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We consider systems of many spatially distributed phase oscillators that interact with their

neighbors. Each oscillator is allowed to have a different natural frequency, as well as a different

response time to the signals it receives from other oscillators in its neighborhood. Using the ansatz

of Ott and Antonsen [Chaos 18, 037113 (2008)] and adopting a strategy similar to that employed in

the recent work of Laing [Physica D 238, 1569 (2009)], we reduce the microscopic dynamics of

these systems to a macroscopic partial-differential-equation description. Using this macroscopic

formulation, we numerically find that finite oscillator response time leads to interesting

spatiotemporal dynamical behaviors including propagating fronts, spots, target patterns, chimerae,

spiral waves, etc., and we study interactions and evolutionary behaviors of these spatiotemporal

patterns. VC 2011 American Institute of Physics. [doi:10.1063/1.3596697]

Many physical systems can be thought of as consisting of

a large number of oscillating units that are distributed in

space and coupled to neighboring units that are within

some limited distance. The individual coupled units of

such systems, moreover, can have non-negligible response

times, and it is well known that delays can give rise to a

set of possible behaviors that is significantly richer than

would be the case without delays. Our work addresses

two issues: (1) derivation of a macroscopic description

for such systems, and (2) the possible characteristic

behaviors that may be revealed through study of such

macroscopic descriptions.

I. INTRODUCTION

Systems of large coupled oscillator networks appear in

many physical and engineering systems.1–3 Examples include

synchronous flashing of fireflies,4 pedestrian induced oscilla-

tions of the Millennium Bridge,5 cardiac pace-maker cells,6

alpha rhythms in the brain,7 glycolytic oscillations in yeast

populations,8 cellular clocks governing circadian rhythm in

mammals,9 oscillatory chemical reactions,10–12 etc.

Many previous studies of oscillator networks were devel-

oped in the setting of network couplings on graphs with dif-

ferent topological characterizations, such as small-world,

Erdös-Renyi, and scale-free (e.g., Refs. 13–16). Here we con-

sider applications in which the oscillators are distributed spa-

tially, for example, when there is a row of trees each

occupied with a large number of fireflies. Indeed, in the past

decade studies of spatially distributed coupled oscillators

have aroused much interest. An example is the chimera states

(e.g., Refs. 17–20), in which there is a stable coexistence of

both coherent and incoherent states distributed in space.

Another important aspect of the dynamics of oscillator

networks is that physical oscillators may have significant

delays in their response to signals and these signals may also

take a significant time to propagate. Studies of time-delay

effects in the context of all-to-all coupled networks with a ho-

mogeneous distribution of time delays21,22 show that interest-

ing features such as bistable behaviors and multiple coherent

states are induced in the presence of time delays. Reference

23, building on the machinery developed in Refs. 24–26,

extends this line of study to a heterogeneous nodal response

time distribution.27 In addition, Ref. 28 studies the dynamics

of a one-dimensional ring of spatially distributed and non-

locally coupled oscillator network when the time delays are

due to signal propagation between interacting oscillators.

The problem studied in this paper is that of uncovering

the spatiotemporal dynamics of a system of coupled oscilla-

tors with heterogeneous oscillator response times. We first

give a microscopic description of the individual oscillators

and their couplings. We then spatially coarse-grain this

description and use the methods developed in Refs. 20 and

23 to derive a set of partial differential equations (PDEs) giv-

ing a macroscopic description of the system dynamics. Using

our derived macroscopic equations, we then numerically

explore the spatiotemporal dynamics and resulting pattern

formation in both one- and two-dimensions. We find that a

rich variety of behaviors are induced by the presence of time

delay in the oscillator response. These include hysteresis,

propagating fronts, spots, target patterns, chimerae, spiral

waves, etc.

II. FORMULATION

A. Derivation of the macroscopic description

We consider a system of N spatially distributed interact-

ing phase oscillators with time delays between the response

of an oscillator and the signal it receives. The evolution

equation of oscillator m is
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d

dt
hmðtÞ ¼ xm þ

XN

n 6¼m

K̂mn sin½hnðt� smnÞ � hmðtÞ�f g

¼ xm þ
XN

n 6¼m

K̂mn
1

2i
fe�i½hmðtÞ�hnðt�smnÞ� � c:c:g; (1)

where K̂mn is the interaction strength between oscillators m
and n, which is assumed to be spatial in character (i.e., K̂mn

becomes small or zero if the distance between oscillator m
and oscillator n is large), smn is the interaction time delay in

the effect of oscillator n on oscillator m, and c:c: denotes

complex conjugate.

Assuming a separation in the scales of the macroscopic

and microscopic system dynamics, we follow a path similar

to that employed by kinetic theory to reduce the study of a

gas of many interacting molecules to a fluid description. We

begin by partitioning the continuous space into discrete

regions I�x centered at the discrete set of spatial points �x, such

that the domain of interest is [�x I�x, and I�x \ I�x0 ¼ ; for

�x 6¼ �x0. The diameter of each region is jI�xj � w, and the vol-

ume of each region is wd where d denotes the dimension of

space.

These regions are assumed to be small enough that

K̂mn � K̂ml if oscillators n and l are in the same region I�x0 , yet

large enough that many oscillators (NI�x0 � 1) are contained

within each I�x0 . Thus we can meaningfully define

qð�x0Þ �
NI�x0

wd
;

rð�x0; tÞ � 1

NI�x0

X
n2I�x0

eihnðtÞ; (2)

respectively, as the local density and the local order parame-

ter in I�x0 . In addition, for all m 2 I�x and n 2 I�x0 , we approxi-

mate K̂mn � K�x�x0 . The summation in Eq. (1) can thus first be

approximated as

1

2i

X
I�x0

K�x;�x0NI�x0 e
�ihmðtÞ 1

NI�x0

X
n2I�x0

eihnðt�smnÞ � c:c:

" #
: (3)

In all of what follows, we consider only the simple illustra-

tive case that smn ¼ sm, i.e., we suppose that the delay in the

effect of oscillator n upon oscillator m is independent of n.

This would, e.g., apply if the signal propagation time from n
to m was very fast, but each oscillator had a finite reaction

time. Together with Eq. (2), Eq. (3) can then be written as

X
I�x0

wdK�x�x0qð�x0ÞImfe�ihmðtÞrð�x0; t� smÞg: (4)

Since we assume NI�x
� 1 for all �x, it is appropriate to intro-

duce a distribution function Fðh;x; s; �x; tÞ proportional to the

fraction of oscillators in I�x with h 2 ½h; hþ dh�, x 2 ½x;x
þ dx�, and s 2 ½s; sþ ds� at time t. We furthermore pass to

the limit of continuous space by replacing the discrete vari-

able �x by a new variable x which we now regard as continu-

ous. In terms of this distribution, we introduce the marginal

distribution ĝðx; s; xÞ,

ĝðx; s; xÞ ¼
ð2p

0

Fðh;x; s; x; tÞdh: (5)

Here, note that since x; s, and x for any oscillator are

assumed to be constant in time, the h� integral of F is time

independent even though F itself depends on time. With

Eq. (5), the quantity r in Eq. (2) becomes

rðx; tÞ ¼
Ð1

0

Ð1
�1
Ð 2p

0
Fðh;x; s; x; tÞeihdhdxdsÐ1

0

Ð1
�1
Ð 2p

0
Fðh;x; s; x; tÞdhdxds

¼ 1

qðxÞ

ð1
0

ð1
�1

ð2p

0

Fðh;x; s; x; tÞeihdhdxds (6)

The overall system dynamics can be studied in terms of the

evolution equation for Fðh;x; s; x; tÞ,

@F

@t
þ @

@h
Ffxþ Im½gðx; t� sÞe�ih�g
� �

¼ 0; (7)

where

gðx; tÞ ¼
ð

qðx0ÞKðx; x0Þrðx0; tÞdx0 (8)

is Eq. (4) in the continuum limit, and the integration in (8) is

over the d -dimensional spatial domain. Referring back to

our previous analogy to kinetic theory of a gas, we think of

Eqs. (7) and (8) as a kinetic description roughly analogous to

the Boltzmann equation.

To proceed we wish to reduce our kinetic descriptions

(7) and (8) to a PDE system analogous to the fluid equations

of gas dynamics. We do this using the recent work of Ott and

Antonsen.24,25 We expand F in a Fourier series of the form,

Fðh;x;s;x; tÞ¼ ĝðx;s;xÞ
2p

1þ
X1
n¼1

fnðx;s;x; tÞeinhþ c:c:

" #( )
:

(9)

As discussed and justified in Refs. 24 and 25, we seek a solu-

tion in the form,

fnðx; s; x; tÞ ¼ âðx; x; s; t� sÞn: (10)

Equations (6)–(8) then yield

@

@t
âðx; x; s; t� sÞ þ ixâðx; x; s; t� sÞ

þ 1

2
gðx; t� sÞâ2ðx; x; s; t� sÞ � g�ðx; t� sÞ
� �

¼ 0;

(11)

gðx; t� sÞ ¼
ð

qðx0ÞKðx; x0Þrðx0; t� sÞdx0; (12)

rðx; tÞ ¼
ð

1

qðxÞ

ð1
�1

ĝðx; s0; xÞâ�ðx; x; s0; t� s0Þdxds0;

(13)

where the star * denotes complex conjugate, and s0 is written

inside Eq. (13) to emphasize its role as a dummy integration

variable as compared with s’s in the other equations.
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In what follows, we study an illustrative case corre-

sponding to

ĝðx; s; xÞ ¼ gðxÞhðsÞq0; (14)

Kðx; x0Þ ¼ kqðx� x0Þ; (15)

where
Ð1
�1 gðxÞdx ¼

Ð1
0

hðsÞds ¼ 1. Equation (14) implies

that the oscillator frequencies, locations, and delay distribu-

tions are uncorrelated, and that the oscillator density q0 is

uniform. Equation (15) states that the strength of the cou-

pling between oscillators at two points depends uniformly on

their spatial separation. Further, in Eq. (15) we take qðxÞ to

be suitably normalized, so that the constant k may be

regarded as an overall coupling strength. With these assump-

tions, together with the transformation t! tþ s in Eqs. (11)

and (12), and rewriting s0 as s in Eq. (13), we obtain

@

@t
âðx; x; s; tÞ þ ixâðx; x; s; tÞ

þ k

2
gðx; tÞâ2ðx; x; s; tÞ � g�ðx; tÞ
� �

¼ 0; (16)

gðx; tÞ ¼
ð

q0qðx� x0Þrðx0; tÞdx0; (17)

rðx; tÞ ¼
ð ð1

�1
gðxÞâ�ðx; x; s; t� sÞdx

� �
hðsÞds: (18)

We note that there is no s dependence in (16) other than as

an argument of â. Thus Eqs. (16)–(18) admit a solution

where â has no s dependence, â ¼ âðx; x; tÞ. In particular, if

the initial condition on â has no s dependence, then this will

be true for all time. In what follows we consider only this

case. A partial justification for this is that our previous work

(which also employed this restriction, albeit with no spatial

dependence) obtained results that agree well with full simu-

lations based on numerical integration of the dynamics of

many individually evolved oscillators. In order to reveal

generic expected behavior, we now further specify particular

convenient choices for the frequency distribution, gðxÞ, the

response time distribution, hðsÞ, and the spatial interaction

kernel, qðxÞ.
We assume a Lorentzian form for gðxÞ,

gðxÞ ¼ D=p

ðx� x0Þ2 þ D2

¼ 1

2pi

1

x� x0 � iD
� 1

x� x0 þ iD

� 	
: (19)

Assuming â is analytic in x, we close the x� integration

path in Eq. (18) with a large semi-circle of radius R!1 in

the lower half complex x� plane. Thus we obtain from the

pole of gðxÞ at x ¼ x0 � iD [see Eq. (19)],

rðx; tÞ ¼
ð

a�ðx; t� sÞhðsÞds; (20)

where aðx; tÞ ¼ âðx0 � iD; x; tÞ, and we have assumed

(Ref. 24) that, as ImðxÞ ! �1, âðx; x; tÞ is sufficiently

well-behaved that the contribution from the integration over

the large semicircle approaches zero as R!1. Setting

x ¼ x0 � iD in Eq. (16) we obtain the following equation

for the time evolution of aðx; tÞ,

@

@t
aðx; tÞþ ðDþ ix0Þaðx; tÞþ

k

2
gðx; tÞa2ðx; tÞ� g�ðx; tÞ
� �

¼ 0:

(21)

Our assumed form for the response time distribution hðsÞ is

given by,23

hðsÞ ¼ Ae�bs; (22)

where A and b are defined by
Ð1

0
hðsÞds ¼ 1 andÐ1

0
shðsÞds ¼ T. Noting the convolution form of Eq. (20),

we can re-express (20) as

T
@

@t
þ 1


 �
rðx; tÞ ¼ a�ðx; tÞ: (23)

For the interaction kernel, we choose qðxÞ to be the solution

to the problem,

r2 � 1

L2


 �
qðxÞ ¼ � 1

L2
dðxÞ: (24)

For example, for an unbounded domain with boundary con-

ditions qðxÞ ! 0 as jxj ! 1, we obtain

qðxÞ ¼

1
2L exp � jxjL

� 

for d ¼ 1;

1
2pL2 K0

jxj
L

� 

for d ¼ 2;

1
4pjxjL2 exp � jxjL

� 

for d ¼ 3;

8>>><
>>>:

(25)

where K0ðjxj=LÞ is a zeroth order Bessel function of imagi-

nary argument. Using Eq. (24), Eq. (17) can be rewritten by

acting on it with the operator ðr2 � 1
L2Þ, giving

r2gðx; tÞ � 1

L2
gðx; tÞ ¼ � 1

L2
q0rðx; tÞ: (26)

Thus we obtain a closed system of three PDE’s in the in-

dependent variables x and t given by Eq. (21) for aðx; tÞ, Eq.

(23) for rðx; tÞ, and Eq. (26) for gðx; tÞ. In the rest of this paper

we study solutions of these equations in one- and two-dimen-

sional domains of size D with periodic boundary conditions.

The parameters of this system are

D;x0; k; L; T;D; q0:

By suitable normalization we can remove three of these pa-

rameters. We will do this by redefining g and k to absorb q0

and by normalizing time to D�1 and distance to L. This can

also be viewed as using our original parameter set with the

choices D ¼ 1; L ¼ 1; q0 ¼ 1. In either case, our normalized

PDE description becomes29

@

@t
aðx; tÞ þ ð1þ ix0Þaðx; tÞ

þ k

2
gðx; tÞa2ðx; tÞ � g�ðx; tÞ
� �

¼ 0; (27)

T
@

@t
þ 1


 �
rðx; tÞ ¼ a�ðx; tÞ; (28)
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ðr2 � 1Þgðx; tÞ ¼ �rðx; tÞ: (29)

Thus, our reduced parameter set is

x0; k; T;D: (30)

B. Discussion

We briefly comment on the analogy of the derivation of

our evolution equations (27)–(29) to the derivation of the

equations of gas dynamics from Boltzmann’s equation. Sub-

stituting Eq. (10) into Eq. (9) and summing the geometric se-

ries (jâj < 1 is assumed for convergence), we obtain

Fðh;x; s; x; tÞ ¼ ĝðx; s; xÞ
2p

1� jâj2

1þ jâj2 � 2jâj cosðh� wÞ

 !
;

(31)

where â ¼ jâj expð�iwÞ. It is shown in Refs. 24 and 25 that,

under very general conditions, the solution to our Eq. (7)

relaxes to this form. In gas dynamics, the solution to Boltz-

mann’s equation, via the Chapman-Enskog expansion,30 is

assumed to approximately relax to a local Maxwellian distri-

bution whose velocity-space width is controlled by the tem-

perature, and whose velocity-space maximum is located at the

fluid velocity. In analogy with this situation, Eq. (31) is

peaked in h (analogous to velocity space) at the location

h ¼ w (analogous to the fluid velocity), and the width of this

peak is controlled by jâj (analogous to temperature) with F
becoming a delta function in h as jâj ! 1 (analogous to tem-

perature! 0). In contrast to the derivation of gas dynamics

from the Boltzmann equation, our relaxation to Eq. (31) is due

to the phase mixing of many oscillators with different natural

frequencies, whereas relaxation to a local Maxwellian in gas

dynamics is due to chaos in the collisional dynamics of inter-

acting particles. Another difference is that Eq. (31) is an exact,

rigorous result (as shown in Refs. 25 and 26), while relaxation

to a local Maxwellian in the derivation of gas dynamics is an

asymptotic result in the ratio of the mean free path (and mean

free time) to the macroscopic length (and time) scale.

C. Numerical tests of the applicability of our
macroscopic description

In order to support our subsequent use (Sec. III) of

Eqs. (27)–(29) to describe spatiotemporal dynamics of non-

locally coupled phase oscillator systems with a distribution

of time delays, we now consider numerical tests of this

approach. It turns out that full simulations of the microscopic

description, Eq. (1), are not computationally feasible for us

because of the combined difficulty of simultaneously

accounting for a distribution of time delays and spatial dy-

namics. However, we note that the use of the ansatz (10) for

the treatment of a distribution of time delays in a nonspatial

system has previously been tested in Ref. 23. Thus we focus

on testing the spatial aspects of our formulation. For this pur-

pose we have formulated a hybrid approach (described

below) whereby we account for the distribution of time

delays in small local regions, but then treat these local

regions as microscopic units and couple them. Thus by com-

paring simulations of our hybrid formulation with predic-

tions of our macroscopic formulation, Eqs. (27)–(29), we

hope to lend support to our use of the ansatz (10) in the con-

text of spatial problems with a distribution of time delays.

We now give our formulation of our hybrid approach in

one spatial dimension. We consider a circular array of N
“macro-oscillators,” where macro-oscillator m is located at

position xm ¼ mDx and we assume xmþN ¼ xm. By the term

“macro-oscillator” we mean that we consider many oscilla-

tors in a small region (region m) where these oscillators have

a distribution of time delays as specified by Eq. (22). The col-

lection of oscillators in region m is assumed to be character-

ized by a phase hm, and the evolution of hm is given by

d

dt
hmðtÞ ¼ xm þ ImðzmðtÞe�ihmðtÞÞ; (32)

where

T
d

dt
þ 1


 �
zmðtÞ ¼ lmðtÞ; (33)

lmðtÞ ¼
XN

n¼1

Kðxm; xnÞeihnðtÞ: (34)

This form for the evolution of hm is motivated by the results

of Ref. 23, where it was found that an ensemble of globally

coupled oscillators with a distribution of delays as in Eq. (22)

has the same dynamics as a system like the one above but

with the kernel Kðx; x0Þ ¼ 1=N. The above system of equa-

tions accounts for non-local coupling by means of the kernel

Kðx; x0Þ. As a further justification for this approach, we note

that reduction of Eqs. (32)–(34) using the approach of Sec. II

A results in Eqs. (27)–(29), and thus numerical simulations of

this hybrid approach allow us to validate the spatial aspects of

our reduction technique.

In order to formulate the hybrid approach of Eqs.

(32)–(34) in terms of the same parameters of the macro-

scopic equations [Eqs. (27)–(29)], we use Dx ¼ D=N,

Kðx; x0Þ ¼ kqðx� x0Þ, where

qðx� x0Þ ¼ 1

2L
exp � jx� x0j

L


 �
;

and jx� x0j ¼ minfjx� x0j;N � jx� x0jg is the distance in

the ring. We will use L ¼ 1 as in the macroscopic equations.

The frequency of each oscillator, xm, is randomly chosen

from a Lorentzian distribution with width D ¼ 1 centered at

x0. Therefore, the parameters for the hybrid system are

x0; k; T;D;N:

We use N ¼ 217 ¼ 131072 oscillators and choose the param-

eters x0; k; T;D to match the values used in the macroscopic

simulations. We note that in our numerical experiments, the

convolution term lm is calculated efficiently using fast Fou-

rier transforms.

Using the above hybrid approach, we have done a vari-

ety of simulations at different parameter values. These have

yielded results that are always in good qualitative agreement

with results of numerical solutions of our macroscopic formu-

lation [Eqs. (27)–(29)], and often the results are also in good
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quantitative agreement. In cases where the agreement is only

qualitative the parameter values are close to bifurcations, and

exact agreement is not expected because of noise inherent in

the finite number of interacting units employed in the hybrid

approach. Figures 1(a)–1(k) show results of one dimensional

simulations of our hybrid model for eleven different parame-

ter sets. These figures should be compared with those of

Figs. 4(a)–4(k) which show results of numerical solutions of

Eqs. (27)–(29) for the same conditions (described in Sec.

III A) and parameters. It is seen that panels (a)–(e), (j), and

(k) show good quantitative agreement. Panels (f)–(i) corre-

spond to a transitional parameter range close to a subcritical

bifurcation at the end of a bistable regime (see Fig. 2). Thus

our tests support the validity of using our macroscopic

approach to study the possible behaviors of these systems,

and the next section will be devoted to such a study.

III. NUMERICAL STUDIES OF THE MACROSCOPIC
EQUATIONS

A. 1D propagating fronts, “bridge” and “hole”
patterns

The simplest solutions of our system, Eqs. (27)–(29),

are the homogeneous incoherent state solution (r ¼ 0 every-

where) and the homogeneous coherent state solution

(r ¼ r0eiXt where r0 and X are real constants). As shown in

Refs. 21–23 for the case of globally coupled oscillators [cor-

responding to r2 ! 0 in Eq. (29)], a distribution of interac-

tion time-delays induces bistability and hysteretic behaviors.

Figure 2 shows an example of the hysteresis loop in the

jrj � k plane for spatially homogeneous states with

FIG. 1. (Color) The parameters for pan-

els (a)–(k) are given in the caption of Fig.

4 which shows simulations for the same

parameters by using the macroscopic for-

mulation, Eqs. (27)–(29). The initial con-

ditions are as follows: the system was

started at time t ¼ �20 with

hmð�20Þ ¼ p, zmð�20Þ ¼ 0:9 expðip=4Þ
and evolved for t ¼ 20 time units until a

uniform coherent steady-state was estab-

lished. Then, at time t ¼ 0, the phase of

each macro-oscillator with xm 	 25 or

xm 
 75 was reset to a random number

chosen uniformly in ½0; 2pÞ and its corre-

sponding zm was reset to 0.

FIG. 2. Hysteresis loop for x0 ¼ 5; T ¼ 1. The upper and lower branches

correspond to stable coherent and incoherent states.
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x0 ¼ 5; T ¼ 1, which is obtained by solving Eqs. (27)–(29)

with g ¼ r for the coherent solution r ¼ r0eiXt.

We first consider a one-dimensional version of our sys-

tem, Eqs. (27)–(29), for a k value within the bistable region,

k ¼ 12, and examine the evolution resulting from several ini-

tialized configurations with different spatial regions in the

homogeneous incoherent and coherent state solutions.

Results are shown in Fig. 3. Note that the final state is either

coherent or incoherent depending on how large the initial

incoherent region is. Thus, there appears to be a critical ini-

tial size of the incoherent region beyond which the incoher-

ent region takes over. Furthermore, from Fig. 3, we see that

the evolutionary process leading to this final state is by prop-

agation of fronts separating coherent and incoherent regions,

and that these fronts propagate at an approximately constant

speed. In addition to this initial example, we find a variety of

other one-dimensional spatiotemporal behaviors to be

reported in the following.

Next, we consider the dynamics as a function of the cou-

pling strength k. Recall from Fig. 2 that there is a hysteretic

region of coexisting coherent and incoherent states for the

region k0c < k < kc where k0c ¼ 10 and kc ¼ 14:5. Figure 4

shows the time evolution of jrðx; tÞj as a function of k. When

the state is initialized with half (25 	 x 	 75) the domain in

FIG. 3. (Color) jrðx; tÞj for, (a) an initial

configuration with a small part of the

one-dimensional spatial domain in the

incoherent state (blue) and a large part

in the coherent state (orange), (b) a

larger part of the spatial domain is ini-

tially in the incoherent state than that in

(a), and (c) a still larger initial incoher-

ent region (x0 ¼ 5, T ¼ 1, D ¼ 100,

k ¼ 12).

FIG. 4. (Color) A comparison of the

time evolutions of jrðx; tÞj for different

values of k where r is initialized with

half of the interval at the coherent state

(25 	 x 	 75) and half at the incoherent

state. Notice the difference in time

scales of Figs. 4(g) and 4(h) from other

figures (x0 ¼ 5;T ¼ 1;D ¼ 100; peri-

odic boundary conditions are imposed).
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the homogeneous coherent state and the remaining half in

the homogeneous incoherent state, it is seen that if k is suffi-

ciently close to k0c, then the incoherent region engulfs the

coherent region, while if k is sufficiently greater than kc, the

homogeneous coherent solution takes over, and by compar-

ing Figs. 4(a)–4(e), we find that the propagation velocity

decreases as k is increased toward kc. As k increases past

k � 12, the simple propagating front phenomenon seen in

Figs. 3 and 4(a)–4(c) is replaced by more complex behavior.

For example, in Fig. 4(d) we observe the formation of a

“bridge” at k ¼ 13 (<kc), i.e., a narrow stable coherent

region sandwiched between two broad incoherent regions.

This solution is apparently a long-time stable state. It devel-

ops as the two propagating fronts collapsing the coherent

regions slow to a halt as they approach each other. We note

further that the bridge has an amplitude which is smaller

than that of the stable homogeneous solution, and the oscilla-

tion frequency is different as well (graphs not shown). Fur-

ther, this bridge type solution persists for k > kc, and can

give rise to further intriguing dynamics like multiple bridges,

as shown in Fig. 4(g), and even more vigorous behaviors of

merging and re-creation of plateaus of coherent regions and

bridges, as seen in Fig. 4(h). Comparing Fig. 4(f) to 4(h), it

is notable that a wide variety of evolutionary behaviors

occurs within a relatively small range in k, including the for-

mation of single and multiple bridges, as well as collapse

and re-creation of plateaus. Figure 5 studies the glassy-like

behavior related to that seen in Fig. 4(h) at a slightly differ-

ent set of system parameters. The figure shows plateaus of

coherent regions [orange triangles in Figs. 5(a) and 5(b)] and

bridge-like patterns (yellow stripes), connected through dy-

namical creation, merging and re-creation of such structures

until the system eventually evolves into the homogeneous

coherent state. Figure 5(c) shows the phase evolution inside

the plateau region (orange triangle) of Fig. 5(a) centered at

t � 420; x � 50. Figure 5(d) shows the phase evolution cor-

responding to the four-bridge-structure between the top of

Fig. 5(a) and the bottom of Fig. 5(b)(700 	 t 	 1300). We

note that within a plateau, the whole region oscillates

roughly homogeneously [see the nearly parallel evolving

fronts in Fig. 5(c)], and each bridge pattern functions as a

sink of incoming waves [see the zig-zag-like pattern in

Fig. 5(d)]. Further important dynamical characteristics dur-

ing this vigorous glassy-like transition state are revealed in

Figs. 5(e) and 5(f), which show jrj and h (where r ¼ jrjeih),

respectively at t ¼ 148. We see that there are multiple hole-

like patterns [deep dips in jrj in Fig. 5(e)], at which the phase

changes sharply [see Fig. 5(f), and note that the changes in

phase for the outer two holes appear to be virtually discontin-

uous, as discussed in more detail shortly]. In comparison, for

the multiple-bridge region at t ¼ 1200, Figs. 5(g) and 5(h)

show that both jrj and h change smoothly in space.

Figure 6 shows the dynamical characteristics associated

with the hole-like patterns in another setting where these

FIG. 5. (Color) (a) and (b) Glassy state

of transition, formation of plateaus of

coherent regions and hole patterns, and

final evolution into the homogeneous

coherent state. (c) and (d) Phase evolu-

tion in the plateau and multiple-bridge

regions. (e) and (f) jrðx; 148Þj and

hðx; 148Þ. (g) and (h) jrðx; 1200Þj and

hðx; 1200Þ [x0 ¼ 4, T ¼ 1, D ¼ 100,

k ¼ 10:3 ð>kc ¼ 10Þ; initial condi-

tion: r is given by the homogeneous

coherent state solutions for 25 	 x 	 75,

and r ¼ 0 otherwise; periodic boundary

conditions are imposed].
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patterns dominate and are not interspersed with other spatial

features (like bridges and plateaus). The figure corresponds

to the same parameters as those in Fig. 4(h), but initialized

with different incoherent and coherent regions. Compared

with Fig. 4(h), there is a relatively short time for the system

to stay in the plateau-like regions, and instead of settling in

the homogeneous coherent state solution as in Fig. 4(h), four

distinct hole-like patterns emerge [black lines starting at

t � 130 in Fig. 6(a)]. As time evolves, the two inner holes

move toward each other and annihilate, while the outer two

continue to evolve, apparently becoming stationary. Note

also that for the two merging holes, they approach each other

at a faster speed when they are closer to each other. Exami-

nation of the phase evolution of the system [Figs. 6(b) and

6(e)] suggests the center of each hole act as a source of plane

waves, in contrast with the bridge solution which acts as a

sink [see Fig. 5(d)]. For the inner two moving holes, while

each is characterized by a dip in magnitude [see Fig. 6(c) at

t ¼ 192], the dips decrease in magnitude as the two holes

approach each other, with the relative phase difference on

the two sides of the hole center close to being continuous

[see Fig. 6(d)]. However, if the holes are stationary, e.g., the

outer two holes in Figs. 6(c) and 6(f), each dip in jrj is close

to zero, with the relative phase difference on the two sides

FIG. 6. (Color) Formation and dynami-

cal evolution of hole patterns. (a)

jrðx; tÞj. (b)–(d) Close-up views of four

hole patterns with two inner traveling

holes. (e)–(g) Close-up views of two sta-

tionary hole patterns (x0 ¼ 5, T ¼ 1,

D ¼ 100, k ¼ 14:8; initial condition: r is

given by the homogeneous coherent

state solutions for 0 	 x 	 41 and

59 	 x 	 100, and r ¼ 0 otherwise; per-

iodic boundary conditions are imposed).

FIG. 7. (Color) An example of the hole

solution by collision of two plane wave

solutions. The two waves meet at x ¼ 50

with a p phase difference (x0 ¼ 5,

T ¼ 1, D ¼ 100, k ¼ 14:8 and periodic

boundary conditions). The initial condi-

tion corresponds to a discontinuous r
given by a right traveling plane wave so-

lution with m ¼ 3 (where the wave num-

ber is 2mp=D) for 0 	 x 	 50 and a left

traveling plane wave solution with

m ¼ 4 for 50 < x 	 100. Correspond-

ingly, we observe from (d) that

½hð0; 200Þ � hð100; 200Þ� ¼ 2p.
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being an essentially discontinuous slip of 63p. A further ob-

servation in the case of two stationary holes is that there is a

bump in jrj half-way between them corresponding to the

location at which incoming waves emitted from the holes

converge [see x ¼ 50 in Fig. 6(f)].

In fact, when k � kc, the hole-like pattern is a feature

that shows up readily when two plane waves with a relative

phase difference of 6p (or odd-multiples of them) collide.

An example is studied in Fig. 7 where two waves of relative

phase difference p collide giving rise to a hole pattern. This

observation is consistent with the relative phase differences

observed at the two outer holes studied in Fig. 6(g). Further-

more, although the hole pattern seems to arise only under rel-

atively specific conditions, it is found to be pretty stable with

respect to changes in parameters or small perturbations once

it is formed. Finally, as shown in Fig. 8, we note that the

hole core occupies a finite width and so is not a point singu-

larity when T 6¼ 0. This will be shown to have a close corre-

spondence with the spiral wave in our two-dimensional

study (Sec. III C).

It is further interesting to note some similarity between

our observations in the region k � kc and the intermittency

regime of the complex Ginzburg-Landau equation (CGLE)

(see for example, Sec. III of Ref. 31 and Sec. 2.5 of Ref. 32).

There, the CGLE displays similar glassy-like transition pat-

terns characterized by large plateaus of coherent regions

with hole-like patterns being continuously created and

destroyed. However, there are also differences between the

two systems. For example, the CGLE does not seem to have

a close counterpart to the bridge pattern observed in our sys-

tem, while more intricate dynamics of hole creation and

destruction leading to zigzagging holes and defect chaos

have not been observed in our study.

B. 2D propagating fronts and “bridge” patterns

Figures 9 and 10 show the d ¼ 2 counterparts to the

d ¼ 1 propagating fronts and the associated features. Similar

to what was previously done for d ¼ 1, half of the system is

initialized in the homogeneous incoherent state and the

remaining half in the homogeneous coherent state, and they

are divided by a sinusoidally wiggling boundary [Figs. 9(a)

and 10(a)]. Analogous to the d ¼ 1 case, for d ¼ 2, the ho-

mogeneous incoherent state and homogeneous coherent state

take over when k is sufficiently small or large compared to

kc, respectively. The most interesting behaviors again take

place when k � kc. With k ¼ 14:4 < kc, Fig. 9 shows the de-

velopment of a stable bridge solution. In contrast, with

k ¼ 14:8 > kc, Fig. 10 shows a surprisingly rich spatiotem-

poral pattern evolution. As in Fig. 9, the originally coherent

half apparently starts to shrink into a bridge [see Fig. 10(b)];

however, as time progresses further, we see that coherent

regions arise out of the originally incoherent regions to form

new features [see also Figs. 4(g) and 4(h) in the d ¼ 1 case],

and these new features interact in a nontrivial two-dimen-

sional manner. For example, when two neighboring coherent

regions get close to each other, they can form bonds and

merge into each other—see the connections formed between

bridge-like structures from t ¼ 83 to t ¼ 98; also see the

coherent spot formed at the upper left hand corner at t ¼ 245

and see how it merges into the bridge on its right as time pro-

gresses to t ¼ 400. We also observe that, during the process

of merger, bridge-like structures may also temporarily sepa-

rate and then re-connect—see the connecting bridge at the

FIG. 8. Finite width of (one-dimensional) hole core (x0 ¼ 5, T ¼ 1,

D ¼ 33:3, k ¼ 14:8).

FIG. 9. (Color) Time evolution of

jrðx; tÞj of a d ¼ 2 configuration initial-

ized with half of the region at the inco-

herent state and half at the coherent state

divided by a wiggled boundary with

k ¼ 14:4 (<kc ¼ 14:5) (x0 ¼ 5, T ¼ 1,

D ¼ 100; periodic boundary conditions

are imposed).
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bottom right hand corner from t ¼ 138 to t ¼ 170. A further

notable feature is the coherent spot on the top left hand cor-

ner at t ¼ 561 (a target pattern in the phase plot similar to

that shown in Sec. III C), which survives from t ¼ 561 to the

end of the numerical run. In the above reported numerical

experiments we observe that both incoherent and coherent

regions coexist for a long time. We do not know, however,

whether a coherent or incoherent state ultimately will take

over the whole domain at longer time.

C. 2D Spots, spiral waves, and target patterns

Figure 11 shows the time evolution of both jrðx; tÞj and

sin½hðx; tÞ� [where rðx; tÞ ¼ jrðx; tÞj exp½ihðx; tÞ�, and

x ¼ ðx; yÞ in 2D] when the system is initialized with a small

random initial condition at each grid point, and the coupling

strength is k ¼ 15:5 (>kc ¼ 14:5). As expected from our pre-

vious studies, when k > kc, coherent regions (jrj � 1)

emerge from the initial incoherent state. Further, the phase

FIG. 10. (Color) Time evolution of jrðx; tÞj from an initial configuration (a) with half of the region at the incoherent state and half at the coherent state divided by

a wiggled boundary with k ¼ 14:8 (>kc ¼ 14:5). A comparison with Fig. 9 shows a much richer spatiotemporal dynamical pattern (x0 ¼ 5; T ¼ 1; D ¼ 100;

periodic boundary conditions are imposed).
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plots show some distinct target-like patterns of nested closed

surfaces of constant phase (see t ¼ 40 and t ¼ 217). As time

progresses, coherent regions (red in the jrj plots) become

dominant and only small islands of incoherent regions

remain (blue in the jrj plots). Similar to our previous obser-

vation of propagating fronts when k > kc [compare Figs.

10(g) and 10(h)], coherent regions can form in an originally

incoherent region (jrj � 1). For example, see the figures

from t ¼ 139 to t ¼ 161, and especially from t ¼ 195 to

t ¼ 225, where we see coherent regions (red=yellow) appear-

ing and growing in the interior of incoherent (blue) blob,

eventually destroying it. As can be inferred by comparing

the jrj and sinðhÞ plots, small blue, dot-like features in the

jrj plots represent phase defects in the complex amplitude

(i.e., counter clockwise encirclement of such a feature leads

to a phase change of either þ2p or �2p), and these blue dot

FIG. 11. (Color) Time evolution of jrðx; tÞj and sin½hðx; tÞ� (where rðx; tÞ ¼ jrðx; tÞj exp½ihðx; tÞ�) from random initial condition [x0 ¼ 5;
T ¼ 1; D ¼ 100; k ¼ 15:5 ð>kc ¼ 14:5Þ; periodic boundary conditions are imposed]. Plots of jrðx; tÞj are shown in order (a), (c), (e), (g), and so on; plots

of sin½hðx; tÞ� are shown in order (b), (d), (f),(h) and so on.
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features are commonly seen as spiral wave type patterns in

the phase plots. When, as in the previously noted plots from

t ¼ 195 to 225, coherent regions take over from an incoher-

ent patch, we also note that a number of phase defects result

(which must be formed in opposite-spiral-parity pairs due to

the conservation of topological charge); see t ¼ 250. The

isolated phase defects subsequently wander about, and some

of them are seen to annihilate with others of opposite parity

(see the two defects closest to the bottom of the picture at

t ¼ 267 and their evolution up to t ¼ 293), or sometimes

they are absorbed into an incoherent region (e.g., compare

the jrj plots at t ¼ 195 and t ¼ 217). Lastly, regarding the

speed of motion of spiral patterns, we note that similar to the

observation in Fig. 6(a), when oppositely charged spirals get

close enough to each other, their speed of approach becomes

distinctively faster till they annihilate each other.

In studies of the CGLE, the hole pattern and spiral wave

pattern are analogous phenomena occurring in d ¼ 1 and

d ¼ 2, respectively. Indeed, the hole pattern and spiral wave

pattern exhibit similar characteristics in our study. Both fea-

tures are stable with respect to small changes in parameters,

and exhibit similar dynamical characteristics of approach and

annihilation as described above. In addition, Fig. 12 shows,

in parallel with Fig. 8, that the central core of the spiral wave

FIG. 11. (Continued)

FIG. 12. (Color) Finite area of (two-dimensional) spiral cores (x0 ¼ 5,

T ¼ 1, D ¼ 20, k ¼ 15).
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pattern occupies a finite area when T 6¼ 0. This is similar to

the chimera-centered spirals noted in Refs. 33 and 34.

D. 2D pulsating pattern

Another class of local coherent structures supported in

the d ¼ 2 case is shown in Figs. 13 and 14, which shows a

localized pulsating spot in an incoherent background. It is

interesting to notice that oscillations of the magnitude and

phase (which show up in the form of target patterns) of

rðx; tÞ are not the same, with that of the phase oscillation

being more irregular and more than an order of magnitude

faster than the amplitude oscillation [Figs. 13(d) and 14(g)].

It is interesting to note that for the CGLE, stable pulsating

patterns come only with the addition of a quintic term (see

Ref. 35, and the later work Ref. 36 and references therein).

IV. SUMMARY AND CONCLUDING REMARKS

In this paper, we have studied the spatiotemporal dynamics

of spatially coupled oscillator systems, where the oscillators

have a heterogeneous distribution of response times. Using the

FIG. 13. (Color) Pulsating pattern: am-

plitude variation. Figures (a)–(c) show

approximately one “period” of oscilla-

tion in jrj. Figure (d) shows the time var-

iation of jrj at the center of the pulse;

compare with Fig. 14 for oscillations in

phase (x0 ¼ 5, T ¼ 1, D ¼ 100,

k ¼ 14:52; periodic boundary conditions

are imposed).

FIG. 14. (Color) Pulsating pattern:

phase variation. Figures (a)–(f) show the

rapid time variations of the phase. Figure

(g) shows the time variation of sinðhÞ at

the center of the pulse (Parameters are as

indicated in Fig. 13).
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results of Refs. 24–26, we have derived a macroscopic PDE

description for this situation [Eqs. (27)–(29)]. The resulting

macroscopic dynamics are found to exhibit a wide variety of

pattern formation behaviors. We characterized the possible

behaviors roughly according to the hysteresis loop corre-

sponding to bistable homogeneous incoherent and homogene-

ous coherent state solutions. Numerical studies show that the

system behaviors for k sufficiently below=above the bistable

k-range are simple in that the homogeneous incoher-

ent=coherent state eventually takes over the entire domain. In

contrast, for k in or near the bistable range the system can ex-

hibit a variety of interesting spatiotemporal phenomena. These

include propagating fronts, bridge patterns, hole patterns

(d ¼ 1), spiral waves (d ¼ 2), spots, target patterns, pulsating

patterns, etc.

Finally, it is interesting to consider the role of time delay

in contributing to the features that we observed. If there is no

time delay (i.e., T ¼ 0), there is no homogeneous bistable

behavior as observed in Fig. 2, and the transition from the ho-

mogeneous incoherent state to the homogeneous coherent state

is supercritical and takes place at kc ¼ 2D. In this case, many

of the interesting spatiotemporal phenomena that we have

found for T > 0 are absent. For example, when T ¼ 0, the

intricate 1D glassy state transitions were not observed, and the

system typically evolves relatively rapidly into either homoge-

neous incoherent or homogeneous coherent state solutions. The

2D waves arisen from the topological defects are still present;

however, for T ¼ 0 the system will be similar to the case of

zero nonlinear dispersion in Ref. 18, where the incoherent core

remains a point defect but not a finite area as observed when

T 6¼ 0. Thus finite response time introduces additional dynam-

ics, leading to the large variety of behaviors observed.
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