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Cellular calcium transient alternans are beat-to-beat alternations in the peak cytosolic calcium
concentration exhibited by cardiac cells during rapid electrical stimulation or under pathological
conditions. Calcium transient alternans promote action potential duration alternans, which have
been linked to the onset of life-threatening ventricular arrhythmias. Here we use a recently devel-
oped physiologically detailed mathematical model of ventricular myocytes to investigate both sto-
chastic and deterministic aspects of intracellular calcium dynamics during alternans. The model
combines a spatially distributed description of intracellular calcium cycling, where a large number
of calcium release units are spatially distributed throughout the cell, with a full set of ionic mem-
brane currents. The results demonstrate that ion channel stochasticity at the level of single calcium
release units can influence the whole-cell alternans dynamics by causing phase reversals over many
beats during fixed frequency pacing close to the alternans bifurcation. They also demonstrate the
existence of a wide range of dynamical states. Depending on the sign and magnitude of calcium-
voltage coupling, calcium alternans can be spatially synchronized or desynchronized, in or out of
phase with action potential duration alternans, and the node separating out-of-phase regions of
calcium alternans can be expelled from or trapped inside the cell. This range of states is found to be
larger than previously anticipated by including a robust global attractor where calcium alternans can
be spatially synchronized but out of phase with action potential duration alternans. The results are
explained by a combined theoretical analysis of alternans stability and node motion using general
iterative maps of the beat-to-beat dynamics and amplitude equations. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3207835�

The contractile machinery of a heart cell is activated by
the copious release of calcium from intracellular stores.
This release causes the calcium concentration to rise
transiently and then decrease as calcium is pumped back
into the stores to be available for release at the next beat.
This “calcium cycling” in and out of the stores can be-
come dynamically unstable, with the net result that the
peak calcium concentration alternates from beat to beat.
These period-two oscillations, known as “calcium tran-
sient alternans,” have been linked to the onset of life-
threatening heart rhythm disorders.1,2 The spatiotempo-
ral dynamics of intracellular calcium during alternans,
however, is still far from being fully explored. This dy-
namics is made especially rich by the fact that calcium
and membrane voltage are bidirectionally coupled.3 Cal-
cium entry into the cell via voltage gated L-type calcium
channel (LCC) triggers calcium release, and the transient
rise in calcium affects calcium-dependent membrane cur-
rents and hence the time course of membrane voltage
during the action potential. Experiments4–6 have shown
the existence of dynamical states where, subcellularly,
calcium alternans can be spatially synchronized or desyn-
chronized, and calcium alternans at the whole cell level
are more widely known to be either in or out of phase
with action potential duration alternans depending on

physiological conditions.1,2 Here we use a physiologically
detailed model of bidirectionally coupled intracellular
calcium dynamics7 and membrane voltage dynamics to
shed light on the emergence of different dynamical states.
Numerical simulations of the model allow us to test exist-
ing theoretical predictions of deterministic models8 and
to explore the effect of ion channel stochasticity on whole
cell dynamics. The results highlight the importance of
stochastic effects and reveal a richer dynamical behavior
than previously anticipated.

I. INTRODUCTION

The main cellular signals responsible for the contraction
of cardiac myocytes are the transmembrane voltage and the
intracellular calcium concentration. Membrane depolariza-
tion propagates as a wave across the atria and ventricles and
regulates the entry of calcium into the cell, triggering further
intracellular calcium release and the subsequent activation of
the contractile machinery. Under rapid stimulation or phar-
macological stress, the normally periodic transmembrane
voltage or calcium concentration can undergo a period-
doubling bifurcation. The resulting beat-to-beat alternations
in the action potential duration are known as action potential
duration alternans �voltage alternans�, and beat-to-beat alter-
nations in the peak calcium concentration are known as cal-
cium transient alternans �calcium alternans�. This pathologi-a�Electronic mail: juanga@colorado.edu.
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cal behavior is associated with arrhythmias and sudden
cardiac death.1,2 An understanding of the mechanisms by
which alternans are generated in a single cell could poten-
tially have impact in the prevention and treatment of the
diseases associated with this abnormal condition.

While voltage alternans are uniform in the cell due to
fast voltage diffusion, slow calcium diffusion allows, in
some cases, the development of calcium alternans with op-
posite phase in different regions of the cell �i.e., a small-
large-small-large calcium pattern in one region of the cell
and a large-small-large-small pattern in another region�. This
type of calcium alternans is known as spatially discordant
alternans �SDA� and has been observed in confocal micros-
copy images of cat atrial cells4 and in the intact rat heart.5,6

Calcium alternans with the same phase over the whole cell
are called spatially concordant alternans �SCA�. �We note
that the same terminology is applied to alternans patterns in
cardiac tissue;2 in this paper we will always refer to subcel-
lular scales.� An amplitude equation describing the coupled
dynamics of intracellular calcium and voltage was proposed
by Shiferaw and Karma.8 It leads to the prediction that the
formation of SDA can be described by a Turing instability of
the spatially extended coupled calcium-voltage dynamics.
The conditions for the formation of SDA were found to de-
pend on the bidirectional coupling between calcium and volt-
age alternans, and to be the same as those for which calcium
and voltage alternans are out of phase with each other �i.e., a
long-short-long-short action potential duration pattern occur-
ring with a small-large-small-large calcium pattern�. In this
paper we will extend the results of Ref. 8 and show numeri-
cally and theoretically that it is possible to have calcium and
voltage alternans that are out of phase and spatially synchro-
nized over the whole cell as a global attractor of the dynam-
ics. The situation where voltage and calcium alternans are in
phase �i.e., a long-short-long-short action potential duration
pattern and a large-small-large-small calcium pattern� is the
most common and is referred to as electromechanically con-
cordant �EMC� alternans. The opposite situation is observed
under some conditions9,10 and is known as electromechani-
cally discordant �EMD� alternans. In Fig. 1 we show sche-
matically the two different cases.

There have been recent experimental, theoretical, and
numerical studies of SDA. Movement of nodes separating
two regions with out-of-phase calcium alternans has been

observed using confocal microscopy in intact rat heart
myocytes.6 Reference 8 derived an amplitude equation from
iterative map dynamics of coupled voltage and calcium de-
scribing the evolution of intracellular calcium alternans on
slow time scales. Numerical studies have modeled myocytes
deterministically as a one-dimensional �1D� array of coupled
sarcomeres.6,8 Reference 6 has found that SDA can form
upon a change in stimulation period, and that nodes separat-
ing two out-of-phase regions exhibit rich dynamics. The nu-
merical studies in Ref. 6, however, considered deterministic
dynamics and a voltage signal uncoupled from calcium. Here
we explore coupled voltage and calcium dynamics using a
model of intracellular calcium dynamics which fully ac-
counts for the local nature of calcium release.7 We compare
the numerical simulations of this detailed model with an
analysis of iterative maps describing the coupled dynamics
of voltage and calcium. Reference 6 finds there is no node
movement with a periodic voltage signal. Our numerical and
theoretical results agree with this result, with the caveat that
stochasticity of calcium release results in drifting node mo-
tion when the voltage is periodic. When the voltage signal is
coupled to calcium through the calcium-dependent mem-
brane currents, we find that the node motion depends on the
form of the calcium-voltage coupling. We predict the condi-
tions when alternans are spatially concordant or discordant
and electromechanically concordant or discordant in terms of
a general two-dimensional �2D� iterative map of the beat-to-
beat dynamics. In addition, we make predictions for the mo-
tion of the node separating spatially out-of-phase regions us-
ing an amplitude equation approach, and we qualitatively
validate these theoretical results by studying the movement
of the node separating out-of-phase regions when alternans
are initiated with opposite phase in two regions of the cell.

We investigate the effects of local fluctuations on experi-
mentally observable quantities such as the cytosolic calcium
concentration. We address a fundamental problem of any
model of calcium release that includes stochasticity and spa-
tial calcium release: how do individual calcium release units
�CRUs� maintain the coherent pattern of release to produce
macroscopic alternations of calcium release stable against
stochastic dephasing? We find that coherence is maintained
by local coupling through calcium diffusion or globally by
interactions through the membrane voltage.

This paper is organized as follows. In Sec. II A we de-
scribe the essential elements of voltage and calcium dynam-
ics and in Sec. II B we summarize the basic features of car-
diac cellular alternans. In Sec. III we briefly describe the
physiologically detailed model used for the simulations of
alternans dynamics. The results are then presented in Sec. IV.
We explore numerically the effects of spatial structure and
fluctuations on the genesis of alternans. We also investigate
the relationship between calcium-voltage coupling and the
spatial synchronization of calcium alternans. In Sec. V we
interpret our results in terms of an iterative map of the beat-
to-beat dynamics and predictions for node motion and stabil-
ity that are derived from an amplitude equation in appendi-
ces. In Sec. VI we summarize our results and give
concluding remarks.

FIG. 1. Schematic representation of EMC �left� and EMD �right� alternans.
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II. BACKGROUND

A. Excitation-contraction coupling

Here we briefly summarize the dynamical processes by
which the membrane depolarization signal is relayed to the
contractile machinery of the cell, named excitation-
contraction coupling. For a thorough review of excitation-
contraction coupling, see, for example, Ref. 3.

When a myocyte is electrically excited by neighboring
cells, voltage sensitive ion channels open, triggering a tem-
porary ��200 ms� depolarization of the membrane from its
resting potential, about �80 to 20 mV. This action potential
is the result of the activation and subsequent inactivation of
various ionic currents which transport mostly calcium, potas-
sium, and sodium across the membrane. The depolarization
of the membrane triggers influx of calcium into the cell
through the LCCs. These channels are localized close to the
terminal compartments of an internal saclike structure �sar-
coplasmic reticulum �SR�� that stores calcium inside the cell.
These terminal compartments have a cluster of about 100
calcium sensitive channels �ryanodine receptors �RyRs��
which open when the nearby calcium concentration in-
creases. They, in turn, release even more calcium from the
SR, raising the calcium concentration inside the cell and ac-
tivating its contractile machinery. Subsequently, calcium is
both reuptaken into the SR and extruded from the cell in
preparation for the next stimulus.

A few LCC channels and �100 RyRs are clustered in
CRUs that are distributed in a three-dimensional �3D� grid
across the myocyte, so as to guarantee a uniform calcium
release across the volume of the cell �see Fig. 2�. The cell
membrane has invaginations �T tubules� that form a dense

network inside the cell, thus allowing close proximity to the
membrane for even the innermost CRUs. The number of
CRUs in a typical myocyte is estimated to be around
20 000.3 Inter-CRU distances have been measured to be
�1 �m in the transversal directions and �2 �m in the lon-
gitudinal direction.11,12 Figure 2 shows a schematic represen-
tation of excitation-contraction coupling.

The elementary process in excitation-contraction cou-
pling is the release of calcium at a single CRU, known as a
calcium spark.3 Calcium sparks are highly localized both in
time ��30 ms� and in space ��2 �m�. The cellular calcium
concentration measured in experiments is the result of the
aggregate calcium released from a large number of calcium
sparks. The amount of calcium released by a CRU in a single
spark depends on the amount of calcium in the local portion
of the SR prior to release, and on the probability of the RyR
channels to open in response to calcium in the vicinity of the
RyR cluster. Importantly, after a spark is elicited in a CRU,
the probability of firing a subsequent spark in the same CRU
immediately decreases and slowly recovers after
�400 ms.13 Thus, CRUs act as stochastic excitable elements
with a refractory period.

Under normal conditions, calcium sparks occur indepen-
dently of each other, in such a way that the number of sparks
is roughly proportional to the number of opening LCC chan-
nels. However, under certain conditions, a calcium spark can
trigger a spark in a neighboring CRU through calcium diffu-
sion and produce calcium waves.14,15 Diffusive coupling be-
tween CRUs can also play a role in subcellular SDA.4–6

These phenomena interfere with normal calcium signaling
and are potentially arrhythmogenic.

A summary of the features of intracellular calcium re-
lease that will be essential is as follows:

• A single myocyte consists of a very large number of CRUs
arranged in a 3D grid.

• Individual CRU calcium release dynamics is stochastic.
• As the stimulation period is decreased, due to the refracto-

riness of RyR channels there is a decreased probability to
produce a calcium spark in the beat after a spark is pro-
duced.

• A spark in a CRU increases the probability of sparks oc-
curring in the neighboring CRUs in the same beat.

B. Alternans

When a myocyte is periodically stimulated, excitation-
contraction coupling normally results in periodic membrane
voltage and whole-cell calcium concentration signals. How-
ever, for rapid stimulation, or under other abnormal
conditions,1,2 this periodic behavior can degenerate into
period-two dynamics. In voltage alternans, the action poten-
tial duration alternates in a long-short-long-short pattern. In
calcium alternans, the peak cytosolic calcium concentration
alternates in a large-small-large-small pattern.

A mechanism leading to voltage alternans is a steep res-
titution function, which determines the duration of the action
potential at beat n, An, from the duration of the action poten-
tial at beat n−1, An−1. Assuming no other dynamics such as

FIG. 2. �Color online� Top: a myocyte consists of �20 000 CRUs arranged
in a 3D grid. Bottom left: in the resting state, calcium �circles� concentration
is high outside the cell and inside the SR, which has terminal cisternae in
each CRU. Membrane depolarization triggers calcium influx �arrow�
through the LCC channels. Bottom right: the increase in calcium concentra-
tion triggers further localized calcium release from the SR �a calcium spark�.
The released calcium can diffuse to neighboring CRUs and trigger more
sparks.
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memory effects or calcium coupling, voltage alternans de-
velop if the slope of the restitution function is steep enough,
�An /�An−1�−1.16 Since calcium and membrane voltage dy-
namics are bidirectionally coupled through calcium and
calcium-dependent ionic currents, it was originally thought
that calcium alternans were just a consequence of restitution-
caused voltage alternans. Experiments where the membrane
voltage is enforced to be periodic, but calcium nevertheless
develops alternans, demonstrated that the calcium system
can be unstable by itself.17 In the last decade, experiments
and theoretical analyses2,7,18–22 have suggested that the origin
of the calcium instability is related to the process of calcium
release from and reuptake into the SR.

Today it is recognized that both voltage and calcium
instabilities can independently produce cellular cardiac alter-
nans and that due to their bidirectional coupling,21,22 altern-
ans caused by either mechanism might ultimately be ob-
served as both calcium and voltage alternans. Experimentally
determining the origin of the period-two instability in a par-
ticular system can be nontrivial.23 Pinning down the cause of
alternans in a particular setting might be useful to determine
possible drug interventions or, potentially, to select appropri-
ate protocols for spatial alternans control.24,25 Depending on
the form of the coupling between calcium and voltage alter-
nans, they can be in phase or out of phase with each other,2

and we refer to these cases as EMC or EMD, respectively.
As we described in Sec. II A, calcium concentration is

the result of calcium release from a large number of CRUs
spatially distributed across the cell. Various spatiotemporal
dynamics have been observed during calcium alternans.
These include calcium alternans with opposite phase in dif-
ferent regions of the cell,4–6 the movement of nodes separat-
ing such regions,6 and more complex spatiotemporal behav-
ior, including calcium waves.26 We refer to spatially
synchronized calcium alternans as SCA and to calcium alter-
nans with opposite phase in opposite regions as SDA.

III. METHODS

We study the intracellular dynamics of calcium during
alternans using a detailed model of calcium cycling devel-
oped recently by the authors.7 This model consists of a 3D
grid of �20 000 CRUs, each one consisting of various com-
partments depicted in Fig. 3. The dynamics of the calcium
concentration in each compartment is described by differen-
tial equations that include diffusive currents between the dif-
ferent compartments and Markov models for individual LCC
and RyR channels. �The reason for modeling the CRUs in
detail is to make contact with experiments.� Neighboring
CRUs are coupled by diffusive currents, and calcium re-
leased by a spark in one CRU may trigger sparks in neigh-
boring CRUs. We couple this model of calcium dynamics
with membrane currents for rabbit ventricular cells.27 More
details about the model can be found in Appendix A and
Refs. 7 and 27.

The release of calcium from the SR compartment in each
CRU occurs through a cluster of �100 stochastic RyR chan-
nels. The opening probability of these channels increases
with the calcium concentration near the RyR cluster. Recent
experiments28 indicate that, in addition, the opening prob-

ability is controlled by the calcium concentration inside the
SR compartment. This dependence is such that after the SR
releases calcium, there is a period of recovery during which
the opening probability of the RyR channels is lower. Our
model includes a description of this so-called “luminal gat-
ing” of calcium release and we have found that the recovery
time after calcium release is partly responsible for the insta-
bility in the calcium cycling.7 By adjusting a parameter that
determines the time scale of recovery we can control the
degree of calcium instability. We incorporate the observed
heterogeneity in the properties of CRUs �Ref. 11� by consid-
ering the proximal volume of each CRU to be randomly
drawn from a Gaussian distribution �see Appendix A�. It has
been shown that heterogeneity in CRU properties accounts
for the characteristic smooth shape of the graded-release �SR
release versus ICa current� curve.7

We emphasize that this model is the first combining a
physiologically detailed CRU structure with diffusive inter-
action of CRUs, and it combines features that allow us to
realistically investigate the effect of stochasticity and spatial
structure on the genesis of alternans: �i� the release of cal-
cium from the CRUs is stochastic, since individual RyR and
LCC channels are described with Markov models; �ii� the
model incorporates spatial structure and diffusive coupling
between neighboring CRUs; and �iii� the model includes
physiologically detailed currents that allow us to explore the
effect of pharmacological or genetic interventions on altern-
ans dynamics.

The variables of interest for the study of spatially dis-
tributed alternans are the calcium concentration in the cyto-
solic compartment of each CRU �see Fig. 3�, which we will
denote as c�m�, with m=1,2 , . . . ,N indicating the different
CRUs, the whole-cell cytosolic calcium concentration
c= �1 /N��m=1

N c�m�, and the transmembrane voltage V. For
convenience, we will focus on the peak calcium concentra-
tion on a given beat cn, where n indicates the beat number.

FIG. 3. �Color online� Schematic representation of the compartments that
constitute a single CRU. The arrows indicate the average direction of cal-
cium flux during one beat. The three lower arrows indicate diffusive cou-
pling between the compartments of adjacent CRUs. For details, see Appen-
dix A and Ref. 7.
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The model can be simulated using two different methods
which correspond to commonly used experimental
protocols.17 In the unclamped protocol, a small stimulus cur-
rent is periodically applied, initiating an action potential by
the activation of inward ionic currents. In the clamped pro-
tocol, the membrane potential is forced to be a prescribed
periodic signal, the voltage clamp. In the simulations, we
obtain this signal by averaging the unclamped case mem-
brane potential over many beats, so that the voltage clamp
closely resembles the unclamped action potential.

IV. RESULTS

A. Diffusive coupling

First, we establish that stable calcium alternans in the
clamped case are sustained by the local diffusive coupling of
neighboring CRUs, a result first reported in Ref. 7. In Fig. 4
we plot the time-averaged peak calcium concentration for
T=340 ms for even and odd beats �squares� as a function of
a parameter � which scales the calcium diffusion coefficients
�i.e., transversal, longitudinal, cytosolic, and intra-SR�. More
precisely, for a given value of �, we divide all the calcium
diffusion coefficients by �. Thus, larger � corresponds to
weaker diffusive coupling, and vice versa. The results in Fig.
4 show that alternans are sustained only for diffusive cou-
pling above a certain threshold.

This result demonstrates that the emergence of calcium
alternans at the whole cell level is a strongly cooperative
phenomenon mediated by the diffusive coupling of a large
number of CRUs. The whole cell dynamics behaves almost
deterministically in a nonlinear regime of well-developed al-
ternans, albeit not close to the bifurcation as described in
Sec. IV B. The dynamics of each CRU, in contrast, is always
strongly stochastic in any regime. Release events do not ex-
hibit simple period two dynamics and it is impossible to
conclude that whole cell alternans are formed from the ex-
amination of the dynamics of a single CRU.

B. Fluctuations

In order to investigate the effects of fluctuations and spa-
tial structure on the transition to calcium alternans, we simu-
late a myocyte for different pacing periods. For each period
T, we simulate the cell for 4000 beats. In the clamped case,

we first average the unclamped membrane voltage for 100
beats after steady state has been reached, and subsequently
use this average signal as the voltage clamp. That is, the
voltage clamp is Vc�t�=� j=1

100V�t+ jT� /100, where V is the
steady-state unclamped voltage. In Fig. 5 we show the peak
calcium concentration at even �red� and odd �blue� beats as a
function of the beat number n for the clamped �left panel�
and unclamped �right panel� cases for values of T ranging
from T=350 ms �top� to T=300 ms �bottom�. The peak cal-
cium concentration undergoes a period-doubling bifurcation
as T is decreased. This bifurcation occurs at a lower value of
T for the clamped case. The reason for the different bifurca-
tion thresholds is that when the voltage is unclamped, cal-
cium and voltage alternans interact synergistically to pro-
mote calcium alternans �see theory in Sec. V�.

Remarkably, there are long periods of stable alternans
that eventually reverse phase. For example, for the clamped
case at T=325 and T=315 ms, and for the unclamped case
at T=340 and T=345 ms. Periods of well defined alternans
are separated by phase reversals, changes in sign of the dif-
ference between the peak calcium transient in consecutive

FIG. 4. Averaged peak calcium concentration in steady state for T=340 ms
and the parameters of case A �see Table I� as a function of a parameter � that
rescales the calcium diffusion time scales. Larger � corresponds to weaker
diffusive coupling between CRUs. Stable alternans are sustained only for
stronger local diffusive coupling.

FIG. 5. �Color online� Peak calcium concentration at even �red� and odd
�blue� beats as a function of the beat number n for the clamped �left panel�
and unclamped �right panel� cases for values of T ranging from T=350 ms
�top� to T=300 ms �bottom�. The peak calcium concentration undergoes a
period-doubling bifurcation as T is decreased. Close to the bifurcation, there
are extremely long periods of stable alternans that eventually reverse phase
�e.g., horizontal bar in the clamped, T=325 ms panel�. The simulation cor-
responds to a cell with normal parameters �case A in Table I�.
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beats c2n−c2n−1, measured on even beats. The time between
consecutive phase reversals can be as large as �900 beats
�e.g., horizontal bar in the clamped, T=325 ms panel of Fig.
5�. At a critical period T, the time between phase reversals
diverges and a well defined phase for alternans prevails.
These results are in contrast to those in previous models of
calcium alternans, where the peak calcium concentration un-
dergoes a period doubling bifurcation in a deterministic
way.20 A signature of calcium fluctuations that could be de-
tected experimentally is that due to calcium-voltage cou-
pling, the action potential duration exhibits fluctuations that
track those in the calcium concentration. In Fig. 6 we show
the action potential duration �thin lines� and peak calcium
concentration �thick lines� at even and odd beats for simula-
tions corresponding to the unclamped, T=345 ms panel in
Fig. 5, showing how fluctuations in the action potential du-
ration track the fluctuations in peak calcium concentration
during a phase reversal. If the alternans are voltage driven,
we expect that there would be almost no fluctuations in the
action potential duration alternations, since fluctuations in
membrane ion channels are averaged out by the long range
voltage coupling of these channels. Even though there is still
a feedback from the calcium dynamics which could intro-
duce fluctuations in action potential duration alternations, the
dominant component of the alternans is almost deterministic
and thus we expect fluctuations to be much smaller.

Of particular interest is the calcium dynamics that medi-
ates the phase reversals. In the spatial model, a phase rever-
sal occurs as domains with opposite phase to the whole-cell
alternans phase grow due to fluctuations and eventually be-
come dominant. Similar spatiotemporally complex subcellu-
lar discordant alternans have been observed experimentally,4

and we find that they are common during the spontaneous
phase reversals of calcium alternans.

Because CRUs are heterogeneous �in the model, as in
real myocytes, they have heterogeneous volumes�, we nor-
malize the calcium release at individual CRUs with respect
to their long term average release. We define, for the mth

CRU and beat n, the quantity �cn
�m�= �cn

�m�− c̄�m�� /�m, where
c̄�m� indicates an average of cn

�m� over the beat number n, and
�m

2 is the average of �cn
�m�− c̄�m��2 over n. Positive �negative�

values of �cn
�m� indicate a larger �smaller� release in CRU m

and beat n than the long term average release at CRU m. In
Fig. 7 we show �cn

�m� at two consecutive beats in a 2D slice
of a simulated cell showing the transversal and longitudinal
directions during �top� and after �bottom� a phase reversal.
The sequence shows that the phase reversal is characterized
by complex spatial dynamics. In Fig. 8 we show the spatial
average of �cn

�m� as a function of the beat number n. This is
a measure of the calcium alternans amplitude and is zero
when the phase reverses around n=370. In the same figure
we show the standard deviation of �cn

�m� �squares�, which
measures the strength of the local period two dynamics, in-
dependent of their phase. We observe that this variable is
always of order 1, indicating that the period two dynamics at
the level of CRUs persists during the phase reversal.

C. Voltage-calcium coupling

We now turn to explore the genesis of spatially concor-
dant or discordant alternans by studying the dynamics of the
node separating out-of-phase regions within the cell. If the
node is expelled, spatially synchronized alternans form, with
only one phase of calcium alternans in the cell. If, on the
other hand, the node stabilizes in the middle of the cell, SDA
form, with the two halves of the cell alternating with oppo-
site phase. In order to create an initial condition with two
regions with opposite phases of calcium alternans, we tem-
porarily change after steady state is reached a parameter that
increases the open probability of the RyR channels for those

FIG. 6. �Color online� Action potential duration �thin lines� and peak cal-
cium concentration �thick lines� at even and odd beats for simulations cor-
responding to the unclamped, T=345 ms panel in Fig. 5. Fluctuations in the
action potential duration track the fluctuations in peak calcium concentration
during a phase reversal.

FIG. 7. �Color online� Normalized calcium release �cm
�n� during a phase

reversal on a 2D slice of a simulated cell. Top: during the phase reversal,
CRUs have a complex spatial release pattern. Bottom: after the phase rever-
sal, a majority of CRUs have a large release in the even beat.

FIG. 8. Two measures of alternans strength during a phase reversal: spatial
average �circles� and standard deviation �squares� of �cn

�m� every four beats
�see text�. The average of �cn

�m� measures the global phase of cellular cal-
cium alternans and changes sign during a phase reversal, while the standard
deviation of �cn

�m� measures the strength of the alternans at the CRU level
irrespective of their phase and remains positive during a phase reversal.
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CRUs with longitudinal coordinate smaller than 3/5 of the
longitudinal extension of the myocyte. This induces larger
release in those CRUs during one beat, creating two regions
with calcium alternans of opposite phase. We then track the
movement of the node separating these regions by calculat-
ing the transversal calcium average cT�j ,n�, defined as the
average of peak calcium cn

�m� in beat n over all the CRUs m
which share the same jth longitudinal coordinate �see Fig. 9�.
The position of the node along the longitudinal direction of
the cell at beat n is then defined as the coordinate x such that
cT�x ,n�=cT�n�, where cT�n� is the spatial average of cT�j ,n�
and x is found by interpolation of the function cT�j ,n� evalu-
ated at discrete values of j.

In order to explore different dynamical regimes, we vary
some of the parameters of the cellular model. In Appendix A
we introduce parameters �NCX and �Ca that control the
strength of the calcium current �ICa� and the sodium-calcium
exchanger current �INCX�. In addition, in Appendix A we also
introduce two parameters �NCX and �Ca representing the ra-
tio of effective membrane capacitance for the NCX and Ica

currents to that of the other membrane currents, which de-
pends on the area distribution of ion channels in the external
membrane and the T tubules29 �see Appendix A�. These pa-
rameters modify the effect of ICa and INCX on the membrane
voltage without directly affecting calcium dynamics, and
their values were chosen so that the action potential shape is
physiological. We will show unclamped simulations for nor-
mal parameters ��NCX=1, �Ca=1, �NCX=2, �Ca=1, case
“A”�, reduced NCX with normal conductance ��NCX=0.2,
�Ca=1, �NCX=2, �Ca=1, case “B”�, normal NCX with
higher ICa conductance ��NCX=1, �Ca=1, �NCX=2, �Ca=2,
case “C”�, and reduced NCX with higher ICa conductance
��NCX=0.2, �Ca=1, �NCX=2, �Ca=2, case “D”�. The results
are described below and summarized in Table I.

First, we consider normal conductance with normal
NCX current, case A. In Fig. 10 we show the node position
versus the beat number for the parameters corresponding to a
normal myocyte for both the unclamped and clamped proto-
cols. SDA were induced using the method described above,
with the position of the node initially at the longitudinal
coordinate of �36 out of a total of 60 CRUs in the longitu-
dinal direction. The node position drifts for the clamped
simulations �thick solid line�. On the other hand, the node is

expelled in about 70 beats for the unclamped protocol �thin
solid line�, indicating the formation of SCA. For these pa-
rameters, alternans are EMC.

In order to induce EMD alternans, we reduce the
strength of the NCX current to 20% of its standard value
�case B�, as has been demonstrated experimentally.10 When
intracellular calcium concentration is high, the NCX current
extrudes calcium and brings sodium in, the net effect being
an inward sodium flux and an increase in the action potential
duration. Thus, the NCX current promotes EMC alternans,
and by reducing its strength EMD alternans can be produced.
In Fig. 10 we also show the node position as a function of
the beat number for unclamped simulations with 20% NCX
�case B, dot-dashed line�. In this case alternans are EMD and
spatially concordant.

As will be shown in Sec. V, an important parameter for
node dynamics is the coupling between calcium and voltage
alternans. In order to explore a broader range of possible
phenomena, we modify our model to have a weaker calcium-
voltage coupling by increasing the effective membrane ca-
pacitance of the calcium current by a factor of 2 ��Ca=4,
cases C and D�, decreasing the effect of the calcium current
on the action potential duration and thereby decreasing
calcium-voltage coupling. It is known that different currents
might act over different effective areas in the complex sur-

FIG. 9. �Color online� Determination of the node position. The transversal
calcium average cT�j ,n� averages peak calcium cn

�m� in beat n over all the
CRUs m, which are in the jth longitudinal position. The node position x is
determined by interpolation as the value x such that cT�x ,n�=cT�n� for even
beats, where cT�n� is the spatial average of cT�j ,n�.

TABLE I. Simulation parameters and alternans states. Results for four dif-
ferent sets of simulation parameters corresponding to different magnitude of
LCC and/or NCX currents and/or membrane areas associated with those
currents �see text�. Cases A, B, and C show SCA that are EMC or EMD.
Those states are global attractors of the dynamics owing to the property that
nodes of SDA are expelled from the cell. In case D, the node of SDA is
stable and the dynamically selected state depends on initial conditions. The
SDA state, which produces no APD alternans, is selected when a node is
present anywhere along the length of the cell except close to the boundaries.
The EMD/SCA state, in turn, is selected when the initial condition is spa-
tially concordant, as observed during a change in pacing cycle length.

Case �NCX �Ca �NCX �Ca State

A 2 1 1 1 EMC/SCA only
B 2 1 0.2 1 EMD/SCA only
C 2 2 1 1 EMC/SCA only
D 2 2 0.2 1 SDA or EMD/SCA

FIG. 10. Longitudinal node position at even beats vs the number of beats for
the clamped case �thick black line�, the unclamped case A �thin line�, and the
reduced NCX case B �dot-dashed line� with T=250 ms. Details about the
different cases are in the text and Table I. The node drifts for the clamped
case and is expelled in the unclamped cases A and B. Alternans are EMC in
case A and EMD in case B.
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face of the cell membrane, and thus might have different
effective total capacitances.29 Here, this modification is an
effective way to assess the effect of decreased calcium-
voltage coupling. Figure 11 shows the result of three simu-
lations with the same parameters �thin solid lines, case C�
and a simulation with 20% NCX reduction in addition to the
capacitance modification �thick solid line, case D�. While the
normal NCX simulations result in spatially concordant and
EMC alternans, in the reduced NCX simulation the node is
not expelled but, instead, is stabilized in the center of the
myocyte. More information in addition to the node position
is presented in Fig. 12, where we show the transversal cal-
cium average cT�j ,2n� as a function of the longitudinal co-
ordinate j and the beat number 2n for case D �a� and case C

�b�. In case D, alternans are spatially discordant, while SCA
are EMD �see Fig. 13�, consistent with the predictions in
Ref. 8.

Simulations where the node was initiated in other posi-
tions along the cell also show that the node becomes at-
tracted to the midpoint of the cell. However, for simulations
that are started in the spatially concordant state or with the
node very close to the boundary, alternans remain spatially
concordant. This shows that for these parameters there are
two stable states: the EMD/spatially concordant state and the
spatially discordant state. In Sec. V we will interpret these
results by studying the stability of these nonlinear states.

The results in Fig. 11 show, in addition, that stochastic
effects may result in slightly different outcomes for simula-
tions with identical parameters. However, we have not found
qualitatively different behavior for simulations with the same
parameters. In Fig. 13 we show the calcium concentration
�bottom� and voltage �top� signals during alternans for cases
C �left� and D �right� for even �solid lines� and odd �dashed
lines� beats, for simulations with spatially concordant initial
conditions. Case C has EMC alternans and case D has EMD
alternans.

In summary, under various conditions we have observed
EMC with SCA, EMD with SCA, and EMD with SDA.

V. THEORETICAL ANALYSIS

In this section, we analyze our simulation results in the
general theoretical framework of iterative maps of the beat-
to-beat dynamics and amplitude equations derived from
those maps, which has been used previously to shed light on
basic aspects of the spatiotemporal dynamics of alternans on
both tissue30 and subcellular scales.8 In the latter context, this
approach was used to explain the spontaneous formation of
subcellular spatially discordant calcium alternans in terms of
a Turing-like instability �see also Gierer and Meinhardt31�
mediated by voltage and calcium diffusion.8 In this analogy
with a Turing instability, the amplitude of calcium alternans
plays the role of a local slow diffusing activator, while the
amplitude of voltage alternans plays the role of a fast diffus-
ing inhibitor. Since voltage diffuses essentially instanta-
neously across a myocyte on the time scale of one beat, this

FIG. 11. Longitudinal node position at even beats vs the number of beats for
case D �thick black line� and three simulations of case C with the same
parameters �thin lines� with T=200 ms. Details about the different cases are
in the text and Table I. The node is expelled in case C and attracted to the
center in case D. Alternans are EMC in case C and EMD in case D.

FIG. 12. �Color online� Transversal calcium average cT�j ,2n� as a function
of the longitudinal coordinate j and the beat number 2n for �a� case D and
�b� case C with T=200 ms, as in Fig. 11. The node is expelled in case C and
attracted to the center in case D.

FIG. 13. �Color online� Calcium concentration �bottom� and voltage �top�
signals during alternans for cases C �left� and D �right� for even �solid lines�
and odd �dashed lines� beats for simulations with spatially concordant initial
conditions. The period is T=200 ms as in Fig. 11.
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instability causes period doubling oscillations of the calcium
concentration to develop out of phase in two halves of a cell.
In Ref. 8, the existence of this instability was demonstrated
using a physiologically detailed 1D model of bidirectionally
coupled voltage and calcium dynamics, where CRUs with
deterministic dynamics are spatially distributed along the
length of the myocyte.

Our present simulations confirm the existence of a Tur-
ing instability for fast pacing rate and parameters where SCA
are EMD, as predicted in Ref. 8. Stochasticity provides a
natural mechanism to trigger the instability but does not alter
fundamentally the development of the instability in a
strongly nonlinear regime when alternans have a large
enough amplitude. One new finding, however, is that EMD
alternans can also occur for parameters where the Turing
instability is absent. In contrast, in Ref. 8, it was concluded
that the condition for the occurrence of a Turing instability
was the same as the one for the occurrence of EMD altern-
ans, in apparent disagreement with our finding. Here we re-
visit the iterative map based stability analysis of alternans of
Ref. 8 to resolve this disagreement. To help us interpret our
simulation results, we also derive predictions for the motion
of the node separating out-of-phase regions and characterize
the nonlinear character of the alternans bifurcation in the
case of negative voltage-calcium coupling. We conclude at
the end of this section that this disagreement is a conse-
quence of a simplifying assumption made in Ref. 8. Relaxing
this assumption leads to the prediction that the condition for
the occurrence of EMD alternans is distinct from the one for
the occurrence of a Turing instability, and hence EMD alter-
nans can exist as a global attractor of the dynamics.

A. Stability of period one state against spatially
concordant and discordant perturbations

The starting point of our analysis is the general map of
the beat-to-beat dynamics describing the spatially concordant
state where calcium alternans have the same amplitude and
phase across the myocyte,

An = f1�An−1,cn−1� , �1�

cn = f2�An−1,cn−1� , �2�

where An and cn are the action potential duration and the
peak value of the calcium concentration at the nth beat. The
stability of this map is governed by the Jacobian

J = �J11 J12

J21 J22
� =	

�An

�An−1

�An

�cn−1

�cn

�An−1

�cn

�cn−1


 , �3�

where the diagonal elements J11 and J22 control the stability
of the isolated voltage and calcium systems, respectively, and
the off-diagonal terms J12 and J21 control the bidirectional
coupling between those two systems. These matrix elements
are evaluated at the fixed point of the map corresponding to
the period one state, defined by An=A0 and cn=c0. Without
coupling between the voltage and calcium systems, −J11 sim-
ply measures the slope of the action potential duration resti-

tution curve, which relates the action potential duration on a
given beat with the preceding diastolic interval �i.e., the in-
terval between the end of the preceding action potential and
the start of the next one�. Voltage alternans are unstable for a
slope larger than unity, which corresponds here to the condi-
tion J11�−1. In turn, J22 controls the stability of the calcium
system. The latter can be studied experimentally or numeri-
cally by stimulating a cell periodically with a clamped action
potential waveform. Under such a protocol where the voltage
dynamics is enforced to be periodic, calcium transient alter-
nans occur when J22�−1.

The stability of the coupled voltage and calcium systems
under general unclamped conditions is governed by the ei-
genvalues of the Jacobian matrix that are obtained from the
vanishing determinant condition �J−	cI�=0, where I is the
identity matrix. This condition yields at once

	c

 =

1

2
�J11 + J22 
 ��J11 − J22�2 + 4J12J21� , �4�

where the subscript of the eigenvalues has been introduced
as a reminder that 	c


 controls the stability of the spatially
“concordant” state. To simplify the analysis, we assume that
the off-diagonal terms of the Jacobian matrix are much
smaller in magnitude than the diagonal terms, or

 J12J21

J11 − J22
 � 1. �5�

As we show below, this assumption turns out to be quantita-
tively justified for the present simulations since the velocity
of node separating out-of-phase regions is proportional to
this ratio. Thus, the observation that the node velocity is very
small in the simulations �i.e., that the node moves a distance
comparable to the length of the myocyte over tens to hun-
dreds of beats� can be used to infer that this condition is
satisfied. In addition, we focus on the case where the calcium
system is unstable but the voltage system is stable, or

J22 � − 1, �6�

J11 � − 1, �7�

where the second condition corresponds to an action poten-
tial slope less than unity. In order to estimate J11, we de-
crease the recovery time of the RyR channels,32 thereby sup-
pressing the calcium instability. In this case, with assumption
�5�, the eigenvalue with largest magnitude is J11 and voltage
alternans decay after a perturbation as An��J11�n. In these
conditions, we find that voltage alternans typically decay in
four to five beats, from which we conclude that the magni-
tude of the restitution slope is substantially different than
unity, or J11+1�O�1�. This estimation assumes that J22�0,
but relaxing this assumption leads to the same conclusion.

Using condition �5�, the eigenvalues �4� simplify to

	c
+ � J11 +

J12J21

J11 − J22
, �8�
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	c
− � J22 −

J12J21

J11 − J22
. �9�

Since An��	c

�n��−1�nen ln�−	c


�, and similarly for cn, alter-
nans forms when 	c


�−1, such that the exponential ampli-
fication factor ln�−	c


� is positive. Conditions �6� and �7�,
together with the fact that J11+1�O�1�, imply that 	c

+�−1.
Thus SCA form when 	c

−�−1.
Next, to find out if alternans develop concordantly or

discordantly, we need to compare 	c
− to the eigenvalue that

controls the stability of the spatially discordant state with a
node in the middle of the cell. Because voltage diffuses in-
stantaneously on the scale of the myocyte, voltage dynamics
is only influenced by the spatial average of calcium-
dependent membrane currents, which include the L-type cal-
cium current �LCC� and the NCX current. Since in the spa-
tially discordant state two halves of the cell alternate out of
phase, this spatial average, and hence the action potential
duration, is the same at even and odd beats, as seen in the
simulations. Thus the eigenvalue that controls the stability of
the spatially discordant state is the same as the one control-
ling the calcium system paced with a periodic action poten-
tial clamped waveform, or simply

	d = J22. �10�

Consequently, SDA will have a larger exponential amplifica-
tion rate than SCA �Turing instability� if 	d�	c

− or, using
Eqs. �8� and �9�, if J12J21�0, and vice versa for J12J21�0.
When calcium alternans develop spatially discordantly, they
produce no voltage alternans because of the aforementioned
spatial averaging of membrane currents. In contrast, when
they develop spatially concordantly, calcium alternans pro-
duce voltage alternans that can be temporally in phase or out
of phase with calcium alternans �i.e., EMC or EMD�. To
determine if calcium and voltage oscillations are in phase,
we need to examine the linear eigenvector �A ,c� corre-
sponding to 	c

−, which governs the dynamics near the fixed
point: An=A0+A�	c

−�n and cn=c0+c�	c
−�n. To dominant or-

der, this eigenvector is given by

A = − � J12

J11 − J22
�c . �11�

Since J11−J22 is always positive from Eqs. �6� and �7�, alter-
nans are EMD if J12�0, in which case A has the opposite
sign as c, and, in addition, J12J21�0, such that calcium
alternans are spatially concordant and generate voltage alter-
nans. If J12�0 and J12J21�0, SCA are EMD but have a
smaller amplification rate than SDA that are preferred and do
not generate voltage alternans. Thus, in this case, SDA
should be observed at the whole cell level.

B. Node motion for arbitrary weak coupling

So far, we have examined the relative stability of the
spatially concordant and discordant states. In order to inter-
pret our simulation results, it is also useful to predict the
motion of the node separating spatially out-of-phase regions.

This is possible using an amplitude equation approach8 as
detailed in Appendix B. The main result is an expression for
the velocity of the node

dxN

dt
= 6

xN�t�
L

� J12J21

J11 − J22
�� D

2T�1 + J22�
, �12�

where xN�t� denotes the deviation of the node from the mid-
point of the cell along the long axis of the cell, L is the cell
length, T is the pacing period, D is the diffusion coefficient
of free Ca2+ in the cytosol, and this expression is strictly
valid for weak voltage-calcium coupling �J12J21 / �J11−J22��
�1 and close to the calcium alternans bifurcation �1+J22�
�1. Since J11−J22 is always positive from Eqs. �6� and �7�,
the above expression implies that if J12J21�0, the node is
unstable and moves exponentially away from the midpoint of
the cell, while if J12J21�0, it is stable and returns to the
midpoint if perturbed slightly. Thus the condition governing
node stability turns out to be identical to the one governing
the relative stability of the spatially concordant and discor-
dant states derived above, with the node being unstable
�stable� in the case where the spatially concordant �discor-
dant� state has a faster exponential amplification rate. While
physically intuitive, the coincidence of those two stability
conditions is nonetheless nontrivial since node motion mea-
sures the stability of a fully developed nonlinear state of
SDA, while the relative stability condition compares the am-
plification rate of linear perturbations of the spatially homo-
geneous periodic state without alternans.

It is important to emphasize that Eq. �12� allows us to
deduce the sign and magnitude of the voltage-calcium cou-
pling parameter J12J21 from the observation of node motion.
The sign of the coupling can be deduced from whether the
node is trapped or expelled. Furthermore, a magnitude of
coupling much smaller than unity implies that the node
moves slowly across the cell over many beats as observed in
the present simulations. One can further deduce the relative
magnitudes of J12 and J21 from the relative amplitudes of
voltage and calcium alternans using Eq. �11�. In the present
simulations �see Fig. 12�, voltage and calcium alternans have
comparable amplitudes. We deduce that �J12� is of order unity
and thus that �J21��1 since �J12J21��1 from the slow node
motion. Physically this means that changes in the calcium
transient amplitude have a strong effect on action potential
duration ��J12��O�1�� but that changes in action potential
duration have a weak effect on calcium transient amplitude
��J21��1�.

C. Bistability of spatially concordant and discordant
alternans for weak negative coupling

For weak negative coupling, the above analysis predicts
that the node of SDA is attracted to the center of the cell.
Using the results of Sec. V A, only the spatially discordant
state can form if 0� �1+J22�� �J12J21 / �J11−J22��, where
�1+J22� measures the degree of instability of the calcium cy-
cling system; the first inequality reflects that the instability of
the spatially discordant state is not influenced by voltage and
the second inequality follows from Eq. �9�. For �1+J22�
� �J12J21 / �J11−J22��, in contrast, the period one state without
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alternans is unstable to both SDA and SCA perturbations,
and the question arises as to what nonlinear state is dynami-
cally selected. As shown in Appendix C, the nonlinearly
saturated SCA state is unstable for �J12J21 / �J11−J22��
� �1+J22�� �3 /2��J12J21 / �J11−J22�� and stable for

�1 + J22� � �3/2��J12J21/�J11 − J22�� . �13�

The nonlinearly saturated SDA state, in turn, is stable for
�1+J22��0. Thus if condition �13� is satisfied, and J12J21

�0, both SDA and SCA are stable nonlinear states. Since the
voltage-calcium coupling �J12J21 / �J11−J22���1 in our simu-
lations, these two states are always bistable except in a neg-
ligible parameter range very close to the alternans bifurca-
tion. This bistability leads to a nonuniqueness of the
dynamically selected state for negative coupling that has
been noted in previous studies of coupled cells and
tissue.33–35

The analysis of the weak negative coupling limit makes
it possible here to obtain a simple analytical prediction of the
condition for bistability and the results will also hold for two
coupled cells in this limit.

D. Interpretation of numerical results

Let us now turn to the interpretation of our simulation
results. First, for the same parameters of case A which re-
sulted in node motion away from the midpoint when the
initial conditions were a spatially discordant state �thin solid
line in Fig. 10�, we found that a spatially concordant state
developed as the instability threshold was crossed by in-
creasing the recovery time for the RyR channels in small
steps. Similarly, for case D that resulted in node motion to-
ward the midpoint when the initial conditions were a spa-
tially discordant state �thick solid line in Fig. 11�, we found
that a spatially discordant state developed as the instability
threshold was crossed by increasing the recovery time for the
RyR channels in small steps. Thus, in the simulations, the
development of a spatially concordant or discordant state at
the whole cell level is intimately linked to node motion, as
predicted by the theory. The reason to use the recovery time
of the RyR channels as the controlling parameter for the
instability rather than the stimulation period is that, for the
present parameters, SDA form spontaneously only at fast
pacing. Thus, slowly decreasing the period would lock alter-
nans in the concordant state before the discordant regime
was reached. In practice, there are various parameters, other
than the period, that could slowly change promoting altern-
ans �e.g., changes associated with heart failure36�.

Second, for case D, we observed that both the SDA and
SCA states could be obtained from different initial condi-
tions. This observation is consistent with the prediction of
Eq. �13� that both states are stable attractors of the dynamics
for weak negative coupling in a regime of well-developed
alternans. We also found that both SDA and SCA have es-
sentially the same amplitude, as shown in Fig. 14, consistent
with theoretical predictions of the nonlinear amplitudes of
those states in Appendix C.

Third, we observed that node motion was faster when
the magnitude or effect of the calcium-dependent membrane

currents �LCC and/or NCX� was increased in the simula-
tions. The magnitude of those currents determines the
strength of the bidirectional coupling between membrane
voltage dynamics and calcium cycling measured by �J12J21�.
Thus, an increase in the magnitude of those currents should
translate into an increase in �J12J21� and hence a faster node
motion according to Eq. �12� as seen in the simulations. For
example, a reduction in the NCX current by a factor of 5
�case B� decreases node motion velocity by roughly a factor
of 2 �compare cases A and B in Fig. 10�. An increment in the
effective membrane capacitance for the calcium current by a
factor of 2, reducing the effect of calcium on the action po-
tential, but not the calcium dynamics, results also in slower
node motion �cases C and D in Fig. 11�. From the compari-
son of theory and simulations, it can also be inferred that the
relationship between the magnitude of calcium-dependent
membrane currents and �J12J21� must be highly nonlinear
since a fivefold decrease in the NCX current resulted in a
node velocity only a factor of 2 slower. In addition to the
nonlinear dependence of �J12J21� on these currents, J22 and
J11 might also change. While a nonlinear relationship be-
tween those membrane currents and �J12J21� is to be expected
since the voltage and calcium systems are nonlinearly
coupled, the precise form of this relationship is generally
very difficult to determine since the form of the iterative
maps cannot be easily derived quantitatively from the under-
lying physiologically detailed ionic model. From this stand-
point, Eq. �12� provides a useful means to extract the sign
and the strength of the voltage-calcium coupling, as mea-
sured by J12J21, from the observation of node motion, with
the sign and magnitude of this coupling determined by node
stability and velocity, respectively.

Fourth, we found that although the deterministic dynam-
ics of the coupled calcium-voltage system predicts the basic
features of node motion �i.e., the node being expelled or
attracted to the center�, stochastic effects result in somewhat
different node trajectories for simulations with identical pa-
rameters �see the three top curves in Fig. 11�. Moreover,

FIG. 14. �Color online� Steady-state amplitude of the transversal calcium
average in even beats minus its time average for case D in the spatially
concordant state, for case D in the spatially discordant state, and for case C
which is only spatially concordant in steady state. Consistent with the theory
in Appendix B and the very slow node motion observed in the simulations,
the amplitudes for the spatially concordant and discordant states in case D
are very close. The dashed lines are fits to constants for the spatially con-
cordant states and a hyperbolic tangent as in Eq. �B8� for the spatially
discordant state. The period is T=200 ms.
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stochastic effects account for the drifting node motion in the
unclamped case. The clamped simulations have a perfectly
periodic voltage, which implies J12�0. Thus, Eq. �12� pre-
dicts no node motion in the clamped case, in agreement with
the observations in Ref. 6. However, fluctuations result in
drifting motion of the node as observed in Fig. 10. This
drifting motion might eventually lead to SCA if the node is
expelled due to its drifting motion.

Fifth, we have found that SCA can develop with voltage
alternans in or out of phase with calcium alternans. As we
have seen, this is consistent with the prediction that spatial
synchronization requires J12J21�0, while the relative phase
of voltage and calcium alternans is governed by the sign of
J12 in Eq. �11�. This prediction is simplest to understand by
noting that the peak calcium transient amplitude is deter-
mined predominantly by the peak amplitude at the previous
beat, and more weakly by the voltage history. Thus J12 can
be approximated using the chain rule as J12���An /�cn�
���cn /�cn−1�. Since �cn /�cn−1=J22�0, J12 is negative only
if �An /�cn�0, or when a larger peak calcium transient am-
plitude produces a shorter action potential duration. This is
expected to occur when the balance between LCC and NCX
is shifted toward LCC, consistent with the observation that
voltage and calcium alternans are out of phase in our simu-
lations when NCX is reduced by 80% of its normal value
�cases B and D�.

Let us contrast our present results with those of Ref. 8.
In Ref. 8, it was concluded that SDA can only develop under
conditions where voltage alternans are out phase with cal-
cium alternans, in apparent disagreement with the present
analysis. The analysis of Ref. 8 used a semi-implicit formu-
lation of the maps of the form An=F1�An−1 ,cn� and cn

=F2�An−1 ,cn−1�. This form is equally general than the form
used here with the identification f1�An−1 ,cn−1�
=F1�An−1 ,F2�An−1 ,cn−1�� and f2�An−1 ,cn−1�=F2�An−1 ,cn−1�.
In this semi-implicit map formulation, the voltage-calcium
coupling is given by J12J21= ��An /�cn���cn /�cn−1�
���cn /�An−1� and, like here, J12J21 must be negative for
SDA to have a faster exponential amplification rate of linear
perturbations. In Ref. 8, however, it was assumed that
�cn /�An−1 must be negative because the amount of SR cal-
cium release increases with the amount of calcium entry into
the cell via LCC �the so-called graded release property�.
Since a shorter action potential duration at the previous beat
��An−1�0� provides more time for LCC to recover from in-
activation after repolarization, it may be expected for a larger
number of LCC channel openings to trigger a larger release
at the next beat ��cn�0�. Based on this reasoning, it was
assumed in Ref. 8 that �cn /�An−1�0. Since �cn /�cn−1�0
when alternans are calcium driven, this assumption implies
that J12J21�0 only if �An /�cn�0, which is also the condi-
tion for alternans to be EMD. This assumption held true for
the simulations of the ionic model of Ref. 8 but not for the
present model. In general, a shorter action potential duration
at the previous beat also influences the calcium transient dur-
ing that beat in a way that can influence the amount of re-
lease at the next beat independently of LCC magnitude. Thus

we conclude that the sign of �cn /�An−1 is controlled by a
subtle balance of different effects and can generally be posi-
tive or negative.

VI. SUMMARY AND FUTURE PROSPECTS

In summary, we have investigated the spatiotemporal dy-
namics of intracellular calcium under conditions relevant for
heart rhythm disorders where the calcium concentration ex-
hibits period doubling oscillations. This work distinguishes
itself from previous studies by the use of a spatially distrib-
uted model of calcium dynamics with a large number of
diffusively coupled CRUs interacting with the membrane
voltage system. This model allowed us to investigate the
effect of stochasticity of LCC and RyR channel opening and
closing in each nanoscopic unit on whole cell macroscopic
dynamical behavior on a tenth of a millimeter scale.

The main conclusion is that stochasticity can alter the
whole cell dynamics noticeably in the vicinity of the altern-
ans bifurcation. The main effect is to spontaneously reverse
the phase of alternans over a time scale of several hundred
beats that is roughly comparable to the time necessary for
free calcium to diffuse across the length of the cell. These
phase reversal events should be experimentally measurable
and distinguishable from phase reversal events occurring in
one beat due to spontaneous calcium release in one region of
the cell during calcium alternans. Such measurements could
potentially be used to infer whether alternans are predomi-
nantly calcium or voltage driven in a given experiment since
membrane ion channel stochasticity is typically completely
averaged out at the whole cell level. This averaging-out pro-
cess traditionally justifies the use of a “deterministic”
Hodgkin–Huxley description for the action potential. In con-
trast, here, the action potential dynamics cannot be described
purely deterministically because of its coupling to calcium
dynamics where fluctuations remain important at the whole
cell level. This is so because the coupling between CRUs
mediated by calcium diffusion is short ranged, i.e., calcium
only diffuses a short distance on the time scale of one beat,
while the coupling between membrane ion channels medi-
ated by voltage diffusion is long ranged due to the fact that
voltage diffuses quasi-instantaneously across the cell in one
beat.

Since the phase of alternans is discrete �i.e., degenerate
by ��, the amplitude of alternans has the same symmetry as
the coarse-grained magnetization in an Ising model of a fer-
romagnetic phase transition. This analogy suggests that the
fluctuations of alternans phase and amplitude near the alter-
nans bifurcation are a form of Ising-like critical behavior
where channel stochasticity and diffusive coupling of CRUs
play analogous roles as temperature and ferromagnetic cou-
pling of spins. Exploring this analogy is worth further inves-
tigation.

The model was also used to investigate a different alter-
nans behavior by varying physiological parameters that alter
the sign and/or magnitude of the bidirectional coupling be-
tween calcium and voltage by changing the balance between
different calcium-dependent membrane currents �LCC and
NCX�. Physically, and quite generally, for positive coupling,
the voltage alternans generated by calcium alternans tend to
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increase the amplitude of calcium alternans, thereby mediat-
ing a positive feedback of calcium alternans on itself. In
contrast, for negative coupling, voltage alternans tend to sup-
press calcium alternans, thereby mediating a negative feed-
back of calcium alternans on itself. Mathematically, the cou-
pling is determined by the product of the off-diagonal terms
J12J21 in a general 2D map of the beat-to-beat dynamics.

We have shown that the sign and magnitude of this cou-
pling can be inferred directly from the motion of the node
separating spatially out-of-phase regions of alternans in a
simulation seeded with SDA. For positive coupling, the node
is expelled from the cell and calcium alternans synchronize
in the whole cell, while for negative coupling, the node is
attracted to the midpoint of the cell and the SDA state is
dynamically stable. In addition, the magnitude of the cou-
pling, determined by the magnitude of calcium-dependent
membrane currents and pacing cycle length, determines how
fast the node moves. It may be possible to test these predic-
tions experimentally by seeding a SDA state, e.g., by revers-
ing the phase of alternans locally with a calcium wave in-
duced by a localized caffeine pulse or by local photorelease
of caged calcium.

As previously predicted in Ref. 8, negative coupling pro-
duces a Turing-like instability that favors SDA, while posi-
tive coupling favors SCA. Our results validate this prediction
but also show that positive coupling does not necessarily
imply that action potential duration and calcium alternans are
EMC. For one set of parameters �case B�, we find that alter-
nans can be EMD for positive coupling, with the sign of the
coupling deduced from node motion. For another set of pa-
rameters that corresponds to the Turing instability �case D�,
EMD alternans can also form because of the bistability of the
spatially concordant and discordant nonlinear states in this
case. Since the concordant state is easier to attain from a
change in condition corresponding to reducing the pacing
cycle length, we conclude that the observation of EMD al-
ternans at the whole cell level does not suffice to determine
the sign of the voltage-calcium coupling. Electromechanical
discordance alone implies that calcium alternans are spatially
synchronized over a large enough fraction of the cell to pro-
duce voltage alternans. It does not, however, predict whether
a spatially discordant state obtained from a different set of
initial condition would be stable or transient.

These results highlight the difficulty of trying to deduce
the sign of the voltage-calcium coupling from physiological
considerations. In previous work, it was argued that this cou-
pling is determined by the balance of calcium-dependent
membrane current �LCC and NCX�,21,33 which determines
generally if a larger calcium transient prolongs or shortens
the action potential duration �calcium effect on voltage�. This
determination, however, rests on the assumption that the ef-
fect of voltage on calcium is positive. Namely, a longer di-
astolic interval after one beat helps to produce a larger cal-
cium transient at the next beat. Clearly, our results show that
the effect of voltage on calcium can also be negative since
we observe well-formed EMD alternans for negative overall
coupling that combines the effects of calcium on voltage and
voltage on calcium. The physiological origin of a negative
effect of voltage on calcium, whereby a longer diastolic in-

terval helps to promote a shorter calcium transient at the next
beat, remains to be elucidated. In addition, the present study
did not systematically survey a large range of physiological
parameters given the length of computer time required for
each simulation in this spatially distributed model. Therefore
it largely remains to be determined what sign of coupling
underlies EMD alternans in experimental situations under
different pathological conditions.
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APPENDIX A: SIMULATION OF COUPLED CALCIUM
AND VOLTAGE

The basis for our simulations is the model for intracel-
lular calcium dynamics developed in Ref. 7 coupled with the
set of membrane currents in Ref. 27. Although we will not
give a complete description of these models here, we will
describe the basic features and the way they the two models
are coupled. For the equations that model the currents and
functions presented below, see Refs. 7 and 27.

The calcium model is based on the calcium dynamics of
a single CRU, with the full model consisting of a 62�32
�12 3D grid of diffusively coupled CRUs. Below we de-
scribe calcium dynamics in the mth CRU. To simplify the
notation, we will omit here the superscript �m� with the un-
derstanding that the currents and concentrations refer to
those at the mth CRU. The time evolution of the calcium
concentration in the cytosolic, submembrane, proximal, net-
work SR, and junctional SR compartments of the mth CRU
�see Fig. 3� is governed, respectively, by the differential
equations

ċi = �i�ci��Idsi
vs

vi
− Iup + Ileak − ITCi + Ici� ,

ċs = �s�cs��Idps
vp

vs
+ �NCXINCX − Idsi − ITCs + Ics� ,

ċp = �p�cp��Ir + �CaICa − Idps� , �A1�

ċNSR = ��Iup − Ileak�
vi

vNSR
− Itr

vJSR

vNSR
+ IcNSR� ,

ċJSR = �JSR�cJSR��Itr − Ir
vp

vJSR
� ,

where the � factors account for instantaneous calcium buff-
ering, and vi, vs, vNSR, vJSR, and vp are the volumes of the
cytosolic, submembrane, network SR, junctional SR, and
proximal compartments, respectively. ITCi and ITCs account
for time-dependent buffering to Troponin-C. Idsi and Idps are
diffusive currents between the submembrane and cytosolic
and between the proximal and submembrane compartments
of the CRU. Iup, Ileak, Ir, and Itr are the uptake, leak, release,
and transfer currents, describing calcium cycling into, out of,
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and within the compartments of the SR. Ici, Ics, and IcNSR are
diffusive currents coupling the cytosolic, submembrane, and
network SR compartments of adjacent CRUs �three lower
arrows in Fig. 3�. The calcium current ICa and the sodium-
exchanger current INCX are calcium transmembrane currents
for a single CRU and provide the coupling between the cal-
cium and voltage systems. The factors �NCX and �Ca allow us
to scale the calcium currents to simulate pharmacological or
genetic interventions. Normally, �NCX=1 and �Ca=1, but we
also consider the case �NCX=0.2.

In the unclamped simulations, the transmembrane volt-
age, assumed to be constant throughout the cell, evolves ac-
cording to

dV

dt
=

1

CM
�INa + IK1 + IKr + IKs + Ito +

ĪNCX

�NCX
+

ĪCa

�Ca
+ Istim� ,

�A2�

where INa is the sodium current, and IK1, IKr, IKs, and Ito are
repolarizing potassium currents which we take from the
UCLA model.27 Istim is a stimulus current applied periodi-

cally to stimulate an action potential. ĪNCX and ĪCa are the
whole-cell NCX and calcium currents, obtained from those
for a single CRU as

ĪNCX = �
m

�NCXINCX
�m� , ĪCa = �

m

�CaICa
�m�. �A3�

The constant CM in Eq. �A2� is the membrane capacitance,
CM =1 �F /cm2�A, where the cell membrane area A was
estimated as 2�104 �m2. The parameters �NCX and �Ca are
factors that take into account the fact that the NCX and cal-
cium currents might have different effective areas of effect29

ANCX and ACa, so that �NCX=A /ANCX and �Ca=A /ACa. We
choose the values of these parameters so that the action po-
tential shape is physiological. Normally, we take �NCX=2
and �Ca=1, but we also consider the case �NCX=2 and
�Ca=2.

Each CRU has four LCC channels described by the
seven-state Markov model of Ref. 27 that contribute to the
ICa current of the CRU as described in Ref. 7. In addition,
each CRU has 100 Markov RyR channels, simulated effi-
ciently as described in Ref. 7. Following Ref. 20 we adopt a
phenomenological expression for the internal sodium con-
centration �Na+�i as a function of the pacing period T, taking
�Na+�i=a�1+bT1/2�−1/2, where a=78 mM, b=10 s−1/2, and
T is in seconds. The proximal volume of each CRU is drawn
from a truncated Gaussian distribution, vp

�n�= v̄p�1+r�, where
v̄p=0.001 26 �m3 and r is a Gaussian distribution with stan-
dard deviation 0.3 restricted to the interval ��0.8,0.8�.

Lastly, we note that in Ref. 7, cJSR in Eq. �40� should
read cNSR. The term ��ps

−1+�si
−1+�nm

−1 � in Eq. �54� should read
�vp�ps

−1 /vs+�si
−1+�m�nm

−1 �, and �NaCa in Table �7� should be
21.0.

APPENDIX B: ANALYSIS OF NODE MOTION

To derive an equation of motion for the node, we use the
amplitude equation framework, where the peak calcium con-
centration at beat n and position x is written in the form

cn�x� = c0 + �− 1�nc�x,n� , �B1�

where c�x ,n� is the calcium alternans amplitude that evolves
slowly from beat to beat close to the alternans bifurcation,
�J22+1��1. This slow evolution allows us to treat the beat
number n, or equivalently the time t�nT, as a continuous
variable and to write

�− 1�n2T
�c�x,t�

�t
= cn+2�x� − cn�x� . �B2�

At the end of this calculation, we shall find that the node
speed ��J12J21 / �J11−J22��. Hence, when �J12J21 / �J11−J22��
�1, voltage alternans relax rapidly on the time scale of mo-
tion of the node as long as the restitution slope is not too
close to unity, or J11+1�O�1�. In this limit, the rapidly dif-
fusing voltage acts as a global coupling of calcium alternans
in different regions of the cell. Accordingly, it is natural to
assume phenomenologically the equation governing the evo-
lution of calcium alternans to have the form

�c�x,t�
�t

= c�x,t� + �c̄�t� − �c�x,t�3 + D
�2c�x,t�

�x2 , �B3�

where c̄ denotes the spatial average of c over the length of
the cell with the origin of x at the midpoint of the cell,

c̄�t� �
1

L
�

−L/2

L/2

c�x,t� �B4�

and D is the diffusion coefficient of free calcium inside the
cell. The linear coefficients �1 and ��1 can be deter-
mined by matching the exponential amplification rates of
spatially concordant and discordant perturbations of the c=0
state to those obtained from the iterative maps, which, using
the fact that �J22+1��1, yields at once

 � −
�1 + 	d�

T
= −

�1 + J22�
T

�B5�

for the discordant mode and

 + � � −
�1 + 	c

−�
T

� −
1

T
�1 + J22 −

J12J21

J11 − J22
� �B6�

for the concordant mode, from which we obtain that

� �
1

T
� J12J21

J11 − J22
� . �B7�

Equation �B3� has a stationary solution

cs�x� =�

�
tanh

x
�2D/

, �B8�

corresponding to a node at the midpoint of the cell. Since the
node moves slowly, we can compute its velocity v
=dxN�t� /dt, where xN�t� is the position of the node at time t,
by looking perturbatively for solutions of the form c�x , t�
�cs�x−xN�t��+ c̃�x−xN�t� , t�, which is equivalent to trans-
forming Eq. �B3� into a moving frame. Substituting this an-
satz into Eq. �B3� we obtain after linearization
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� − 3�cs
2 + D

�2

�x2�c̃ � Lc̃ = − v
�cs

�x
− �c̄s, �B9�

where the terms on the right-hand side �rhs� can be assumed
to be small and

c̄s � −
2

L
xN�t��

�
�B10�

follows from Eq. �B8�. For a nontrivial solution of Eq. �B9�
to exist, the rhs must be orthogonal to the null space of the
adjoint of the linear operator L. Since L is self-adjoint and
the derivative of the stationary solution is a zero mode of L
�i.e., L�xcs=0�, this yields the solvability condition

� dx�− v
�cs

�x
− �c̄s� �cs

�x
= 0. �B11�

Using the fact that �dx��xcs�2= �2 /3�� /���2 /D and that
�dx�xcs=2� /�, we obtain

v =
dxN�t�

dt
= − 3�c̄s

��/�D/ = 6�
xN�x�

L
�D/2 , �B12�

which is equivalent to Eq. �12� after substituting the expres-
sions for  and �.

APPENDIX C: STABILITY ANALYSIS OF SPATIALLY
CONCORDANT ALTERNANS

For negative coupling, the node is stable at the midpoint
of the cell. The SDA and SCA nonlinear states have ampli-
tudes � /� and ��+�� /�, respectively, where the SCA
state bifurcates for � ���. It follows that the difference be-
tween those amplitudes is essentially negligible in the weak
negative coupling limit �����1,��0� as long as � ���. The
latter condition is satisfied in the present simulations since
calcium alternans develop over a few beats while the node
motion takes place on a number of beats at least an order of
magnitude larger. The linear stability of the nonlinear SCA
state can be readily analyzed by substituting c�x , t�
=��+�� /�+c1�x , t� in the amplitude equation, which yields
the evolution equation �B3� for the perturbation c1�x , t�,

�tc1 = �− 2 − 3��c1 + �c̄1 + D�x
2c1. �C1�

Substituting c1�x , t��exp�ikx+�kt� in the above equation,
we obtain that

�k = − 2 − 3� − Dk2�k � 0� , �C2�

and the k=0 mode, which needs to be treated separately, is
stable for � ���. Neglecting diffusion effects for the small-
est k-mode that can be fitted in a cell, k=� /L, we find that
this mode is unstable if −2−3��0 or � �3 /2����. In con-
trast, all modes are stable for � �3 /2����, which is the result
of Eq. �13�. Since SDA are stable for �0, both SCA and
SDA are stable for � �3 /2���� and the state selected SCA
on initial condition as seen in the simulations.
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