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We study the emergence of collective synchronization in large directed networks of heterogeneous
oscillators by generalizing the classical Kuramoto model of globally coupled phase oscillators to
more realistic networks. We extend recent theoretical approximations describing the transition to
synchronization in large undirected networks of coupled phase oscillators to the case of directed
networks. We also consider the case of networks with mixed positive-negative coupling strengths.
We compare our theory with numerical simulations and find good agreement. © 2005 American
Institute of Physics. �DOI: 10.1063/1.2148388�
ynchronization of coupled oscillators is frequently ob-
erved in nature and technology.1,2 Recently, the study of
ynchronization phenomena in complex networks has re-
eived much attention.3–12 A classical model for the phase
ynamics of weakly coupled oscillators is that of
uramoto,13,14 who showed that as the coupling strength

s increased there is a transition from incoherent behav-
or to synchronization. The Kuramoto model assumes all-
o-all connectivity and positive coupling (i.e., the coupling
f two oscillators tends to reduce their phase difference).
owever, it has been recently noted that the topology of

eal world networks is often very complex. In the current
aper, generalizing our previous work which considered
he case of large undirected coupling networks with posi-
ive coupling,12 we discuss the synchronization of many
hase oscillators interacting on large directed networks
ith mixed positive/negative coupling.

. INTRODUCTION

The classical Kuramoto model13,14 describes a collection
f globally coupled phase oscillators that exhibits a transition
rom incoherence to synchronization as the coupling strength
s increased past a critical value. Since real world networks
ypically have a more complex structure than all-to-all
oupling,15,16 it is natural to ask what effect interaction struc-
ure has on the synchronization transition. In Ref. 12, we
tudied the Kuramoto model allowing general connectivity
f the nodes, and found that for a large class of networks
here is still a transition to global synchrony as the coupling
trength exceeds a critical value kc. We found that the critical
oupling strength depends on the largest eigenvalue of the

�
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adjacency matrix A describing the network connectivity. We
also developed several approximations describing the behav-
ior of an order parameter measuring the coherence past the
transition. This past work was restricted to the case in which
Anm=Amn�0, that is, undirected networks in which the cou-
pling tends to reduce the phase difference of the oscillators.

Most networks considered in applications are
directed,15,16 which implies an asymmetric adjacency matrix,
Anm�Amn. Also, in some cases the coupling between two
oscillators might drive them to be out of phase, which can be
represented by allowing the coupling term between these os-
cillators to be negative, Anm�0. The effect that the presence
of directed and mixed positive-negative connections can
have on synchronization is, therefore, of interest. Here we
show how our previous theory can be generalized to account
for these two factors. We study examples in which either the
asymmetry of the adjacency matrix or the effect of the nega-
tive connections are particularly severe and compare our the-
oretical approximations with numerical solutions.

This paper is organized as follows. In Sec. II we review
the results of Ref. 12 for undirected networks with positive
coupling. In Sec. III we consider directed networks, and in
Sec. IV we study networks with mixed positive-negative
coupling. In Sec. V we present examples and comparisons of
our theory with numerical simulations. In Sec. VI we discuss
our results. In the Appendix we discuss the spectrum of cer-
tain matrices used in our examples.

II. BACKGROUND

In this section we will review previous results for undi-
rected networks with positive coupling. In Ref. 12 we con-

sidered the onset of synchronization in large networks of

© 2005 American Institute of Physics7-1

license or copyright; see http://chaos.aip.org/chaos/copyright.jsp

http://dx.doi.org/10.1063/1.2148388
http://dx.doi.org/10.1063/1.2148388


m
c

w
t
q
p
g
=
d
h
m
p
t
t
t
f
A

g
d

w
r
p

w

w
i
s
t
�
n
h
p
t
c
→
s
t
fl
a
l
s

015107-2 Restrepo, Ott, and Hunt Chaos 16, 015107 �2005�

D

any heterogeneous coupled phase oscillators. This situation
an be modeled by the equation

�̇n = �n + k�
m=1

N

Anm sin��m − �n� , �1�

here �n, �n are the phase and natural frequency of oscilla-
or n, and N�1 is the total number of oscillators. The fre-
uencies �n are assumed to be independently drawn from a
robability distribution characterized by a density function
��� that is symmetric about a single local maximum at �
�̄. The mean frequency �̄ can be shifted to �̄=0 by intro-
uction of the change of variables �n→�n− �̄t. Thus we
enceforth take �̄=0. The adjacency matrix �Anm� deter-
ines the network connecting the oscillators. Positive cou-

ling was imposed in Ref. 12 by the condition Anm�0. Fur-
hermore, the matrix A was assumed to be symmetric and
hus only undirected networks were considered. In this sec-
ion we will review our results for this class of networks,
ollowing Sec. II of Ref. 12. Thus throughout this section

nm=Amn�0.
In order to quantify the coherence of the inputs to a

iven node, a positive real valued local order parameter rn is
efined by

rnei�n � �
m=1

N

Anm	ei�m
t, �2�

here 	¯
t denotes a time average. To characterize the mac-
oscopic coherence for the whole network, a global order
arameter is defined by

r =
�n=1

N
rn

�n=1

N
dn

, �3�

here dn is the degree of node n defined by

dn = �
m=1

N

Anm. �4�

In terms of rn, Eq. �1� can be rewritten as

�̇n = �n − krn sin��n − �n� − khn�t� , �5�

here the term hn�t� takes into account time fluctuations and
s given by hn=Im�e−i�n�mAnm�	ei�m
t−ei�m��, where Im
tands for the imaginary part. Assuming the terms in this sum
o be statistically independent, we expect hn�t� to be of order
�mAnm

2 �1/2, which is proportional to the square root of the
umber of connections of node n. Past the transition to co-
erence, rn should be proportional to dn, which is in turn
roportional to the number of connections of node n. Thus if
he number of connections per node is large, hn will be small
ompared to rn except very close to the transition, where rn

0. We, therefore, expect our approximations to work better
ufficiently above the transition to coherence. �At the transi-
ion we expect, as in the classical Kuramoto problem, the
uctuations to be the dominant term.� Henceforth, we will
ssume that the number of connections into each node is
arge enough that we can neglect the time fluctuations repre-

ented by the term hn, obtaining from Eq. �5�

ownloaded 11 Oct 2008 to 198.11.27.45. Redistribution subject to AIP 
�̇n = �n − krn sin��n − �n� . �6�

We have found numerically that the effect of a significant
fraction of the nodes having few connections is to shift the
transition to coherence to higher values of the coupling con-
stant. The amount of shift in the critical coupling constant
can be estimated by treating the time fluctuations hn�t� as a
noise term. For a more detailed discussion, see Sec. VI of
Ref. 12.

From Eq. �6�, we conclude that oscillators with ��n �
�krn become locked, i.e., for these oscillators �n settles at a
value for which

sin��n − �n� = �n/�krn� . �7�

Then

rn = �
��m��krm

Anmei��m−�n� + �
��m��krm

Anm	ei��m−�n�
t. �8�

The sum over the nonlocked oscillators can be shown to
vanish in the large number of connections per node limit �see
Appendix A of Ref. 12�, and we obtain from the real and
imaginary parts of Eq. �8�

rn = �
��m��krm

Anm cos��m − �n��1 − 
 �m

krm
�2

− �
��m��krm

Anm sin��m − �n�
 �m

krm
� �9�

and

0 = �
��m��krm

Anm cos��m − �n�
 �m

krm
�

+ �
��m��krm

Anm sin��m − �n��1 − 
 �m

krm
�2

. �10�

Introducing the assumption that the solutions �n, rn are sta-
tistically independent of �n �as in Ref. 12� and using the
assumed symmetry of the frequency distribution g��� we
obtain from Eq. �9� the approximation,

rn = �
��m��krm

Anm cos��m − �n��1 − 
 �m

krm
�2

, �11�

and the right side of Eq. �10� is approximately zero for large
number of connections per node. The solution of Eq. �11�
with �n=�m for all n is the one corresponding to the smallest
value of k, and thus corresponds to the smallest critical cou-
pling kc leading to a transition to a macroscopic value of rn.
Therefore, we consider the equation

rn = �
��m��krm

Anm�1 − 
 �m

krm
�2

. �12�

We refer to this approximation �Eq. �12��, based on neglect-
ing the time fluctuations, as the time averaged theory �TAT�.
In Ref. 12 we showed numerically that this approximation
consistently describes the large time behavior of the order
parameter r past the transition for various undirected net-

=A �0�.
works with positive coupling strengths �i.e., Anm mn
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Averaging over the frequencies, one obtains the fre-
uency distribution approximation �FDA�

rn = k�
m

Anmrm�
−1

1

g�zkrm��1 − z2dz . �13�

The value of the critical coupling strength can be ob-
ained from the frequency distribution approximation by let-
ing rn→0+, producing

rn
�0� =

k

k0
�
m

Anmrm
�0�, �14�

here k0�2/ �	g�0��. The critical coupling strength thus
orresponds to

kc =
k0



, �15�

here 
 is the largest eigenvalue of the adjacency matrix A
nd r�0� is proportional to the corresponding eigenvector of
. By considering perturbations from the critical values as

n=rn
�0�+�rn, expanding g�zkrm� in Eq. �13� to second order

or small argument, multiplying Eq. �13� by rn
�0� and sum-

ing over n, we obtained an expression for the order param-
ter past the transition valid for networks with relatively ho-
ogeneous degree distributions17

r2 = 
 �1


k0
2�
 k

kc
− 1�
 k

kc
�−3

, �16�

or 0� �k /kc�−1�1, where

�1 �
	u
2
2

N	d
2	u4

, �17�

=−	g��0�k0 /16, u is the normalized eigenvector of A cor-
esponding to 
, and 	¯
 is defined by 	xq
=�n=1

N xn
q /N.

The mean field theory �MFT�9,10 was obtained from the
requency distribution equation by introducing the extra as-
umption that the local mean field is approximately propor-
ional to the degree, rn=rdn. Substituting this into Eq. �13�
nd summing over n we obtained

�
m=1

N

dm = k�
m=1

N

dm
2�

−1

1

g�zkrdm��1 − z2dz . �18�

etting r→0+, the critical coupling strength is given by

k � kmf = k0
	d

	d2


. �19�

n expansion to second order yields

r2 = 
 �2


k0
2�
 k

kmf
− 1�
 k

kmf
�−3

, �20�

or 0� �k /kmf�−1�1, where

�2 �
	d2
3

	d4
	d
2 . �21�

Comparing the above three approximations, we note the
ollowing points:
ownloaded 11 Oct 2008 to 198.11.27.45. Redistribution subject to AIP 
�1� The TAT requires knowledge of the adjacency matrix
and the particular realization of the oscillator frequen-
cies �n at each node;

�2� the FDA requires knowledge of the adjacency matrix
and the frequency distribution, but averages over real-
izations of the node frequencies;

�3� the MFT �like the FDA� averages over realizations of
the node frequencies, but only requires knowledge of the
degree distribution dm �knowledge of the adjacency ma-
trix is not required�;

�4� computationally, the TAT and the FDA are more de-
manding than the MFT; all three, however, are much
less costly than direct integration of Eq. �1� to find the
time asymptotic result;

�5� finally, one might suspect that the TAT is more accurate
for describing a specific system realization, given that
one has knowledge of the network and the realization of
the oscillator frequencies �n on each node, while the
FDA might be more appropriate for investigating the
mean behavior averaged over an ensemble of realiza-
tions of the oscillator frequencies.

The approach here is to look at a coupling strength small
enough so that there is an incoherent state; then we increase
the coupling strength until a coherent synchronized behavior
emerges, and we then follow this coherent attractor continu-
ously to larger values of the coupling parameter. We note that
this consideration does not address the issue of the possibil-
ity of other coexisting attractors that may be present in ad-
dition to those we consider.

III. DIRECTED NETWORKS

In this section we will extend our previous results to
include directed networks, Anm�Amn. As in the previous sec-
tion, we will assume that the number of connections per node
�both incoming and outgoing� is large, that the frequencies
are drawn randomly from a distribution symmetric around its
unique local maximum at �=0, and that the coupling is posi-
tive, Anm�0. We define the in-degree dn

in and out-degree dn
out

of node n as

dn
in � �

m=1

N

Anm �22�

and

dn
out � �

m=1

N

Amn. �23�

For directed networks, the degrees dn
in and dn

out may be un-
equal, and it is, therefore, necessary to take this difference
into account when developing approximations for the syn-
chronization transition based on the degree of the nodes
�e.g., the mean-field theory, Eq. �18��.

The approximations to r given by the time averaged
theory �Eq. �12��, the frequency distribution approximation
�Eq. �13��, and the estimate for the critical coupling constant
given by Eq. �15� are still valid in this more general case.

The existence of a non-negative real eigenvalue 
 larger than
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he magnitude of any other eigenvalue is guaranteed for ma-
rices with non-negative entries by the Frobenius theorem,18

nd we use this eigenvalue in Eq. �15�.
We now consider the perturbation solution to the FDA

Eq. �13�� for �k−kc� small taking into account asymmetry of
. Expanding Eq. �13� to second order in krn, inserting rn

rn
�0�+�rn, and canceling terms of order rn

�0�, the leading or-
er terms remaining are

�rn =
k

kc

�
m

Anm�rm −

k3

kc

�
m

Anm�rm
�0��3

+
k − kc

kc

�
m

Anmrm
�0�. �24�

n order for Eq. �24� to have a solution for �rn, it must satisfy
solubility condition. This condition can be obtained as fol-

ows. Let ūn be an eigenvector of the transpose of A, AT, with
igenvalue 
. Multiplying Eq. �24� by ūn, summing over n
nd using Eq. �14�, we obtain

�m
�rm

�0��3ūm

�m
rm

�0�ūm

=
k − kc


k3 . �25�

n terms of u and ū, eigenvectors of A and AT associated with
he eigenvalue 
, the square of the order parameter r can be
xpressed as �cf. Eqs. �16� and �17��

r2 = 
 �̄1


k0
2�
 k

kc
− 1�
 k

kc
�−3

, �26�

or 0� �k /kc�−1�1, where

�̄1 �
	u
2	uū

2

N	d
2	u3ū

, �27�

nd 	xpyq
 is defined by 	xpyq
=�n=1
N xn

pyn
q /N. We will refer to

his generalization of the perturbation theory as the directed
erturbation theory �DPT�.

The mean field theory can also be generalized for di-
ected networks by introducing the assumption rn=rdn

in. We
btain as a generalization of Eq. �18� the directed mean field
heory �DMFT�

�
m=1

N

dm
in = k�

m=1

N

dm
indm

out�
−1

1

g�zkrdm
in��1 − z2dz . �28�

etting r→0+, the critical coupling strength is given by

k � kmf = k0
	din


	dindout

. �29�

n expansion to second order yields �cf. Eqs. �20� and �21��

r2 = 
 �̄2


k0
2�
 k

kmf
− 1�
 k

kmf
�−3

, �30�

or 0� �k /kmf�−1�1, where

�̄2 �
	dindout
3

	�din�3dout
	din
2 . �31�
ownloaded 11 Oct 2008 to 198.11.27.45. Redistribution subject to AIP 
IV. NETWORKS WITH NEGATIVE COUPLING

Here we extend our previous results to the case in which
the matrix elements Anm are allowed to be negative. In this
case, a solution to Eqs. �9� and �10� in which all the phases
are equal, ��n=�m for all n ,m�, does not necessarily exist.
�In fact, if one were to set �n=�m in Eq. �11� the right hand
side of Eq. �12� could be negative, while by definition rn is
nonnegative.�

Although in this section we will assume k�0, the case
k�0 can be treated by redefining k→−k and Anm→−Anm.
By neglecting the contribution of the drifting oscillators, us-
ing the symmetry of g��� and the assumed independence of
�n and rn from �n, we obtain from Eqs. �2�, �7�, and �8� the
equation

rnei�n = �
��m��krm

Anmei�m�1 − 
 �m

krm
�2

. �32�

Our approach will now be to solve Eq. �32� numerically for
�n and rn. We note that such numerical solution will still be
orders of magnitude faster than finding the exact temporal
evolution of the network by numerically integrating Eqs. �1�.
In order to numerically solve Eq. �32� for the variables �n,
rn, we look for fixed points of the following mapping,
�rn

j ,�n
j �→ �rn

j+1 ,�n
j+1�, defined by

rn
j+1ei�n

j+1
= �

��m��krm
j

Anmei�m
j �1 − 
 �m

krm
j �2

. �33�

Repeatedly iterating the above map starting from random
initial conditions, the desired solution will be produced if the
orbit converges to a fixed point. We will discuss the conver-
gence of this procedure when considering particular ex-
amples.

We now comment on some aspects introduced by con-
nections with negative coupling. First, we note that when the
coupling between the oscillators is positive, the effect of the
coupling between them is a tendency to reduce their phase
difference. In this case, as k→�, the phases synchronize,
�n→0. There is in this case frequency and phase synchroni-
zation �i.e., �d /dt���n−�m�→0 and ��n−�m�→0�. On the
other hand, two oscillators coupled with a negative connec-
tion Anm�0 tend to oscillate out of phase. However, in a
network with many nodes and mixed positive-negative con-
nections, the relative phases of two oscillators cannot in gen-
eral be determined only from the sign of their coupling.
When the oscillators lock, their relative phase is determined
by �n �let k→� in Eq. �7��, and in general the phases �n can
be broadly distributed in �0,2	�. Therefore, in this case we
expect frequency synchronization, but not phase synchroni-
zation �i.e., �d /dt���n−�m�→0 but ��n−�m�y0�. We also
note that in this case the order parameter r, as we have de-
fined it in Eq. �3�, may attain values higher than 1 for k

→�. We, therefore, replace the definition �3� by

license or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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r =
�n=1

N
rn

�m=1

N �n=1

N
�Anm�

. �34�

ote that if Anm�0 this definition reduces to the previous
ne.

From Eq. �11� we have for k→�

r →
�m,n

Anm cos��m − �n�

�m,n
�Anm�

. �35�

he order parameter achieves its maximum value, r=1,
hen the phase difference �m−�n between two oscillators is
for positive coupling �Anm�0� and 	 for negative coupling

Anm�0�. An order parameter smaller than 1 as k→� indi-
ates frustration in the collection of coupled oscillators, i.e.,
he phase difference favored by the coupling between each
air of oscillators cannot be satisfied simultaneously by all
airs.19 The order parameter is similar to the overlap function
sed in neural networks for measuring the closeness of the
tate of the network to a memorized pattern.20

Using the assumption that the number of connections per
ode is large, we average Eq. �32� over the frequencies to
btain the approximation

rnei�n = k�
m=1

N

Anmei�mrm�
−1

1

�1 − z2g�zkrm�dz . �36�

he critical coupling strength kc can be estimated by letting

n→0+ to be as in Sec. II

kc =
k0



, �37�

here k0=2/ �	g�0�� and we have assumed the existence of a
ositive real eigenvalue 
 which is larger than the real part of
ll other �possibly complex� eigenvalues of A. We now dis-
uss the validity of this assumption.

If the adjacency matrix A is asymmetric and there are
ixed positive-negative connections �both Anm�0 and

n�m��0 for some n ,m ,n� ,m��, it might occur that the ma-
rix A has no real eigenvalues, or it has complex eigenvalues
ith real part larger than the largest real eigenvalue. In our

xamples we find, however, that when there is a bias towards
ositive coupling strengths, there is a real eigenvalue 
 with
eal part larger than that of the other eigenvalues. Further-
ore, the largest real part of the remaining eigenvalues is

ypically well separated from 
. This issue is discussed fur-
her and illustrated with the spectrum of a particular matrix
n the Appendix .

So far, we have considered situations in which coupling
rom oscillator m to oscillator n favors a phase difference

n−�m=0 �positive coupling, Anm�0�, or situations in which
phase difference �n−�m=	 is favored �negative coupling,

nm�0�. A more general case is that in which coupling from
scillator m to oscillator n favors a phase difference �n−�m


nm, with 0�
nm�2	. �Such nontrivial phase differences
ould be favored, for example, by a time delay in the inter-

ction of the oscillators in conditions in which, in the ab-

ownloaded 11 Oct 2008 to 198.11.27.45. Redistribution subject to AIP 
sence of a delay, their interaction would reduce their phase
difference to zero.� This more general case can be described
by the following generalization of Eq. �1�:

�̇n = �n + k�
m=1

N

�Anm�sin��m − �n + 
nm� . �38�

In this scenario, positive coupling corresponds to 
nm=0 and
negative coupling to 
nm=	. By considering complex values
of the coupling constants

Anm = �Anm�ei
nm, �39�

the same process described at the beginning of this section
can be used to show that Eq. �32� is still valid in this more
general case. For simplicity, in our examples we will con-
sider cases in which 
nm is either 0 or 	.

V. EXAMPLES

In this section we will numerically test our approxima-
tions �Secs. III and IV� with examples.

In Ref. 12 we showed how our theory described the
behavior of the order parameter r for a particular realization
of the network and the frequencies. Although the agreement
was very good, there was a small but noticeable difference
between the time averaged theory and the frequency distri-
bution approximation. Here, besides the asymmetry of the
adjacency matrix, we will investigate the variations that oc-
cur when different realizations of the network and the fre-
quencies of the individual oscillators are considered. We will
show that the small discrepancies mentioned above can be
accounted for by averaging over many realizations of the
frequencies.

We will compare the approximations described in this
section with the numerical solution of Eq. �1� for different
types of networks. When numerically solving Eq. �1�, the
initial conditions for �n are chosen randomly in the interval
�0,2	� and Eq. �1� is integrated forward in time until a sta-
tionary state is reached �stationary state here means station-
ary in a statistical sense; i.e., although the solution might be
time dependent, its statistical properties remain constant in
time�. From the values of �n�t� obtained for a given k, the
order parameter r is estimated using Eqs. �2� and �3�, where
the time average is taken after the system reaches the station-
ary state. �Close to the transition, the time needed to reach
the stationary state is very long, so that it is difficult to esti-
mate the real value of r. This problem also exists in the
classical Kuramoto all-to-all model.� The value of k is then
increased and the system is allowed to relax to a stationary
state, and the process is repeated for increasing values of k.
Throughout this section, the frequency distribution is taken
to be g���= 3

4 �1−�2� for �� � �1 and 0 otherwise.

A. Example „i…, a randomly asymmetric network
with Anm>0

As our first example �example �i�� we consider a directed
random network generated as follows. Starting with N�1
nodes, we consider all possible ordered pairs of nodes �n ,m�
with n�m and add a directed link from node n to node m

with probability s. �Equivalently, each nondiagonal entry of

license or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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he adjacency matrix is independently chosen to be 1 with
robability s and 0 with probability 1−s, and the diagonal
lements are set to zero.� Even though the network con-
tructed in this way is directed, for most nodes dn

in�dn
out. For

=1500 and s=2/15, Fig. 1�a� shows the average of the
rder parameter r2 obtained from numerical solution of Eq.
1� averaged over ten realizations of the network and fre-
uencies �triangles�, the frequency distribution approxima-
ion �FDA, solid line�, and the mean field theory �MFT, long
ashed line� as a function of k /kc, where the results for the
DA and the MFT are averaged over the ten network real-

zations �note, however, that the FDA and the MFT do not
epend on the frequency realizations�. �The perturbation
heory Eq. �16� agreed with the frequency distribution ap-
roximation and was left out for clarity.� The error bars cor-
espond to one standard deviation of the sample of ten real-
zations. We note that the larger error bars occur after the
ransition. When the values of the order parameter are aver-
ged over ten realizations of the network and the frequencies,
he results show very good agreement with the frequency
istribution approximation and the directed mean field
heory.

In order to study how well our theory describes single
ealizations, we show in Fig. 1�b� the order parameter r2

btained from numerical solution of Eq. �1� for a particular
ealization of the network and frequencies �boxes�, the time
veraged theory �short dashed line�, and the frequency dis-
ribution approximation �solid line� as a function of k /kc. As
an be observed from the figure, in contrast with the time
veraged theory, the frequency distribution approximation
eviates from the numerical solution �boxes� by a small but
oticeable amount. This behavior is observed for the other
ealizations as well. We note that the FDA and MFT results

IG. 1. �a� Average of the order parameter r2 obtained from numerical
olution of Eq. �1� over ten realizations of the network and frequencies
triangles�, from the frequency distribution approximation �solid line� and
rom the directed mean-field theory �long dashed line� as a function of k /kc.
b� Order parameter r2 obtained from numerical solution of Eq. �1� for a
articular realization of the network and frequencies �boxes�, from the time
veraged theory �short dashed line� and from the frequency distribution
pproximation �solid line� as a function of k /kc.
re virtually identical for all ten realizations. On the other

ownloaded 11 Oct 2008 to 198.11.27.45. Redistribution subject to AIP 
hand, the TAT and the results from direct numerical solution
of Eq. �1� show dependence on the realization. Since the
FDA and MFT incorporate the realizations of the connec-
tions Anm, but not the frequencies, we interpret the observed
realization dependence of the TAT and the direct solutions of
Eq. �1� as indicating that the latter dependence is due prima-
rily to fluctuations in the realizations of the frequencies
rather than to fluctuations in the realizations of Anm.

Note that for our example N=1500 and s=2/15 implies
that on average we have din�dout�200. Thus for compari-
son purposes, we generated an undirected network as fol-
lows: Starting with N=1500 nodes, we join pairs of nodes
with undirected links in such a way that all nodes have dn

in

=dn
out=200. This is accomplished by using the configuration

model described in Sec. IV of Ref. 15. The resulting network
is described by a symmetric adjacency matrix A. The results
for this network are similar to those shown in the previous
example. This suggests that the asymmetric network in the
previous example can be considered �in a statistical sense� as
symmetric.

In summary, for the random asymmetric network in ex-
ample �i� and for the symmetric network described in the
previous paragraph �not shown�, all the approximations work
satisfactorily: Single realizations are described by the time
averaged theory, and the average over many realizations is
described by the frequency distribution approximation or the
directed mean field theory.

B. Example „ii…, a strongly asymmetric network
with Anm>0

Now we consider a network in which the asymmetry has
a more pronounced effect �example �ii��. We consider di-
rected networks defined in the following way. Using the con-
figuration model as above, we first randomly generate an
undirected network with N=1500 nodes and 400 connections
to each node, obtaining a symmetric adjacency matrix A�
with entries 0 or 1. We construct directed networks from this
undirected network as follows. From the symmetric matrix
A�, 1’s above the diagonal are independently converted into
0’s with probability 1− p, generating by this process an
asymmetric adjacency matrix A. �Imagining that the nodes
are arranged in order of ascending n along a line, connec-
tions pointing in the direction of increasing n are randomly
removed. This could model, for example, oscillators which
are coupled chemically along the flow of some medium, or
flashing fireflies that are looking mostly in one direction.� We
will consider a rather low value of p, p=0.1, in order to
obtain a network with a strong asymmetry.

In Fig. 2 we compare our approximations against the
values of the order parameter obtained from numerical solu-
tion of Eq. �1� as a function of k /kc for a network constructed
as described above where kc is given by Eq. �15�. In Fig. 2�a�
we show the average of the order parameter r2 �defined by
Eq. �3�� versus k /kc obtained from numerical solution of Eq.
�1� over ten realizations of the network and frequencies �tri-
angles�, the frequency distribution approximation �solid
line�, the directed mean field theory Eq. �28� �long dashed
line� and the directed perturbation theory Eq. �26� �dot-

dashed line�. The frequency distribution approximation cap-
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ures, as in the undirected case, the values of the average of
he order parameter obtained from numerical solution of Eq.
1�. The directed perturbation theory gives a good approxi-
ation for small values of k close to kc, as expected. On the

ther hand, the directed mean field theory predicts a transi-
ion point which is smaller than the one actually observed.

e note that for this network solutions of Eq. �1� yield sub-
tantial rms deviation of individual realizations �the error
ars in Fig. 2�a�� for all k�kc.

Now we consider a single realization. In Fig. 2�b� we
how the order parameter r2 obtained from numerical solu-
ion of Eq. �1� for a particular realization of the network and
requencies �boxes�, the time averaged theory �short dashed
ine� and the frequency distribution approximation �solid
ine� as a function of k /kc. The time averaged theory tracks
he value of the order parameter for this particular realiza-
ion. This is also observed for the other realizations.

As an indication of why the directed mean-field theory
ives a smaller transition point than that given by kc in Eq.
15�, we note that in the limiting case, p→0, all the elements
bove and in the diagonal of A are 0, so that 
=0 and kc

�. However, the directed mean field theory predicts a
ransition at the finite value kmf =k0	din
 / �	dindout
�.

. Examples of networks with negative coupling

Now we consider examples in which there are negative
onnections, i.e., some of the entries of the adjacency matrix
re negative, Anm�0. In our next example, we construct first
n undirected network with N=1500 nodes and 400 connec-
ions per node. We then set Anm=0 if n and m are not con-
ected, and if they are we set Anm to 1 with probability q and

IG. 2. �a� Average of the order parameter r2 obtained from numerical
olution of Eq. �1� over ten realizations of the network and frequencies with

p=0.1 �triangles�, from the frequency distribution approximation �solid
ine�, from the directed mean field theory �long dashed line�, and from the
irected perturbation theory �dot-dashed line� as a function of k /kc. �b�
rder parameter r2 obtained from numerical solution of Eq. �1� for a par-

icular realization of the network and frequencies �boxes�, from the time
veraged theory �short dashed line� and from the frequency distribution
pproximation �solid line� as a function of k /kc.
o −1 with probability 1−q.

ownloaded 11 Oct 2008 to 198.11.27.45. Redistribution subject to AIP 
First we consider the case q=2/3, so that one-third of
the connections are negative �example �iii��. In Fig. 3 we
compare the numerical solution of Eq. �1� with our theoret-
ical approximations in Eqs. �32� and �36� for ten realizations
of the network and frequencies. We show the average of the
order parameter r2 over ten realizations of the network �tri-
angles with thin error bars�, the average of the TAT �Eq. �32�,
solid line with oval error bars�, and the average of the FDA
�Eq. �36�, dashed line�. The error bar widths represent one
standard deviation of the sample of ten realizations. As in the
previous examples, the FDA did not show noticeable varia-
tions for different realizations of the network. We observe
that the order parameter computed from our theory yields a
slightly larger value than that obtained from the numerical
solution of Eq. �1�, but in general both the transition point
and the behavior of the order parameter are described satis-
factorily by the theory.

In this case, the phases �n obtained from numerical so-
lution of Eq. �32� do not depend on n, i.e., �n=�m for all n,
m. This can be understood on the basis that there are not
enough negative coupling terms to make the right-hand side
of Eq. �12� negative, so that a solution exists in which all the
phases �n are equal. As mentioned in Sec. IV, the difference
in the phases in Eq. �32� prevents the right-hand side of Eq.
�12� from becoming negative in the presence of negative
connections. As a confirmation of this we note that as k
→� the order parameter r appears to approach 1/3 �the dot-
dashed horizontal line in Fig. 3�, which corresponds to ��n

−�m�→0 in Eq. �35� for q=2/3. The fact that both the
phases �n and �n do not depend on n as k→� is consistent
with Eq. �7�.

In order to consider a case in which the effect of the
negative connections is more extreme, we consider a net-
work constructed as described above with q=0.54 �example
�iv��. In Fig. 4 we compare the numerical solution of Eq. �1�
with our theoretical approximations in Eqs. �32� and �36� for
ten realizations of the network and frequencies. We show the
average of the order parameter r2 over ten realizations of the
network �triangles with thin error bars�, the average of the
FDA �Eq. �36�, dashed line with thin error bars� and the

FIG. 3. Average of the order parameter r2 obtained from numerical solution
of Eq. �1� over ten realizations of the network with q=2/3 and frequencies
�triangles with thin error bars�, average of the time averaged theory �solid
line with oval error bars�, and frequency distribution approximation �dashed
line� as a function of k /kc. The horizontal line represents the value of the
order parameter if the oscillators were phase locked ��n=�m for all m and n�.
average of the TAT �Eq. �32�, solid line with oval error bars�.
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hen numerically solving Eq. �32� by iteration of Eq. �33�,
n some occasions a period two orbit was found instead of
he desired fixed point. If we denote the left hand side of Eq.
33� by zn

j+1 and the right hand side by f�zn
j �, we found that

onvergence to a fixed point was facilitated by replacing the
ight hand side by �zn

j + f�zn
j �� /2 and finding the fixed points

f this modified system.
In this example, at low coupling strengths �roughly

/kc�4, where kc is computed from Eq. �37�� the order pa-
ameter computed from numerical solution of Eq. �1� is
maller than that obtained from the TAT and FDA. As k
ncreases, however, the TAT and FDA theories captures the
symptotic value of the order parameter r. We note that in
his case the asymptotic value is larger than that correspond-
ng to phase locking �i.e., the one obtained by setting �n=0
n Eq. �35�, r�0.54−0.46=0.08�, which we indicate by a
orizontal dot-dashed line in Fig. 4, and much smaller than
=1, the value corresponding to no frustration �i.e., �n−�m

0 for Anm�0 and 	 for Anm�0 in Eq. �35��. The small
cale of the horizontal axis is due to the fact that we are
lotting r2, and to our definition of the order parameter
hich assigns a value of 1 to a nonfrustrated configuration.
he small value of the order parameter indicates a strong

rustration.
We note that in this example, in contrast with the ex-

mples discussed so far, there is variation in the values of the
rder parameter predicted by the FDA for different realiza-
ions of the network. This indicates that, as the expected
alue of the coupling strengths Anm becomes small �i.e.,

q−1/2� small�, fluctuations due to the realization of the net-
ork become noticeable. Although the values predicted by

he FDA and TAT depend on the realization of the network
nd frequencies, we note for k /kc�6 that these values track
he values observed for the numerical simulations of the cor-
esponding realization. As an illustration of this, we plot in
ig. 5 the values of r2 obtained from the TAT �stars� and the
alues of r2 obtained from the FDA �diamonds� versus the
alue obtained from numerical solution of Eq. �1� for k /kc

8. Each point corresponds to a given realization of the net-
ork, with results averaged over ten realizations of the fre-
uencies. The ellipses surrounding the stars �TAT data� have

IG. 4. Average of the order parameter r2 obtained from numerical solution
f Eq. �1� over ten realizations of the network with q=0.54 and frequencies
triangles� and average of the TAT �solid line� as a function of k /kc. Note the
ifferent scale in the horizontal axis as compared with the previous figures.
he horizontal dot-dashed line represents the value of the order parameter if

he oscillators were phase locked ��n=�m for all m and n�.
ertical and horizontal half-width corresponding to the stan-

ownloaded 11 Oct 2008 to 198.11.27.45. Redistribution subject to AIP 
dard deviation of r2 �TAT� and r2 �simulation� for the ten
frequency realizations. The half-width of the horizontal bars
on the diamonds �FDA data� indicates the standard deviation
of r2 �simulation�. Since the FDA already averages over the
frequencies, all the FDA values are the same for a given
realization of the network. In this Figure we can see that,
besides a small positive bias in the FDA, the theories track
the spread in the results of the numerical solution for differ-
ent realizations. Some bias in the FDA is not surprising,
because we averaged the right hand side of the nonlinear
equation �12� for the TAT in order to get Eq. �13� for the
FDA. Nonetheless, the bias is extremely small in most of our
examples.

The behavior observed in Fig. 4 at k /kc�4 can be inter-
preted as a shift in the transition point to a larger value of the
coupling strength, and is reminiscent of what occurs when
the time fluctuations �khn�t� in Eq. �5�� neglected in Eq. �6�
have an appreciable effect.12 We believe that the time fluc-
tuations have a more pronounced effect as the number of
negative connections becomes comparable to the number of
positive connections �i.e., as �q− 1

2 � becomes small� because
the critical coupling strength kc becomes large �roughly kc

��q− 1
2 �−1�. In particular, with positive connections, the con-

dition for neglecting khn�t� was that the number of connec-
tions to each node was large. In contrast, for the present case,
the analogous statement would be that �q−1/2� times the
number of connections is large, which is much less well
satisfied, �q− 1

2 �400=0.04�400=16. The extreme case of
zero mean coupling has already been studied numerically by
Daido,19 who found that in this case the oscillators lock in
the sense that their average frequency is the same, but their
phases diffuse. As argued in Ref. 12, such fluctuations have
the effect of shifting the transition to larger values of the

FIG. 5. Order parameter r2 obtained from the TAT �stars surrounded by
ellipses� and from the FDA �diamonds with horizontal bars� versus the value
obtained from numerical solution of Eq. �1� for k /kc=8. The solid line is the
identity. Each point corresponds to a realization of the network, with results
averaged over ten realizations of the frequencies. The ellipses and bars
indicate the spread in the results for different realizations; see the text.
Besides a small positive bias in the FDA, the theories track the spread in the
results of the numerical solution for different realizations.
coupling strength. It would be interesting to carry on simu-
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ations in networks with a much larger number of connec-
ions per node, as the effect of fluctuations would likely be
educed.

We also considered a case in which the adjacency matrix
s asymmetric and has mixed positive-negative connections.
or N=1500 nodes, we constructed an adjacency matrix by
etting its nondiagonal entries to 1, −1, and 0 with probabil-
ty 8 /45, 4, 45, and 11/15, respectively. The latter probabil-
ty yields an expected number of connections of 400. Our
heories work satisfactorily in this case, and, since the results
re similar to those in Fig. 3, we do not show them. In this
ase there is no guarantee that there is a real eigenvalue �as
eeded for estimating the critical coupling strength in Eq.
15��, or that the largest real eigenvalue �if there is one� has
he largest real part. Numerically, we find that for matrices
onstructed as in this example there is a real positive eigen-
alue and that, furthermore, it is well separated from the
argest real part of the remaining eigenvalues �see Fig. 6�. We
lso find this for other values of q provided �q− 1

2 � is not too
mall. We provide a discussion of this issue and show the
pectrum of the adjacency matrix in the Appendix.

I. DISCUSSION

In this paper, we have considered interacting phase os-
illators �Eq. �1�� connected by directed networks and net-
orks with mixed positive-negative connections. We have
resented theoretical approximations to the coupling strength
t which a macroscopic transition to coherence takes place,
nd to the values of a suitably defined order parameter past
he transition. In developing these approximations, one of
ur assumptions is that the number of connections per node
s large.

The previous theory of Ref. 12 given by Eq. �12� �the
ime averaged theory, TAT� can still be applied for asymmet-
ic networks with purely positive coupling and was found to
ive good predictions, applicable to individual asymmetric
andom realizations �Figs. 1�b� and 2�b��. The previous
heory given by Eq. �13� �the frequency distribution approxi-

ation, FDA� can also still be applied for asymmetric net-
orks with purely positive coupling and was found to give
ood predictions applicable to the ensemble average behav-
or of asymmetric network realizations �Figs. 1�a� and 2�a��.

IG. 6. Complex eigenvalues � �dots� of a 1500�1500 random matrix
hose off diagonal entries are 1, −1 or 0 with probabilities 8 /45, 4 /45, and
1/15, respectively. One eigenvalue is located at 
=136.2, while the other
499 eigenvalues uniformly fill a circle of radius � centered at the origin of
he complex � plane. Note that ��19.8 is substantially less than 136.2.
omparing with the theory in the Appendix , Eq. �A2� yields a prediction of
33.3 for the maximum real eigenvalue while Eq. �A1� predicts 19.7 for �.
hese are in excellent agreement with our numerically determined values.
he perturbative theory for the FDA was generalized to ac-

ownloaded 11 Oct 2008 to 198.11.27.45. Redistribution subject to AIP 
count for directed networks �Eqs. �26� and �27��, as was the
previous undirected network mean field theory, MFT �gener-
alized from Eqs. �18�–�21� to Eqs. �28�–�31��. In our ex-
ample �ii�, which had a very strong asymmetry, we found
that our directed FDA perturbation theory �Eqs. �26� and
�27�� gave a good description of synchronization, but that the
directed mean-field approximation gave a transition to syn-
chronization at a coupling substantially below that observed.
In contrast, for example �i�, in which the coupling matrices
were individually asymmetric but their ensemble average
was symmetric, the mean-field theory �and all the other theo-
ries in Sec. III� gave good results.

For the case of mixed positive-negative couplings we
presented a generalization of the TAT and FDA, Eqs. �32�–
�37�. We tested these results on two examples, example �iii�
in which a fraction 1−q=1/3 of the couplings were nega-
tive, and example �iv� in which a fraction 1−q=0.46 of the
couplings were negative. For example �iii� we found that
iteration of Eq. �33� converges to a fixed point with �n

−�m=0, and thus the result is similar to the case where all
connections are positive. In example �iv�, the result of itera-
tion of Eq. �33� yields nontrivial values for the phases �n. In
this case we found good agreement between the solutions of
�1� and the theory for the order parameter for k /kc large
�k /kc�4�, but that for smaller k /kc �k /kc�4�, although
yielding qualitatively similar behavior to that observed �Fig.
4�, the theory overestimates the order parameter. Analogous
to similar observations for symmetric networks with only
positive coupling,12 we speculate �Sec. V� that this is a finite
size effect associated with the fact that the effective number
of connections given in this example by �q− 1

2 �400=16 is not
sufficiently large to justify neglect of khn�t� in Eq. �5�.

In order to isolate the effect of the asymmetry and the
negative connections, we considered networks in which the
degree distribution is very narrow. The combined effect of
these factors with different heterogeneous degree distribu-
tions �e.g., scale free networks21� and with correlations in the
network �in particular, degree-degree correlations� is still
open to investigation.

In practice, one could be interested in networks in which
the asymmetry in the connections is strongly correlated with
the sign of the coupling �in analogy to some models in
neuroscience22�. Although we did not study such a case here,
we believe our theory provides a good starting point to study
the emergence of synchronization in these kind of structured
complex networks.
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APPENDIX: SPECTRUM OF CERTAIN RANDOM
MATRICES

In this appendix we discuss the characteristics of the
spectrum of the adjacency matrices considered in our ex-
amples. Although we will focus here on asymmetric matri-
ces, a similar argument works for symmetric matrices. The

matrices we consider are relatively sparse, with the position
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f the nonzero entries being chosen randomly �e.g., in the
ymmetric case, the position of the nonzero entries is chosen
hen constructing the network using the configuration
odel�, and their values being also determined randomly

rom a given probability distribution �e.g., 1 with probability
and −1 with probability 1−q�. Our interest is focused on

he gap between the largest real eigenvalue �if there is one�
nd the largest real part of the other eigenvalues. In Ref. 23
he spectrum of certain large sparse matrices with average
igenvalue 0 and row sum �m=1Anm=1 was described and a
euristic analytical approach was proposed. Using results for
atrices with zero mean Gaussian random entries,24 Ref. 23

redicts that the spectrum of the non-Gaussian random ma-
rices they consider consists of a trivial eigenvalue 
=1 with
he remaining eigenvalues distributed uniformly in a circle
entered at the origin of the complex plane with radius

� = �N� , �A1�

here �2 is the variance of the entries of the matrix. We find
hat this approach also succeeds in describing the spectrum
f the matrices in our examples. In our case, the diagonal
ntries are 0, so that the average eigenvalue is also 0 as in
ef. 23. We find that there is always a largest real eigenvalue
pproximately given by the mean field value


 = 	d̃2
/	d̃
 �A2�

see Refs. 12 and 25�, where d̃n=�m=1
N Anm and 	d̃2
=�n=1

N d̃n
2,

hich in the case considered in Ref. 23 reduces to 
=1. We
lso numerically confirm that the remaining eigenvalues are
niformly distributed in a circle of radius � as described in
ef. 23. This is illustrated in Fig. 6.

Thus for N�1 if 
�� there is a gap of size 
−� be-
ween the largest real eigenvalue and real part of the rest of
he eigenvalue spectrum. Using Eqs. �A1� and �A2� it can be
hown that, for networks with large enough number of con-
ections per node or with enough positive �or negative� bias
n the coupling strength, there is a wide separation between

he largest eigenvalue and the largest real part of the remain-

ownloaded 11 Oct 2008 to 198.11.27.45. Redistribution subject to AIP 
ing eigenvectors. For symmetric matrices, similar results ap-
ply �i.e., the bulk of the spectrum of the matrix A can be
approximately obtained as described above using Wigner’s
semicircle law�.
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