the critical state, so that the larg-

est eigenvalue of A is k ¼ 1þ dk and has right eigenvector

u, Au ¼ ð1þ dkÞu. Expecting the solution w to Eq. (25) to

be close to u, we set wi ¼ ui þ dui and a ¼ 1þ l, where the

rate of growth l is assumed to be small. Inserting these in

Eq. (25), we get to first order

luþ du 	 udkþ Adu� lÂu; (27)

where the entries of the matrix Â are given by Âij ¼ Aijsij. To

eliminate the term du, we left-multiply by the left eigenvec-

tor of A, v, satisfying vTA ¼ ð1þ dkÞvT . Canceling small

terms, we get

l 	 dk

1þ vT Âu
vT u

: (28)

If the delay is constant, sij ¼ s, we obtain

l 	 dk
1þ s

; (29)

and in this particular case, a more general result can be

obtained from Eq. (25), which implies a ¼ k1=ð1þsÞ.

D. Relation to previous results

Here, we will briefly discuss how our results for the crit-

ical regime agree with previous work in particular cases.

Correlations between degrees at the ends of a randomly cho-

sen edge (assortative mixing by degree8) can be measured by

the correlation coefficient

q ¼ hdin
i dout

j ie=hdindouti; (30)

defined in Ref. 19, with h�ie denoting an average over edges.

The correlation coefficient q is greater than 1 if the correla-

tion between the in-degree and out-degree of nodes at the

end of a randomly chosen edge is positive, less than one if

the correlation is negative, and one if there is no correlation.

For a large class of networks, the largest eigenvalue may be

approximated19 by k 	 qhdindouti=hdi. In the absence of cor-

relations, when q ¼ 1, the largest eigenvalue can be approxi-

mated by k 	 hdindouti=hdi. If there are no correlations

between din and dout at a node (node degree correlations) or

if the degree distribution is sufficiently homogeneous, then

hdindouti 	 hdi2 and the approximation reduces to k 	 hdi.
This is the situation that was considered in Ref. 1, and thus

they found that the critical regime was determined by

hdi ¼ 1. In the case of Refs. 4 and 7, with more heterogene-

ous degree distributions, k 	 hdindouti=hdi applied, which

accounts for their observation that the critical regime did not

occur at hdi ¼ 1.

The situation encountered here is analogous to what

occurs in the analysis of the transition to chaos in Boolean

networks18 and in the transition to synchronization in net-

works of coupled oscillators,21 where it is found that, instead

of the mean degree, the largest eigenvalue is what deter-

mines the transition between different collective dynamical

regimes.

Other previous studies in random networks have also

investigated spectral properties of A to gain insight on the

stability of dynamics in neural networks22 and have shown

how k could be changed by modifying the distribution of

synapse strengths.23 In addition, it has been shown recently

that the largest eigenvalues in the spectrum of the connectiv-

ity matrix may affect learning efficiency in recurrent chaotic

neural networks.24

V. DYNAMIC RANGE

We have studied the response of the network to stimuli

of varying strengths. In particular, we studied in detail the

response close to the critical regime. As has been previously

noted,1 this regime corresponds to the point where the

dynamic range D is maximized. In our context, the dynamic

range can be defined as the range of stimulus g that results in

significant changes in response F̂. Typically, the dynamic

range is given in decibels and measured using arbitrary

thresholds just above the baseline ( limg!0 F̂ � F̂0) and

below the saturation ( limg!1 F̂ � F̂1) values, respectively,

as illustrated in Fig. 1 for the active network case F̂0 > 0.
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More precisely, the value of stimulus glow (ghigh) correspond-

ing to a low (high) threshold of activity F̂low (F̂high) are found

and the dynamic range is calculated as

D ¼ 10 log10ðghigh=glowÞ: (31)

Using our approximations to the response F̂ as a function of

stimulus g, we can study the effect of network topology on

the dynamic range. The first approximation is based on the

analysis of Sec. IV A. Using Eq. (17), the values of g corre-

sponding to a given stimulus threshold can be found numeri-

cally and the dynamic range calculated.

Another approximation that gives theoretical insight

into the effects of network topology and the distribution of

refractory states on the dynamic range can be developed as

in Ref. 2, by using the perturbative approximations devel-

oped in Sec. IV B. In order to satisfy the restrictions under

which those approximations were developed, we will use

F̂high ¼ F̂1 and F̂low ¼ F̂0 � 1. Taking the upper threshold

to be F̂high ¼ F̂1 is reasonable if the response decreases

quickly from F̂1, so that the effect of the network on the

dynamic range is dependent mostly on its effect on F̂low.

Whether or not this is the case can be established numeri-

cally or theoretically from Eq. (22), and we find it is so in

our numerical examples when mi are not large (see Fig. 5).

Taking ghigh ¼ 1 and glow ¼ g
 we have

D ¼ �10 log10ðg
Þ: (32)

The stimulus level g can be found in terms of F̂ by solving

Eq. (20) and keeping the leading order terms in F̂, obtaining

g ¼
F̂2hdi2 vu2 1

2
þ m


 �� 

� F̂hdiðk� 1Þhuihuvi

khvihui2
: (33)

This equation shows that as g! 0 the response scales as

F̂ � g for the quiescent curves (k < 1) and as F̂ � g1=2 for

the critical curve (k ¼ 1). We highlight that these scaling

exponents for both the quiescent and critical regimes are pre-

cisely those derived in Ref. 1 for random networks, attesting

to their robustness to the generalization of the criticality cri-

terion to k ¼ 1, the inclusion of time delays, and heterogene-

ous refractory periods. This is particularly important because

these exponents could be measured experimentally.1 Using

this approximation for g
 in Eq. (32), we obtain an analytical

expression for the dynamic range valid when the lower

threshold F
 is small. Of particular theoretical interest is the

maximum achievable dynamic range Dmax for a given topol-

ogy. It can be found by setting k ¼ 1 in Eq. (33) and insert-

ing the result in Eq. (32), obtaining

Dmax ¼ D0 � 10 log10

hdi2 vu2 1
2
þ m


 �� 

hvihui2

 !
; (34)

where D0 ¼ �20 log10ðF
Þ > 0 depends on the threshold F


but is independent of the network topology or the distribu-

tion of refractory states. The second term of Eq. (34) sug-

gests that a positive correlation between refractoriness m and

eigenvector entries u and v will decrease dynamic range,

whereas a negative correlation will increase dynamic range.

This prediction may be investigated in more depth in future

publications. The second term of Eq. (34) also suggests that

an overall increase in the number of refractory states will

lead to an overall decrease in dynamic range. This is in con-

trast with the result of Ref. 25, which found that there exists

a m > 0 which maximizes dynamic range in two-dimen-

sional arrays of neurons. We note that the assumption of in-

dependence used in deriving Eq. (8) is not valid for a two

dimensional array.

VI. NUMERICAL EXPERIMENTS

We tested our theoretical results from Sec. IV by com-

paring their predictions to direct simulation of our general-

ized Kinouchi-Copelli model described in Sec. III.

Simulation parameters were chosen specifically to test the

validity of Eqs. (17), (23), (28), and (34). All simulations,

except where indicated, were run with N ¼ 104 nodes for

T ¼ 105 timesteps, over a range of g from 10�5 to 1.

A. Construction of networks

We created networks in three steps: first, we created bi-

nary directed networks, Aij 2 f0; 1g, with particular degree

distributions as described below, forbidding bidirectional

links and self-connections; second, we assigned a weight to

each link, drawn from a uniform distribution between 0 and

1; third, we calculated k for the resulting network and multi-

plied A by a constant to rescale k to the targeted eigen-

value.27 The two classes of topology considered for

simulations were directed Erdo†s-Rényi random networks and

directed scale-free networks with power law degree distribu-

tions, where we set the power law exponent to c ¼ 2:5, and

enforced a minimum degree of 10 and a maximum degree of

1000. Erdo†s-Rényi networks28 were constructed by linking

any pair of nodes with probability p ¼ 15=N, and scale-free

networks were constructed by first generating in-degree and

out-degree sequences drawn from the power law distribution

described above, assigning those target degrees to N nodes,

FIG. 1. Schematic illustration of the definition of dynamic range in the

active network case. The baseline and saturation values are F̂0 and F̂1,

respectively. Two threshold values, denoted by F̂low and F̂high, respectively,

are used to determine the range of values of g defined as the dynamic
range D.
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and then connecting them using the configuration model.29

In some cases, an additional fourth step was used to change

the assortativity coefficient q, defined in Eq. (30), of a criti-

cal (i.e., with k ¼ 1) scale-free network, making this network

more assortative (disassortative) by choosing two links at

random, and swapping their destination connections only if

the resulting swap would increase (decrease) q. This swap-

ping allows for the degree of assortativity (and thereby, k) to

be modified while preserving the network’s degree

distribution.8,19

B. Results of numerical experiments

We first demonstrate the ability of the non-perturbative

approximation to predict aggregate network behavior in a va-

riety of conditions. Fig. 2 shows a multitude of simulations

(symbols) with the predicted behavior of Eq. (17) overlaid

(lines). The cases considered in Fig. 2 include different com-

binations of topology, assortativity, largest eigenvalue k,

delays, and number of refractory states. The number of re-

fractory states mi was chosen either constant, mi ¼ m, or ran-

domly chosen with equal probability among f1; 2;…;mmaxg.
Similarly, the delays sij were either constant, sij ¼ s, or uni-

formly chosen with uniform probability in ð0; smaxÞ. The pre-

dictions capture the behavior of the simulations, with

particularly good agreement for networks with neutral assor-

tativity, q ¼ 1. In the assortative and disassortative cases

shown [cases (3) and (6) in Fig. 2], low and high stimulus

simulations are well captured by the prediction, while a

small deviation can be observed for intermediate values of g
[e.g., in case (6) in the right panel of Fig. 2, the crosses have

a small systematic error around g ¼ 10�2 ]. In Sec. VI C, we

will discuss why Eq. (17), which assumes Ap 	 su, works so

well. In particular, we will discuss why this approximation is

expected to work well for small and large g.

As reported previously,2 we find in our simulations that

networks with k ¼ 1 show critical dynamics and exhibit

maximum dynamic range. This applies to random networks,

scale free networks, and scale free networks with modified

assortativity. Networks with k < 1 exhibit no self-sustained

activity in the absence of stimulus, whereas networks with

k > 1 exhibit self-sustained activity. Furthermore, in all nu-

merical experiments, with distributed refractory states and

various time delays, the criticality of networks at k ¼ 1 was

preserved as predicted above. Typical results in Fig. 3(a)

show the response F̂ as a function of stimulus g for scale free

networks with c ¼ 2:5, refractory states mi ¼ m ¼ 1, and no

time delays, with k ranging from 0.2 to 1.8. Each symbol in

the figure is generated by a single simulation on a single net-

work realization. Lines show F̂ obtained from numerical so-

lution of Eq. (17). We note that the simulations with k ¼ 1

show a deviation from the theoretically predicted critical

curve for values of g less than 10�4. We believe this is due

to the fact that for such low values of g, a much longer time

average than the one we are doing would be required. For

example, with g ¼ 10�5 we expect that, using 105 time steps,

a given node will not be excited externally with probability

e�1 	 0:37. This might be especially important in the critical

regime, where activity is mostly determined by sporadic ava-

lanches propagated by hubs.

Figure 3(b) shows the dynamic range D calculated using

F
 ¼ 10�2 directly from the simulation (circles) and using

Eq. (17) (dashed line). As demonstrated in Ref. 2, the

dynamic range is maximized when k ¼ 1. We note that in

Ref. 2, the dynamic range was estimated using a perturbative

approximation and as a consequence, our prediction had a

systematic error in the k > 1 regime [cf. Fig. 1(b) in Ref. 2].

The nonperturbative approximation Eq. (17) results in a

much better prediction.

Figure 4 shows the transition that occurs at k ¼ 1 when

g! 0 for experiments with a varying number of refractory

states, m¼ 1, 3, and 5. Symbols indicate the results of direct

simulation using g ¼ 10�5 and the lines correspond to

Eq. (17), which describes well the result of the simulations.

We found that for this particular network, the perturbative

approximation (21) only gives correct results very close to

the transition at k ¼ 1, and its quantitative predictions de-

grade quickly as F̂ grows. [A similar situation can be

observed in Fig. 2(b) of Ref. 2.] However, we found that the

perturbative approximation is still useful to predict the effect

FIG. 2. (Color online) Semi-log plots of data from five simulations (symbols) testing a variety of situations in order to show the robustness of Eq. (17) (lines)

to various sets of conditions: (1) random network; k ¼ 1; mixed refractory states, mi 2 f1; 2; 3g; no delays; (2) random network; k ¼ 0:7; no refractory states,

mi ¼ m ¼ 1; mixed delays, sij 2 f0; 1; 2; 3g; (3) scale free network; k ¼ 0:8; disassortative rewiring; no refractory states, mi ¼ m ¼ 1; no delays; (4) scale free

network; k ¼ 1:2; uniform refractory states, mi ¼ m ¼ 2; no delays; (5) Scale free network; k ¼ 1:0; mixed refractory states, mi 2 f1; 2; 3; 4g; mixed delays,

sij 2 f0; 1; 2g; (6) Scale free network; k ¼ 1:2; uniform refractory states, mi ¼ m ¼ 1; no delays. The plots show excellent agreement between the prediction

and simulation at many points in parameter space.
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of the refractory states. Equation (21) predicts that the

response should scale as hmþ 1=2i�1
. The inset shows how,

after multiplication by hmþ 1=2i, the response curves col-

lapse into a single curve. Figure 4 also depicts a linear rela-

tionship, F̂ � ðk� 1Þ for k > 1. Making a connection with

the theory of nonequilibrium phase transitions in which

F̂ � ðk� kcÞb, we derive kc ¼ 1 and the critical exponent

b ¼ 1.

Figure 5 shows the response F̂ close to g ¼ 1 calculated

for various values of m from the simulation (symbols), and

from Eq. (23) (solid lines). Equation (23) describes well the

slope of F̂ close to g ¼ 1. An important observation is that as

m grows, the relative slope F̂�1dF̂=dg at g ¼ 1 decreases.

Therefore, if the typical refractory period m is large, the

response F̂ saturates [e.g., reaching 90% of F̂ð1Þ ] for smaller

values of g:
Transmission delays, as in the analogous system of gene

regulatory networks,18 do not modify steady state response.

However, delays modify the time scale of relaxation to steady

state. We quantified this modification in the growth rate in

Eq. (28), which determines the growth rate of perturbations

from an almost critical quiescent network in terms of a matrix

FIG. 5. (Color online) Simulation data (symbols) compare reasonably with

the prediction of the perturbative approximation close to saturation, Eq. 23,

for different refractory states. dg was chosen to be the different between

g ¼ 100 and g ¼ 10�0:1, corresponding to the two rightmost data points of

each simulation.

FIG. 4. (Color online) Phase transitions of Fg!0 for different refractory

states, m for simulations (symbols) and Eq. (17) (lines). Inset: Eq. (21) pre-

dicts that phase transitions should scale by hmþ 1=2i�1
, confirmed by

rescaling data from the larger plot accordingly.

FIG. 3. (Color online) Simulation data for scale-free networks of 104 nodes

(symbols) and numerical solution of Eq. 17 (lines). (a) Stimulus vs response

predictions agree well in the regime where Ap 	 su, as discussed in

Sec. VI C. Eigenvalues range from 0.2 to 0.9 (blue squares), exactly 1.0 (red

diamonds), and from 1.1 to 1.8 (black circles). (b) Dynamic range predic-

tions capture maximization at k ¼ 1 as well as the non-critical behavior.

FIG. 6. (Color online) Time series (solid lines) for initial growth of signals

within four active networks, with growth rates from Eq. (28) shown (dotted

lines). The timesteps shown on the horizontal axis have been shifted to dis-

play multiple results together, but not rescaled or distorted. In less than 100

timesteps, all networks tested exhausted the exponential growth regime.

N¼ 100 000 nodes and g ¼ 10�6, for (1) k ¼ 1:1, s ¼ 0, (2) k ¼ 1:2, s ¼ 0,

(3) k ¼ 1:1, s 2 f0; 1; 2; 3g, and (4) k ¼ 1:2, s 2 f0; 1; 2; 3g.
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determined from the distribution of delays. In Fig. 6, we

show time series (solid lines) for the initial growth in the

number of excited nodes within four active networks with

and without time delays. For comparison, we show the slope

that results from the corresponding growth rates obtained

from Eq. (28) (dotted lines). The timesteps shown on the hori-

zontal axis have been shifted to display multiple results

together, but not rescaled or distorted. As shown in Fig. 6,

Eq. (28) is helpful in quantifying the growth rate of signals

within the network in the regime during which growth is ex-

ponential. In this limited regime, simulation data compare

well with time series of excitations and capture the growth

rate’s dependence on eigenvalue and time delays. We note

here that Eq. (28) predicts the growth rate of pt
i, and, there-

fore, the growth rate of both f t and f̂ t. Here, we have chosen

to show the growth in the number of excited nodes (propor-

tional to f t) which is more experimentally accessible than f̂ t.

C. Validity of the approximation Ap / u

Here, we will address the question of the validity of our

approximation Ap / u, which was used to develop the non-

perturbative approximation Eq. (17). First, we note that

when g and p are small, the linear analysis of Sec. IV C and

Ref. 2 shows that p / u, and, therefore, the approximation

Ap / u is justified in this regime. As g grows, and for situa-

tions where p is not small, one should expect deviations of p
from being parallel to u. However, we note that because pi

measures how active node i is, it should still be highly corre-

lated with the in-degree of node i. Because in many situa-

tions the in-degree is also correlated with the entries of the

eigenvector u, we expect that in those cases p remains corre-

lated with u. After multiplication by A, the approximation

can only become better. For the class of networks in which

the ratio between the largest eigenvalue k and the next larg-

est eigenvalue scales as
ffiffiffiffiffiffiffi
hdi

p
(which include Erdo†s-Rényi

and other networks),20 we expect that Ap / u should be a

good approximation.

Another reason why the approximation Ap / u works

well even when F̂ is not small is that the errors introduced by

this approximation vanish exactly when g ¼ 1. To see this,

note that for g ¼ 1, because each node cycles deterministi-

cally through its mi þ 1 available states, we have

pi ¼ 1=ð1þ miÞ, which gives F̂ ¼
P

i;j Ai;jð1þ mjÞ�1=P
i;j Ai;j ¼ hdoutð1þ mÞ�1i=hdi, which agrees exactly with

the result of setting g ¼ 1 in Eq. (17). Thus, even as the

assumption Ap / u may become less accurate as g grows,

the importance of the error introduced by it decreases and

eventually vanishes at g ¼ 1.

To illustrate how the assumption Ap 	 su works in

some particular examples, Fig. 7 compares normalized Api

and ui for a variety of eigenvalues and stimulus levels. Good

agreement between them (characterized by a high correla-

tion) indicates that the assumption of Sec. IV A is valid,

whereas more noisy agreement for some cases indicates that

the assumption Ap / u is invalid (although, as discussed

above, this does not necessarily imply that the nonperturba-

tive approach will fail). Low stimulus levels in quiescent net-

works (top left panel) show relatively low correlation for

short simulations, but the correlation improves with more

timesteps as relative nodal response increases at well con-

nected nodes and decreases at poorly connected nodes.

Assortative networks (bottom panels) show slightly lower

correlation as well, corroborating the results shown in Fig. 2

where the predictive power of Eq. (17) is slightly diminished

for the assortative network. As expected, correlation between

Ap and u entries is worst at g ¼ 1 (right panels), but we reit-

erate that for g ¼ 1 this error does not affect the predictions

of Eq. (17).

VII. DISCUSSION

In this paper, we studied a generalized version of the

Kinouchi-Copelli model in complex networks. We devel-

oped a nonperturbative treatment [Eq. (17)] that allows us to

find the response F̂ of the network for a given value of the

stimulus given a matrix of excitation transmission probabil-

ities A. Our approach includes the possibility of heterogene-

ous distributions of excitation transmission delays and

numbers of refractory states. An important assumption in our

theory is that there are many incoming links to every node,

which allows us to transform the product in Eq. (9) into an

exponential. This assumption is very reasonable for neural

networks, where the number of synapses per neuron is esti-

mated30 to be of the order of 10000. In addition, in order to

obtain a closed equation for F̂, we assumed Ap / u. As dis-

cussed in Sec. VI C, this approximation works well in the re-

gime when the response and stimulus are small.

Furthermore, the error introduced by this approximation

becomes smaller as the probability of stimulus increases and

eventually vanishes for g ¼ 1. The result is that Eq. (17) pre-

dicts the response F̂ satisfactorily for all values of g. While

we validated our predictions using scale-free networks with

various correlation properties, we did not test them in

FIG. 7. (Color online) Plots of normalized Api vs sui for scale-free net-

works, with eigenvalues 0.6 (blue, top row), 1.0 (red, middle row), and 1.2

with assortative mixing (black, bottom row) at stimulus levels

g ¼ 10�5; 10�3; and 1 for the left, middle, and center columns, respectively.

Agreement is very good for critical and active cases, with more noise in the

quiescent case due to less incoming stimuli over the duration of the

simulation.
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topologies in which mean-field theories have been shown to

fail, such as periodic hypercubes and branching tree net-

works.6,26 This study is left to future research.

Our theory describes how the introduction of additional

refractory states modifies the network response by modifying

Eq. (17). In addition, their effect is captured by the perturba-

tive approximations of Sec. IV B which, although valid in

principle only for very small F̂, we have found successfully

predict the effect of a distribution in the number of refractory

states for a larger range of response values.

We studied the effect of time delays on the time scale

needed to reach a steady-state response and found that Eq.

(28) determines the growth rate of perturbations from a qui-

escent, almost critical network. The temporal characteristics

of the response could be important in the study of sensory

systems, in which the stimulus level might be constantly

changing in time. Additionally, delays may be important in

studying the phenomenon of synchronization and propaga-

tion of wavefronts, which we do not study here. Synchroni-

zation in epidemic models similar to the model considered

here has been well-described in the absence of time delays,31

and synchronization in Rulkov neurons has been shown to be

affected subtly by time delays.32 However, the effect of time

delays on synchronization in our model remains an open line

of inquiry.

An important practical question regarding the applica-

tion of our theory to neuroscience is how our results can be

made compatible with the presence of excitatory and inhibi-

tory connections in neural networks. Considering one excited

neuron, and after excitatory and inhibitory connections are

taken into account, the important quantity that determines

the future activity of the network is how many other neurons

are expected to be excited by the originally excited neuron.

This number might depend on the overall balance of excita-

tory and inhibitory connections, but it must be a positive

number. The Kinouchi-Copelli model we are using, and sim-

ilar models used successfully by neuroscientists to model

neuronal avalanches,3 have therefore considered only excita-

tory neurons, while adjusting the probabilities of excitation

transmission to account for different balances of excitatory

and inhibitory neurons. Nevertheless, we believe a general-

ization of the Kinouchi-Copelli model that accounts for in-

hibitory connections should be investigated in the future.

Another important issue is the generality of our findings

for more biologically realistic excitable systems. We conjec-

ture that the effect of network topology on the dynamic

range of networks of continuous-time, continuous-state

coupled excitable systems such as coupled ordinary differen-

tial equation (ODE) neuron models33 is qualitatively similar

to its effect on the class of discrete-time and discrete-state

dynamical systems studied here. However, this remains open

to investigation.
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