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While considerable progress has been made in the analysis of large systems containing a single type

of coupled dynamical component (e.g., coupled oscillators or coupled switches), systems containing

diverse components (e.g., both oscillators and switches) have received much less attention. We

analyze large, hybrid systems of interconnected Kuramoto oscillators and Hopfield switches with

positive feedback. In this system, oscillator synchronization promotes switches to turn on. In turn,

when switches turn on, they enhance the synchrony of the oscillators to which they are coupled.

Depending on the choice of parameters, we find theoretically coexisting stable solutions with either

(i) incoherent oscillators and all switches permanently off, (ii) synchronized oscillators and all

switches permanently on, or (iii) synchronized oscillators and switches that periodically alternate

between the on and off states. Numerical experiments confirm these predictions. We discuss how

transitions between these steady state solutions can be onset deterministically through dynamic

bifurcations or spontaneously due to finite-size fluctuations. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4822017]

Although extensive theoretical progress has been made in

understanding collective behavior in large systems con-

taining a single type of component (such as a switch1 or

oscillator2), there has been less development for diverse

systems containing more than one type of component.

However, many complex systems are composed of various

types of units.
3–9

For example, the system-wide dynamics

of the yeast cell cycle may be modeled as a system of

coupled switches and oscillators.8,9 Extending the numeri-

cal work of Ref. 9, we study interconnected Hopfield

switches10 and Kuramoto oscillators11 with positive feed-

back. We find three steady state solutions that may coex-

ist: (i) the Incoherent-Off (I-Off) state in which the

oscillators are incoherent and all switches are perma-

nently off, (ii) the Synchronized-On (S-On) state in which

the oscillators synchronize and all switches remain on,

and (iii) the Synchronized-Periodic (S-P) state in which

the oscillators synchronize and the switches periodically

turn on and off. Numerical experiments confirm our pre-

dictions for these steady state solutions and the transitions

between them. Our model demonstrates how the interplay

between different units can result in rich dynamics.

I. INTRODUCTION

The interdisciplinary nature of modern scientific research

has demonstrated the pervasive need of theory for complex

systems1,2 and complex networks.12 Of particular interest are

large systems involving interconnected components, such as

interacting neurons, genes, or people, which are responsible

for outcomes in the larger system that they compose.

Significant advances have been made for complex systems

containing a single type of component. For example, models

of synchronization of oscillators have been used to study col-

lective phenomena in physics (e.g., pedestrian bridges,13

Josephson junction circuits,14 and lasers15), social behavior

(e.g., flashing of fireflies,16 animal flocking,17 and audiences

clapping18), and physiology (e.g., circadian rhythms19 and

chemical oscillators11). Similarly, interacting switches have

been used to investigate gene expression,1 neural processing,10

electronic circuits,20 and chemical reactions.21 In spite of these

advances, the investigation of systems with diversity remains

an open topic at the forefront of complex systems research.3–9

Recently, a model was developed to study hybrid sys-

tems composed of coupled switches and oscillators.9 The

hybrid model recapitulated the system-wide dynamics of the

yeast cell cycle, while demonstrating that small perturbations

in the network topology result in cancer-like limitless activa-

tion of the cell cycle machinery. Motivated by these results

and by the observation that such hybrid systems allow the

investigation of various forms of diversity,3–7 we extend these

numerical results and analyze theoretically the dynamics of a

hybrid system of coupled oscillators and switches. Our analy-

sis utilizes the paradigmatic frameworks of Kuramoto oscilla-

tors11 and Hopfield switches10 to investigate stable solutions

arising for large systems with positive feedback, i.e., oscilla-

tor synchronization promotes switches to turn on; and when

switches turn on, they enhance the synchrony of the oscilla-

tors to which they are coupled. As a result, we find coexist-

ing, parameter-dependent, stable solutions with (i) incoherent

oscillators and all switches permanently off, (ii) synchronized

oscillators and all switches permanently on, or (iii) synchron-

ized oscillators and switches that periodically alternate

between the on and off states. Numerical experiments show
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that, in addition to deterministic transitions between states

due to slow parameter changes, there are stochastic transi-

tions between states mediated by finite-size fluctuations.

The remainder of this paper is organized as follows: In

Sec. II, we introduce our model, discuss the parameter ranges

of interest, and provide an overview of the dynamics to be

studied. In Sec. III, we analyze three types of steady state

solutions: an Incoherent-Off state (Sec. III A), a

Synchronized-On state (Sec. III B), and a Synchronized-

Periodic state (Sec. III C). These results are validated by nu-

merical experimentation in Sec. IV, where we explore transi-

tions between steady state solutions (Sec. IV A) and

investigate the relaxation of assumptions made in our analy-

sis (Sec. IV B). Conclusions are drawn in Sec. V.

II. MODEL

As an initial step toward analyzing hybrid models, we

consider networks with all-to-all interactions, where each os-

cillator (or switch) is coupled to all other oscillators and

switches, as illustrated in Fig. 1. The effect of network topol-

ogy on hybrid systems will be explored in future research.

To further facilitate our exploration, we focus our attention

on interactions between Kuramoto phase oscillators11 and

Hopfield switches,10 which respectively represent paradig-

matic models for coupled oscillators and switches.

Beginning with the Kuramoto phase oscillators,11 each

oscillator n ¼ 1; 2;…;N is identically coupled to all the

others by

_hn ¼ xn þ
k

N

XN

l¼1

sinðhl � hnÞ; (1)

where hnðtÞ represents the phase of oscillator n at time t; xn

is oscillator n’s intrinsic frequency randomly chosen from a

distribution XðxÞ, and kðtÞ is the strength of coupling, which

adapts to allow the switches to influence the oscillators.

Recently, there has been much interest in adaptive dynamics

of parameters in Eq. (1), including models that allow adapta-

tion of the oscillator frequencies,22 coupling strength,23,24 or

network structure.25

We next consider a system of M uniformly coupled

Hopfield switches.10 In this model, without coupling to

oscillators, each switch m ¼ 1; 2;…;M has in internal pa-

rameter xm that evolves as

_xm ¼ �xm � gþ Kx

M

XM

l¼1

~xl; (2)

where Kx represents the strength of interaction between

switches and ~xm corresponds to an external variable through

which switch m can interact with other switches. While the

internal variables fxmg are allowed to evolve continuously,

the external variables f~xmg are defined piecewise based on

the internal variables and may be taken to represent a

highly sensitive variable. For each switch m, we have that

~xm ¼ 1 ð~xm ¼ 0Þ for xm > 0 ðxm � 0Þ and the switch is said

to be in the “on” (“off”) state. Finally, the parameter g can

be interpreted as a threshold: if the last term in Eq. (2) is

larger than g for a long enough time, switch m will turn on.

We now introduce our mechanism for interconnectivity

between oscillators and switches. As previously mentioned,

the switches influence the oscillators through an adaptive os-

cillator coupling strength k, which evolves according to the

following relaxation model:

s _k ¼ �k þ K

M

XM

l¼1

~xl: (3)

Here, K determines the maximal coupling strength and s
controls the timescale for adaptation. To couple the switches

to the oscillators, we consider an additional coupling term in

_xm ¼ �xm � gþ Kx

M

XM

l¼1

~xl þ
Kh

N

XN

l¼1

sinðhl � bmÞ: (4)

Note that in addition to interacting with other switches as

described by Eq. (2), each switch is also influenced by each

oscillator’s phase. Specifically, the effect of the last term in

Eq. (4) is that oscillator l will promote the turning on of

switch m when its phase hl is close to bm þ p=2. Phase lags

fbmg are randomly chosen from a distribution BðbÞ. In this

paper, several distributions BðbÞ will be considered.

Having defined our hybrid model, we now simplify the

notation by adopting order parameters to measure collective

behavior. The extent of synchrony may be measured with an

order parameter rh and mean-field phase w, which are

defined by rheiw ¼ N�1
PN

n¼1 eihn . Similarly, we denote by

rx ¼ M�1
PM

m¼1 ~xm the fraction of switches in the on state. It

follows that our model is given by the following system of

M þ N þ 1 equations:

_xm ¼ �xm � gþ Kxrx þ Khrh sinðw� bmÞ; (5)

_hn ¼ xn þ krh sinðw� hnÞ; (6)

s _k ¼ �k þ Krx: (7)

Before concluding, we point out that although our

model, Eqs. (5)–(7), is similar to the hybrid model numeri-

cally studied by Francis and Fertig,9 there are several impor-

tant distinctive features: First, while both models propose

adding a new term to Eq. (2), the addition in the hybrid

model of Ref. 9 was instead piecewise-defined to be 1 for

FIG. 1. An all-to-all network of phase oscillators (black nodes and links on

right) is connected with an all-to-all network of switches (blue nodes and

links on left) by connecting each node of a given network with all nodes in

the other network (green links).
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hl 2 ½0; p� and 0 for hl 62 ½0; p�. The new term, sinðhl � bmÞ,
has the same qualitative effect while being analytically trac-

table and preserving the continuity of the original Kuramoto

model.11 Second, whereas Eqs. (5)–(7) allow switches to

affect oscillators through an adaptive coupling constant k,

the hybrid model of Ref. 9 implements this interconnectivity

instead by allowing the oscillators’ intrinsic frequencies to

adapt. We highlight this difference by offering the following

interpretation for the effect of switches turning off on the

oscillators: Whereas switches turning off under Eqs. (5)–(7)

may be interpreted as removing the coupling between oscil-

lators, the turning off of switches in the hybrid model of

Ref. 9 causes oscillators’ phases to freeze, in effect removing

their “oscillatory” property. Therefore, although an impor-

tant advantage of the present model is analytical tractability,

it is expected that both models will be relevant for various

applications. The appropriate model should be selected, for

example, based upon the physical structure of the network

components.6,7 Despite these differences, we find many simi-

larities between the models’ dynamics and thus the previous

numerical experiments9 will help guide our analysis.

A. Parameter choices

The free parameters in Eqs. (5)–(7) are the distributions

XðxÞ and BðbÞ as well as the variables K; Kx; Kh; s, and g.

We will focus on the case in which all oscillator-oscillator

interactions are attractive, requiring s;K > 0. Moreover,

oscillators following Eq. (1) are well known to begin to syn-

chronize when the coupling strength k > 0 is larger than

some critical value K0 > 0, which depends on the distribution

of frequencies XðxÞ. Therefore, to allow for the possibility of

synchrony, we only consider values K > K0. We will also

only consider positive switch-switch and switch-oscillator

interactions, which respectively requires Kx;Kh > 0. Finally,

to preserve the bistability property of individual switches, we

require g > 0. More specific choices will be discussed in

Sec. IV.

B. Overview of dynamics

We will focus on three macroscopic states for our system:

(i) the Incoherent-Off (I-Off) state in which the oscillators are

incoherent and the switches all remain in the off state

(Sec. III A); (ii) the Synchronized-On (S-On) state in which

the oscillators synchronize and the switches all remain in the

on state (Sec. III B); and (iii) the Synchronized-Periodic (S-P)

state in which the oscillators synchronize and each switch

periodically fluctuates between the on and off states

(Sec. III C). Example dynamics of system variables approach-

ing these three states may be observed in Fig. 2. We note that

similar states were previously numerically studied,9 albeit
with a different naming scheme. We also note that one can

observe states beyond (i)–(iii). For example, we have

observed systems for which the oscillators are incoherent

regardless of whether the switches are all on or all off (e.g.,

for small K) or the switches remain on regardless of whether

or not the oscillators synchronize (e.g., when Kh is very

small). Therefore, under the assumption that K;Kh > 0, the I-

On and S-Off states essentially decouple the oscillators and

switches, leaving the existing framework for the Kuramoto

and Hopfield models sufficient to capture their dynamics. We

also note that states (i)–(iii) may not be exhaustive in other pa-

rameter regimes and network topologies, which should be the

subject of future studies.

III. ANALYSIS

We now analyze the three steady state solutions of inter-

est. In Secs. III A and III B, we respectively study solutions

for the I-Off and S-On states. In Sec. III C, we study the S-P

state for two phase lag distributions: identical phase lags (Sec.

III C 2) and uniformly distributed phase lags (Sec. III C 1),

which respectively represent the limiting cases of very homo-

geneous and very heterogeneous switches. While the analyses

in Secs. III A and III B only assume large system size, the

analysis presented in Sec. III C additionally assumes that cou-

pling adaptation is slow compared to the switch and oscillator

dynamics, s� maxf1;x�1
0 g. The relaxation of assumptions

made in Sec. III C is addressed in Sec. IV B.

A. The incoherent-off state

We first consider the I-Off steady state solution, which

is the equilibrium solution of Eqs. (5)–(7) in which xm ¼ �g
and ~xm ¼ 0 for all m; rx ¼ 0; rh ¼ 0, and k ¼ 0. Note that

FIG. 2. Time series are shown for simulations of Eqs. (5)–(7) for Kh ¼ 10; K ¼ 6; s ¼ 25; Kx ¼ 3:2; g ¼ 1:5; D ¼ 1; x0 ¼ 5, and bm ¼ b ¼ 0 with initial con-

ditions rhð0Þ ¼ 0:7; kð0Þ ¼ 4, and three different distributions for fxmð0Þg. (a) For fxmð0Þg values chosen with mean �1 and standard deviation 1, the system is

initialized in the basin of attraction for the I-Off state. (b) For fxmð0Þg values with mean 3 and standard deviation 1, the system is initialized in the basin of attrac-

tion for the S-On state. (c) For fxmð0Þg values with mean 1 and standard deviation 1, the system is initialized in the basin of attraction for the S-P state.
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we assume g > 0 and N !1. In this solution, oscillators

evolve independently of each other and their phases are

given by hnðtÞ ¼ xntþ hnð0Þ.
In Fig. 2(a), we show a simulation that approaches this

steady state solution, where a system with N ¼ M ¼ 1000

oscillators and switches is initialized with kð0Þ ¼ 4, random

values fhng chosen such that rhð0Þ � 0:6, and random values

fxmg such that rxð0Þ � 0 and the set fxmð0Þg centered at �1.

As time increases, rx remains at 0 for all time t, each xm decays

to �g, and both rh and k decay to 0. From Eq. (7), one can see

that the decay of k is described by kðtÞ ¼ kð0Þe�t=s since

rx ¼ 0.

B. The synchronized-on state

We next consider the S-On state in which the oscillators

remain synchronized (rh > 0) and all switches remain on

(rx ¼ 1). Assuming rx ¼ 1 and looking for an equilibrium of

Eqs. (5)–(7) for large N and M, we first note that Eq. (7)

implies k ¼ K. Using this fixed value for k, we examine the

synchronization of oscillators under fixed coupling strength.

Assuming that the frequency distribution XðxÞ is unimodal,

smooth, and symmetric about its mean x0, the order parame-

ter rh is given implicitly for k > K0 � p�12=Xð0Þ by the

nonzero solution of the equation11

1 ¼ k

ðp=2

�p=2

cos2Xðkrh sin hÞdh: (8)

Here, K0 is referred to as the critical coupling strength as the

oscillators will deterministically attain the incoherent state

whenever k � K0 [which is always the case for the proposed

hybrid model, Eqs. (5)–(7), when K � K0]. While one

can numerically solve the above to determine the dependency

of rh on k for arbitrary distributions XðxÞ, it may be

directly integrated for a Lorentzian distribution XðxÞ
¼ p�1D=½ðx� x0Þ2 þ D2� yielding

rh ¼
0; k < K0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� K0

k

r
; k � K0;

8><
>: (9)

where D represents the spread in frequencies and K0 ¼ 2D.

When oscillators synchronize, they rotate together with a

mean field phase wðtÞ ¼ x0tþ wð0Þ, where wð0Þ depends on

initial conditions.

Having described the macroscopic dynamics of the S-

On state, we now turn to the internal switch dynamics xm for

this solution (recall that the external switch states are given

by ~xm ¼ 1 for all m to be consistent with rx ¼ 1). Using that

wðtÞ ¼ x0tþ wð0Þ and that both rx and rh are fixed, we

directly integrate Eq. (5) to find

xmðtÞ ¼ x̂mðtÞ � e�ðt�t0ÞDm; (10)

where Dm is a constant that depends on initial conditions,

x̂mðtÞ ¼ A þ Csinðx0t� d� bmÞ (11)

is the steady state solution, and we have defined the follow-

ing constants:

A ¼ ðKx � gÞ; (12)

C ¼ Khrh cos ðdÞ; (13)

d ¼ arccosð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

0

q
Þ: (14)

In the limit t!1, the second term in Eq. (10) decays, and

thus all internal switch variables approach similar trajecto-

ries described by Eq. (11). Specifically, they attain oscilla-

tory trajectories with a mean value A and an oscillation

amplitude C.

One prediction of this result is that to be self-consistent

with our definition of the S-On state (i.e., rx ¼ 1 for all t), we

require that ~xm ¼ 1 and xm > 0 for all t and m. Because xmðtÞ
obtains its minimum at A � C, the existence of a S-On solu-

tion requires parameters such that A > C, implying that Kx

should be larger than a critical value Kx
1 given by

Kx
1 ¼ gþ Khrh cosðdÞ: (15)

For a Lorentzian frequency distribution XðxÞ, we have

Kx
1 ¼ gþ Kh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2D=K

1þ x2
0

s
: (16)

Another result is that in the S-On state, the only difference

between the switches’ internal variables fxmg is the phase at

which they oscillate [see Eq. (11)]. It follows that for a given

distribution of phases BðbÞ, we may predict the distribution of

internal switch parameters, qðxÞ, which may or may not

depend on time. Of particular interest are the limiting cases of

identical phase lags and uniformly distributed phase lags,

BðbÞ ¼ ð2pÞ�1
for b 2 ½�p; p� and 0 otherwise. For identical

phase lags, bm ¼ b for all m, all switches have internal varia-

bles with identical trajectories xmðtÞ ¼ AþC sinðx0t� d�bÞ.
For uniformly distributed phase lags in the asymptotic limit

M!1, the distribution of possible x values for a randomly

selected switch is given by

qðxÞ ¼ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 � ðx� AÞ2

q : (17)

This distribution is obtained by solving Eq. (11) for bmðx̂mÞ
and simplifying qðxÞ ¼ jdbmðxÞ=dxjBðbmðxÞÞ using that

cosðarcsinðsÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p

.

In Fig. 2(b), we confirm these results by showing time

series for dynamics approaching the S-On state solution.

The system containing N ¼ M ¼ 1000 oscillators and

switches is initialized with kð0Þ ¼ 4, random values fhng
chosen such that rhð0Þ ¼ 0:7, and random values fxmg such

that hxmð0Þi ¼ 3. For these initial conditions, rx quickly

approaches and remains at rx ¼ 1. Because a Lorentzian

distribution of frequencies XðxÞ was used, rh converges to

its expected solution rh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2D=KÞ

p
¼

ffiffiffiffiffiffiffiffi
2=3

p
. One can

also observe that k approaches its expected value of

k ¼ K ¼ 6. Assuming that rx is constant, Eq. (7) implies

that k converges exponentially to K with time constant s.
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C. The synchronized-periodic state

We now analyze steady state solutions in which the oscil-

lators synchronize and each switch m periodically fluctuates

between the on (~xm ¼ 1) and off (~xm ¼ 0) states. Our analysis

assumes that both N and M are large and that the adaptation in

coupling strength is slow compared to the oscillator and

switch dynamics, s� maxf1;x�1
0 g. This separation of time-

scales will allow us to simultaneously consider the steady

state behavior of the dynamics of switches and oscillator

phases, which evolve at the fast time scale [i.e., Eqs. (5)–(6)

while assuming that k is approximately constant], as well the

dynamics of coupling adaptation, which evolves at the slow

time scale [i.e., Eq. (7) while assuming the fast dynamics

approximately remain in a steady state]. The relaxation of this

large s assumption is numerically studied in Sec. IV B 2.

The nature of the S-P state strongly depends on the distri-

bution of phase lags BðbÞ. Therefore, in this section, we study

the limiting cases in which either (1) the distribution of phase

lags is uniform, BðbÞ ¼ ð2pÞ�1
, or (2) all the phase lags are

identical, bm ¼ b for all m. In Sec. IV B 1, we find that the

results for more general unimodal phase lag distributions

behave as an interpolation between the results for these two

cases.

1. Uniformly distributed phase lags

We now study the steady state solution for the situation

in which the phase lags fbmg are uniformly distributed in

½�p; p� (i.e., BðbÞ ¼ ð2pÞ�1
for b 2 ½�p; p� and 0 other-

wise), which is the most heterogeneous distribution of phase

lags. We begin our analysis by assuming that the system is in

the S-P state, the coupling strength adaptation is slow,

s� maxf1;x�1
0 g, and the system size is large, N;M!1.

Motivated by our results from Sec. III B, we look for a solu-

tion in which rx and rh are time independent.

Letting rx be constant, Eq. (7) has an equilibrium value

of k ¼ Krx. It follows that the order parameter rh is given by

Eq. (9) with k ¼ Krx. Note that our assumption that the oscil-

lators synchronize further restricts our interest to values such

that Krx > K0. Also, recall that the synchronized oscillators

rotate with a mean field wðtÞ ¼ x0tþ wð0Þ. Using these

explicit descriptions for k; rh, and w, we can again directly

integrate Eq. (5). Neglecting the transient part of this

solution [e.g., see Eqs. (10)–(11)], we find that the switches’

internal variables follow trajectories described by

xmðtÞ ¼ Dþ E sinðw� d� bmÞ; (18)

where d is defined in Eq. (14) and

D ¼ Kxrx � g; (19)

E ¼ Kh cosðdÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K0=ðKrxÞ

p
: (20)

As in the derivation of Eq. (17), the distribution of xm values

for a randomly selected switch is given by

qðxÞ ¼ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � ðx� DÞ2

q : (21)

Because the time-invariant fraction of switches in the on state,

rx, corresponds to the fraction of switches with positive xm,

i.e., rx ¼
Ð1

0
qðxÞdx, we can insert q from Eq. (21) to write a

consistency equation for rx. After integration, we obtain

FðrxÞ � rx � 1=2� p�1arcsinðD=EÞ ¼ 0; (22)

where rx values solving FðrxÞ ¼ 0 are potential solutions for

the S-P state. Therefore, we found that when the distribution

of phase lags is uniform, there is a potential solution in

which each switch turns on and off periodically, but the frac-

tion of switches that are on remains constant and can be

found by solving a self-consistency condition, Eq. (22).

In Fig. 3(a), we show numerically computed solutions of

Eq. (22), which were determined numerically to be either sta-

ble (rðsÞx , blue solid curved line) or unstable (rðuÞx , red dashed

curved lines). The I-Off (rx ¼ 0) and S-On (rx ¼ 1) states are

also shown (horizontal lines). The S-On solution is only stable

above the critical value Kx
1 defined by Eq. (15). Due to the na-

ture of solutions to Eq. (22), which gives rise to both stable

and unstable branches, two additional critical values appear,

Kx
2 and Kx

3, which respectively denote the values of Kx at

which the 0 < rðsÞx < 1 branch appears and disappears. These

may be computed by jointly solving F¼ 0 and dF=drx ¼ 0 for

ðrx;K
xÞ. These three critical values bound regions of ðKx; gÞ

phase space in which the system has similar multi-stability

FIG. 3. Uniformly distributed phase lags bn 2 ½�p; p�. (a) Steady state solutions for the I-Off, S-On, and S-P states are, respectively, shown by rx ¼ 0; rx ¼ 1,

and solutions solving FðrxÞ ¼ 0 for Eq. (22). Solid blue lines indicate stable solutions, whereas dot-dashed red lines indicate unstable solutions. (b) Stability

regions are shown for variable Kx and g. The definitions are summarized in Table I. The vertical line indicates parameter values shown in Fig. 3(a). Note that

for g > g	, the critical values Kx
2 and Kx

3 merge, corresponding to the disappearance of the stable branch rðsÞx . (c) No S-P state exists for g > g	. The vertical

line indicates the g and Kh values shown in Fig. 3(b).
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properties. These regions are labeled fA;B; C;Dg and their

descriptions are summarized in Table I.

In Fig. 3(b), we show the ðKx; gÞ phase space depicting

these stability regions for variable switch thresholds, g, and

switch-switch coupling strength, Kx. The parameter values

used to make Fig. 3(a) are shown by a vertical black line la-

beled a. Note that the critical values Kx
2 (blue dot-dashed line)

and Kx
3 (red solid line) merge at a critical value g	. For larger

g values, there is no stable branch rðsÞx and thus no S-P state.

In Fig. 3(c), we plot the critical threshold value g	 as a

function of the switch-oscillator coupling strength Kh, which

may be numerically obtained by simultaneously solving

F ¼ 0; dF=drx ¼ 0, and d2F=dr2
x ¼ 0 for ðrx;K

x; gÞ. The

vertical black line labeled b indicates the g and Kh values

shown in Fig. 3(b).

In summary, we have found that for fixed Kh, a stable

S-P state only exists provided that g is sufficiently small and

Kx 2 ðKx
2;K

x
3Þ. This sensitive interplay between parameters

Kh; Kx, and g may be intuitively understood by considering

Eq. (5) and observing that g competes with Kx and Kh in

determining the dynamics of xm. The parameter ranges

allowing the S-P state (i.e., the union of the stability regions

B and C) therefore represents a regime in which no parameter

dominates Eq. (5).

2. Identical phase lags

We now consider the S-P state for identical phase lags

by letting BðbmÞ ¼ dðbm � bÞ, i.e., bm ¼ b for all m. While

our analytic approach to this system is very similar to that

presented in Sec. III C 1 for uniformly distributed phase lags,

the analysis is slightly more involved. Therefore, for brevity,

we include this derivation in Appendix and only summarize

our results here.

Motivated by the observation that the internal switch

variables fxmg attain identical trajectories in the S-On state

for identical phase lags [e.g., see Eq. (11) for bm ¼ b], it is

expected and observed that switches also attain identical tra-

jectories in the S-P state for identical phase lags. It follows

that rx will periodically fluctuate between 1 (all switches on)

and 0 (all switches off), attaining a time-varying trajectory

sometimes characterized as a “square wave.” Moreover, as

numerically observed in this and previous research,9 this tra-

jectory is periodic with period T0 ¼ 2p=x0 and a duty ratio

that determines its time-averaged value hrxi. See Appendix

for details. Importantly, these dynamics occur at a timescale

much faster than s, since we assumed s� x�1
0 . In this limit,

kðtÞ ¼ khrxi þ OðT0=sÞ and therefore we treat k(t) as a con-

stant, k ¼ Khrxi. The order parameter rh reaches the value

given by Eq. (9) with k ¼ Khrxi. Assuming that rh is constant

and that rx alternates between 0 and 1, Eq. (5) can be inte-

grated to obtain the trajectory of the switches’ internal

variable xm in terms of the time average hrxi. Finally, a self-

consistency equation is obtained by requiring that these

trajectories result in the same average value hrxi.
In Fig. 2(c), we show time series for our system with

identical phase lags approaching the SP state. As expected,

rx periodically alternates between 0 and 1 with frequency

x0. In addition, k approaches its expected value Khrxi and rh

approaches its expected value given by Eq. (9) with k ¼
Khrxi (although slight fluctuations can be observed for both

variables since T0=s is nonzero).

In Fig. 4, we show the value of hrxi for S-P solutions

found by our consistency equation (see Appendix) as a func-

tion of Kx for K ¼ 6; Kh ¼ 10; g ¼ 1:5 [Fig. 4(a)] and

K ¼ 6; Kh ¼ 10; g ¼ 1:8 [Fig. 4(b)]. As in Sec. III C 1, this

consistency equation can give rise to several solutions

hrxi 2 ½0; 1�. These often include a stable solution (hrxiðsÞ,
blue curved solid line) and unstable solutions (hrxiðuÞ, red

curved dashed lines). In addition to solutions for the S-P state,

solutions for the I-Off and S-On states are also shown (hori-

zontal lines), which are respectively at hrxi ¼ 0 and hrxi ¼ 1.

Note that the S-On state is only stable for Kx > Kx
1, given by

Eq. (15). In Figs. 4(a) and 4(b), we indicate the ranges of Kx

that correspond to the regions described in Table I. Note that

because Kx
2 is larger than Kx

1 in Fig. 4(b), the order of the

regimes as Kx is increased is different to that in Fig. 4(a).

TABLE I. Summary of stability regions.

Region Stable solutions for rx

A 0

B rðsÞx and 0

C 1, rðsÞx ; and 0

D 1 and 0

FIG. 4. Identical phase lags. (a) For g ¼ 1:5, steady state solutions for the I-Off, S-On, and S-P states are, respectively, shown as hrxi ¼ 0; hrxi ¼ 1, and values

hrxi ¼ 0 solving the consistency equation developed in Appendix. Solid (dot-dashed) lines indicate stable (unstable) solutions, where one can observe that the

S-On state is only stable for Kx > Kx
1 given by Eq. (15). This critical value in addition to critical values Kx

2 and Kx
3 leads to four regions of stability. (b)

Solutions for hrxi are shown for g ¼ 1:8, where because Kx
2 > Kx

1 the stability region B has been replaced by stability region D. (c) Bifurcation diagram where

critical Kx values are shown for variable g. Vertical lines labeled a and b, respectively, indicate the g and Kx values shown in Figs. 4(a) and 4(b).
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In Fig. 4(c), we provide a bifurcation diagram summa-

rizing the stability regions for variable switch-switch cou-

pling strength, Kx, and switch thresholds, g. Note that for

g > g	 (the value at which Kx
2 and Kx

3 merge), there is no sta-

ble solution hrxi and hence no S-P state. The vertical black

lines labeled a and b, respectively, indicate the g and Kx val-

ues shown in Figs. 4(a) and 4(b).

In summary, although the temporal dynamics of the sta-

ble S-P states differ greatly for switches with uniformly dis-

tributed phase lags and identical phase lags (e.g., rx either is

constant or periodically fluctuates), the underlying state

space is very similar [e.g., compare Fig. 3(b) with Fig. 4(c)].

In both cases, a stable S-P state only exists for a regime in

which the parameters of the three terms describing the dy-

namics of the internal switch variables fxmg (i.e., g; Kx, and

Kh) are chosen such that no single term dominates Eq. (5).

IV. NUMERICAL INVESTIGATIONS

Having introduced our hybrid model, the steady states of

interest, and our analysis, we now illustrate our results and

numerically explore further dynamics. In Sec. IV A, we inves-

tigate transitions between the steady state solutions, which

may either be deterministically onset by the slow variation of

a parameter (Sec. IV A 1) or stochastically onset by finite-size

fluctuations (Sec. IV A 2). In Sec. IV B, we broaden the scope

of our analysis by numerically studying the relaxation of the

assumptions made in Sec. III C. Specifically, in Sec. IV B 1,

we study unimodal phase lag distributions; whereas in Sec.

IV B 2, we relax the assumption of slow coupling adaptation.

A. Transitions between steady state solutions

Here, we validate our analysis and explore two mecha-

nisms that can cause transitions between the I-Off, S-On, and

S-P steady state solutions: (1) deterministic transitions onset

by the slow variation of a parameter (e.g., Kx) and (2) sponta-

neous transitions onset by fluctuations arising for systems of

finite-size.

1. Deterministic transitions

To validate the predicted deterministic transitions

between the stable solutions for the I-Off, S-On, and S-P

states, we consider several simulations. In these simulations,

our system is initialized near a particular stable solution for

given parameters K; Kh; Kx; s, and g. Then, Kx is slowly var-

ied to explore this branch and other branches denoting stable

solutions. When Kx is varied such that the current state’s solu-

tion becomes unstable, the system deterministically transitions

to a solution that is stable. This method thus allows us to both

confirm the accuracy of our analysis for stable solutions and

study transitions onset by variable Kx (which may be further

studied as dynamic bifurcations26).

To allow for the numerical study of all three steady state

solutions, we restrict our exploration to parameter regimes

allowing for all three states (i.e., parameter regimes near sta-

bility region C). Based on our analytical results as well as

many simulations with various parameter choices, we select

the following parameters for our numerical experiments: (i)

N¼ 1000 and M¼ 1000 are chosen to be sufficiently large

such that our asymptotic analysis for N;M!1 is accurate.

(ii) The frequencies xn are chosen from a Lorentzian XðxÞ
with mean x0 ¼ 5 and spread D ¼ 1. Choosing x0 ¼ Oð1Þ
ensures that the timescales of the first and last terms in the

r.h.s. of Eq. (5) are similar. (iii) The phase lags bm are chosen

uniformly from ½�p; p� to represent a very heterogeneous sys-

tem. (iv) The parameter determining the timescale of coupling

adaptation (s ¼ 25) is chosen to be sufficiently large such that

a separation of timescales analysis is valid. (v) The maximal

oscillator coupling strength K¼ 6 is chosen to be sufficiently

large such that the oscillators can synchronize in both the S-

On and S-P states. For the parameters studied here, we found

that choosing K � 3K0 typically sufficed. (vi) The switch

thresholds g < g	 are chosen to be sufficiently small to allow

a stable S-P state. (vii) The switch-oscillator and switch-

switch coupling strengths (Kh and Kx, respectively) are chosen

such that no single term dominates Eq. (5). This was shown to

be the case for Kh ¼ 10 and Kx 
 3 in Figs. 3 and 4.

In Figs. 5(a)–5(c), we show three such numerical experi-

ments, each of which involves keeping all other parameters

fixed while slowly varying Kx at a coarse-grained rate of

dKx=dt ¼ 60:005. The trajectories shown were chosen to val-

idate the accuracy of our results for all three steady states and

to highlight the possible transitions between these states (e.g.,

S-P!I-Off, S-P!S-On, S-On!S-P, and S-On!I-Off). In

these figures, blue solid and red dashed lines, respectively,

indicate stable and unstable solutions, whereas filled and open

circles indicate values observed from directly simulating Eqs.

(5)–(7) for decreasing and increasing Kx, respectively.

In Figs. 5(a) and 5(b), we let g ¼ 1:5 and show two sim-

ulations: Hysteresis is shown in Fig. 5(a) for a Kx trajectory

beginning at Kx ¼ 3:6, decreasing until Kx ¼ 3, and then

increasing back to Kx ¼ 3:6. Note that the system is initial-

ized and remains in the S-On state until Kx decreases below

Kx
1 � 3:12, and then it remains in the S-P state until Kx sur-

passes Kx
3 � 3:38, above which the system returns to its orig-

inal state. In Fig. 5(b), we let Kx decrease from 3.7 to 2.9 and

then increase back to 3.7. As before, while Kx decreases the

system remains in the S-On state until Kx decreases below

Kx
1 at which time it transitions to the S-P state. However,

when Kx later decreases below Kx
2 � 2:95, the system irre-

versibly transitions to the I-Off state. It remains in this state

even as Kx increases back to its initial value.

In Fig. 5(c), we let g ¼ 1:8 and show a trajectory involv-

ing a cascade of two irreversible transitions: Kx is increased

from 3.5 to 3.7, then it decreases from 3.7 to 3.3, and finally

it increases from 3.3 to 3.75. Under this trajectory for Kx, the

system undergoes the following discontinuous transitions: it

is initialized and remains in the S-P state until Kx surpasses

Kx
3, then it transitions to the S-On state where it remains until

Kx decreases below Kx
1, after which it transitions to and

remains in the I-Off state.

In Figs. 5(d)–5(f), state diagrams summarize the three

experiments shown in Figs. 5(a)–5(c). Solid lines indicate tran-

sitions that occur in the experiments shown in Figs. 5(a)–5(c),

whereas dashed lines indicate potential transitions that can

occur under variable Kx (with all other parameters fixed).

Reversible transitions are indicated by bidirectional links.
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2. Spontaneous transitions

In addition to transitions arising from slow change in Kx,

transitions may also arise spontaneously due to finite-size

fluctuations. These fluctuations have been observed in the

hybrid network model of Ref. 9 and have been characterized

as typically OðN�1=2Þ for systems of Kuramoto oscillators.27

Because we numerically observe that these finite-size effects

have the most pronounced influence for our system when the

switches have identical phase lags, bm ¼ b for all m, in this

section, we focus on spontaneous transitions arising for small

systems with identical switches [see Fig. 6(b)].

We now examine a state in which our system spontane-

ously transitions back and forth between the S-On and S-P

solutions, a phenomenon which has been referred to as

“flickering” for stochastic systems near critical transitions.28

To observe this phenomenon, we will again choose parame-

ters such that all three states may be observed. Therefore, we

choose K ¼ 6; Kx ¼ 3:2; Kh ¼ 10; g ¼ 1:5; b ¼ 0, and

s ¼ 25, placing the system in stability regime C [see

Fig. 4(a)]. For these fixed parameters, Eqs. (5)–(7) were

simulated for various system sizes with N¼M and initial

conditions placing the system in the S-On state. In Fig. 6(a),

we plot time series for rxðtÞ; rhðtÞ; kðtÞ, and xmðtÞ for a simu-

lation with N ¼ M ¼ 100, where one can observe flickering

between the S-On and S-P state solutions. As previously

mentioned, this flickering phenomenon occurs due to finite-

size fluctuations that spontaneously drive the system back

and forth between stable equilibria (see Ref. 22). We finally

point out that this flickering phenomena was observed in nu-

merical experiments by simulating with small system size

(e.g., N ¼ M < 100) and choosing parameters placing the

system near a bifurcation. Interestingly, while flickering was

easily observed for our system with identical phase lags for a

variety of parameter ranges, flickering has yet to be observed

for uniformly distributed phase lags even after a thorough

exploration of parameter space. This observation suggests

that phase lag heterogeneity can significantly counter the de-

stabilizing effects of finite-size fluctuations.

B. Relaxing assumptions

We have analytically studied the S-On and I-Off states

for general parameter choices, as well as the S-P state for

large s and phase lags that are either identical or uniformly

distributed. We now show that our analysis also qualita-

tively predicts the system’s dynamics for unimodal phase-

lag distributions (Sec. IV B 1) and for moderate-to-small s
(Sec. IV B 2).

1. Unimodal phase lags

When considering unimodal phase lag distributions

BðbÞ, the results presented in Secs. III C 1 and III C 2, respec-

tively, represent analyses of the S-P state solution for the

limiting case scenarios in which BðbÞ is very heterogeneous

or very homogeneous. For example, if BðbÞ is a normal dis-

tribution with mean �b and variance r2
b, then the previous

analyses represent analytic results for the limits rb !1 and

FIG. 5. Deterministic transitions onset by variable Kx. (a)–(c) Trajectories of the macroscopic dynamics are shown for variable Kx. Solid and dashed lines,

respectively, indicate stable and unstable solutions for the I-Off, S-On, or S-P states. Filled and open circles, respectively, denote values observed for decreas-

ing and increasing Kx. Three experiments are shown: (a) two reversible transitions yielding a hysteresis loop; (b) a reversible transition followed by an irrevers-

ible transition; and (c) a cascade of two irreversible transitions. (d)–(f) State diagrams summarize the systems’ trajectories for these three experiments.

FIG. 6. Spontaneous transitions onset by finite-size fluctuations are shown

between the S-On and S-P states for Eqs. (5)–(7) with identical phase lags.

These transitions are akin to the “flickering” phenomenon observed for sto-

chastic processes.
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rb ! 0. We hypothesize that if BðbÞ is unimodal, then the

S-P state solution can be qualitatively described by an inter-

polation between these two limiting cases. For example, if

we vary rb from 1 to 0, we expect the trajectory rxðtÞ and

its time averaged value hrxi to smoothly evolve from the ana-

lytic prediction for rb ¼ 1 (Sec. III C 1) to the analytic pre-

diction for rb ¼ 0 (Sec. III C 2).

This conjecture is illustrated for a choice of parameters in

Fig. 7 where we plot observed rxðtÞ trajectories [Fig. 7(a)] and

the time-average hrxi as a function of Kx for rb 2 f0; 1; 10g
[Fig. 7(b)]. In this figure, we plot the results from simulations

with Kh ¼ 10; K ¼ 6; Kx ¼ 3:2; g ¼ 1:5; D ¼ 1; x0 ¼ 5,

and N ¼ M ¼ 2000. As in previous experiments, these pa-

rameters were chosen to place the system in a regime allow-

ing for the S-P state (i.e., stability region C). The system size

was also chosen to be sufficiently large (i.e., N ¼ M ¼ 2000)

for our asymptotic analysis to be valid.

In Fig. 7(a), one can observe that while rxðtÞ is a

piecewise-constant periodic trajectory for rb ¼ 0, as rb

increases, this trajectory becomes oscillatory with an ampli-

tude that decays to 0 as rb !1. In Fig. 7(b), we show the

ðKx; hrxiÞ phase space, where the solid lines indicate our ana-

lytic predictions for rb ¼ 1 (rðsÞx , as discussed in Sec. III C 1)

and rb ¼ 0 ðhrxiðsÞ, as discussed in Sec. III C 2). As expected,

numerically observed values for hrxi with rb 2 f0; 1; 10g
(symbols) are found to be near the region bounded by the two

curves. It follows that although heterogeneity in phase lags

has a drastic affect on the particular time-varying function

that describes rxðtÞ for the S-P state, its average value hrxi and

the underlying phase space are only slightly affected.

2. Moderate-to-small s

The analysis presented in Sec. III C for the S-P state

assumed slow coupling adaptation, s� maxf1;x�1
0 g, and

only studied steady-state solutions. We now show that recent

results for the transient behavior of rh may be used to reduce

the dimensionality of Eqs. (5)–(7) without requiring this

assumption. Specifically, it has been shown for systems of

all-to-all coupled Kuramoto oscillators that the long-time dy-

namics of the order parameter rheiw in the asymptotic limit

N !1 is given by29

_rh ¼ �Drh þ
k

2
rhð1� r2

hÞ; (23)

_w ¼ x0: (24)

We note that although this result assumes a Lorentzian fre-

quency distribution XðxÞ, a similar, yet more complicated,

expression may be obtained and treated numerically for

more general frequency distributions. We further note that it

has been recently shown that these results hold even when k
and D are allowed to vary with time.24 Therefore, restricting

our attention to the example of a Lorentzian distribution of

frequencies, we find that for identical switches in the asymp-

totic limit N !1, the dynamics of the S-P state is given by

a system of four ordinary differential equations: Eqs.

(23)–(24) along with

_x ¼ �x� gþ Kx~x þ Khrh sinðw� bÞ; (25)

s _k ¼ �k þ K~x: (26)

Here, we have assumed that identical switches have attained

identical trajectories with xm ¼ x and ~xm ¼ ~x ¼ rx for all m.

Remarkably, the macroscopic dynamics of our ðN þM þ 1Þ-
dimensional system given by Eqs. (5)–(7) is completely

described by a three-dimensional system as N;M!1
(since w may be integrated).

In Fig. 8, we show that Eqs. (23)–(26) (lines) accurately

describe the macroscopic dynamics of the high-dimensional

system, Eqs. (5)–(7) (symbols), in the S-P state. In the top,

center, and lower panels, we respectively plot time series for

rhðtÞ; xðtÞ, and kðtÞ, where data are provided for three values

of s. Time series are shown for times t 2 ½176; 178�, which

allowed enough time for the systems to approximately reach

the stable S-P state. Initial conditions for these simulations

were chosen to place the system in the basin of attraction of

the S-P state by letting rh � 0:7; k ¼ 4, and either xm uni-

formly distributed in ½�1; 0� for Eqs. (5)–(7) or x ¼ �1 for

Eqs. (23)–(26). Other parameter values included Kh ¼ 10;
K ¼ 6; g ¼ 1:5; D ¼ 1; x0 ¼ 5; b ¼ 0, and N ¼ M ¼ 103.

In all three panels, the thick solid blue lines indicate the pre-

dicted values using our separation of timescales analysis dis-

cussed in Sec. III C 2. These are in good agreement with

observed values for s ¼ 10. Interestingly, while the rhðtÞ and

kðtÞ trajectories begin to fluctuate significantly as s
decreases, the x(t) trajectories differ only slightly.

In Fig. 9, we show that this slight variation in x(t) for

decreasing s can result in the system having a qualitatively

FIG. 7. (a) Trajectories rxðtÞ are shown for the S-P state with phase lags with

increasing heterogeneity, rb2f0;1;10g. While rxðtÞ is piecewise-constant for

rb¼0, it becomes oscillatory with decreasing amplitude as rb increases. (b)

The underlying phase space varies only slightly for variable phase lag hetero-

geneity. Observed values (symbols) for the time-averaged behavior hrxi are

shown for three values of rb, which are expected to fall within the region

bounded by our theoretical predictions hrxiðsÞ and rðsÞx .
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similar phase-space if s is not too small. Here, we plot

observed values of hrxi (symbols) for the S-P state versus

Kx for several values of s. Whereas our separation of time-

scales analysis discussed in Sec. III C 2 (curved line) accu-

rately predicts the observed values for s ¼ 10, as s
decreases, the hrxi values appear to only shift slightly to

the right, preserving the underlying topology. Therefore,

if s is not too small (e.g., no S-P state was observed for

s ¼ 0:01 for these parameters), then our analysis for large

s� maxf1;x�1
0 g can qualitatively predict the S-P state

even when this assumption is violated.

V. DISCUSSION

We have introduced and analyzed a hybrid model con-

sisting of interconnected Hopfield switches10 and Kuramoto

phase oscillators,11 which respectively represent paradig-

matic models for studying switch-like behavior1,20,21 and

synchronization.2,14–19 In all-to-all networks with positive

feedback, rich dynamics were observed and analyzed,

including three notable steady state solutions characterized

by: (i) incoherent oscillators and all switches permanently

off (I-Off), (ii) synchronized oscillators and all switches per-

manently on (S-On), or (iii) synchronized oscillators and

switches that periodically alternate between the on and off

states (S-P). This latter case can be divided into cases where

the average number of switches on remains fixed, but indi-

vidual switches oscillate (when phase lags are uniformly dis-

tributed) and cases where the bulk of switches oscillate

between on and off (when phase lags are identical).

Intermediate states are possible for different distributions of

phase lags.

In Sec. IV, we numerically validated our results, high-

lighted their applicability outside of our assumptions, and

explored transitions between these steady states (i)–(iii).

Specifically, transitions between these states may be deter-

ministically onset by the slow varying of a system parameter.

These are well described by dynamic bifurcation theory26

provided that the system is sufficiently large and that the pa-

rameter is varied sufficiently slow. For smaller system sizes,

we found that our system can spontaneously jump from the

basin of attraction of one state to the basin of attraction of

another due to finite-size fluctuations (which describe the

discrepancy between asymptotic theory and systems with

finite-size27). We note that similar spontaneous transitions

were previously observed for systems of coupled

oscillators.22,23

In summary, we have proposed and studied a hybrid

system of coupled oscillators and switches and have shown

that it exhibits rich dynamics including multi-stability

and hysteresis. This hybrid system was designed to serve

as a simple example of a complex system with dynamical

elements of different types, and thus several simplifying

assumptions were made. In particular, two simplifications

allowed us to neglect the effect of network topology in the

present study: (i) the coupling between oscillators and

switches was taken to be all-to-all, and (ii) we allowed the

switches to affect the oscillators through an adaptive global

coupling strength k(t). If either or both of these assumptions

are modified, then it is expected that more complicated

dynamics will arise reflecting heterogeneities present in

the network and/or switch dynamics (e.g., as observed in

Ref. 9). Our model can therefore be used as a testbed to

study the effect of heterogeneity and coupling network

structure in collections of hybrid complex systems, and

potentially to elucidate control mechanisms to alter their

states. Finally, because we determined the stability of our

system’s dynamical states numerically, another fruitful

direction of research includes the analysis of stability and

classification of bifurcations.
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FIG. 9. Observed values for hrxi from direct simulation of Eqs. (5)–(7)

(symbols) agree well with predicted values from the separation of timescales

analysis for large s (curved line). Results are shown with variable Kx for

three values of s. Note that as s becomes small, the observed hrxi values

shift slightly to the right.

FIG. 8. Time series are shown for identical switches in the S-P state for

decreasing s. While our asymptotic theory accurately (thick blue lines)

describes the dynamics for s ¼ 10, for small-to-moderate s, the dynamics of

the high-dimensional system, Eqs. (5)–(7) (symbols), is accurately given by

the low-dimensional system, Eqs. (23)–(26) (lines).
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APPENDIX: THE S-P STATE FOR IDENTICAL PHASE
LAGS

In this Appendix, we provide analysis for the S-P state

of our hybrid system, Eqs. (5)–(7), for switches with iden-

tical phase lags bm ¼ b for all m. As discussed in Sec.

III C 2, for large system size N;M!1 and slow coupling

adaptation s� maxf1;x�1
0 g, the S-P state corresponds to

a system in which the oscillators synchronize while the

switches turn on and off together in unison, causing rxðtÞ to

periodically switch between 1 and 0. Because this periodic

oscillation occurs on a much faster timescale than

the dynamics for the switches and coupling strength, analysis

may be developed using a separation of time scales while

considering the time-averaged variables hrxi; hrhi, and hki.
We now develop a consistency equation for hrxi.

Assuming that our system Eqs. (5)–(7) is in the S-P state

with rxðtÞ periodically switching between 0 and 1 at fre-

quency x0, one can show that k(t) attains a trajectory of the

form kðtÞ ¼ Khrxi þ OðT0=sÞ. It follows that for sufficiently

large s; k is approximately constant, k ¼ Khrxi, and rh is

given by Eq. (9) with k ¼ Khrxi. With constant k and rh and

wðtÞ ¼ x0tþ wð0Þ, it remains to integrate Eq. (5) for xm ¼ x
for all m and fluctuating rxðtÞ.

We begin by separating x(t) into two parts: a function

y(t) that is dependent on the average fraction of on switches,

hrxi, and a function z(t) that is piecewise-defined to account

for fluctuations. Specifically, we let

xðtÞ ¼ yðtÞ þ zðtÞ; (A1)

where

dy

dt
¼ �y� gþ Kxhrxi þ Khhrhisinðw� bÞ; (A2)

dz

dt
¼ �zþ Kx 1� hrxi; xðtÞ > 0

�hrxi; xðtÞ � 0:

�
(A3)

Note that adding the r.h.s. of the above equations recovers

the r.h.s. of Eq. (5). As defined, because x(t) is assumed to be

periodic, z(t) is necessarily periodic. Integration of Eq. (A2)

yields steady state solutions given by

yðtÞ ¼ U þ V sinðx0t� b� dÞ; (A4)

where U ¼ ðKxhrxi � gÞ; V ¼ KhhrhicosðdÞ, and

d ¼ arccosð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

0

p
Þ. Under the assumption that z is peri-

odic with the same period as y; T0 ¼ 2p=x0, integration of

Eq. (A3) leads to a piecewise-defined periodic solution

zðtÞ ¼
z1e
�mod t�t1;

2p
x0

ð Þ þ Kxð1� hrxiÞ 1� e
�mod t�t1;

2p
x0

ð Þ
� �

; mod t� t1;
2p
x0

� �
� t2 � t1

z2e
� mod t�t1;

2p
x0

ð Þ�ðt2�t1Þ½ � � Kxhrxi 1� e
� mod t�t1;

2p
x0

ð Þ�ðt2�t1Þ½ �
� �

; mod t� t1;
2p
x0

� �
� t2 � t1:

8>>>><
>>>>:

(A5)

Note that as defined, times t 2 t1 þ l 2p
x0

n o
for l ¼ 0; 1;…

correspond to when xðtÞ ¼ 0; dxðtÞ=dt > 0, and z(t) attains

its minimum value, z1. On the other hand, times t 2

t2 þ l 2p
x0

n o
for l ¼ 0; 1;… correspond to when xðtÞ ¼ 0;

dxðtÞ=dt < 0, and z(t) attains its maximum value, z2. In

other words, x� 0 for modðt� t1;2p=x0Þ 2 ½0; t2� t1�
while x� 0 for modðt� t1;2p=x0Þ 2 ½t2� t1;2p=x0�.
Requiring that z(t) is both periodic and continuous allows

us to solve

z1 ¼ �Kx hrxi �
e�2p=x0ð1�hrxiÞ � e�2p=x0

1� e�2p=x0

� �
; (A6)

z2 ¼ �Kx hrxi �
1� e�2p=x0hrxi

1� e�2p=x0

� �
; (A7)

where we have used that hrxi ¼ x0

2p ðt2 � t1Þ by definition. In

fact this definition may be used to write down a self-

consistency equation for hrxi. Recalling that t1 and t2 were

defined by the property xðt1Þ ¼ xðt2Þ ¼ 0, we may use

yðt1Þ ¼ �z1 and yðt2Þ ¼ �z2 to find

t1 ¼ x�1
0 d� arcsin

U þ z1

V

� �� 	
; (A8)

t2 ¼ x�1
0 dþ pþ arcsin

U þ z2

V

� �� 	
: (A9)

This leads to the consistency equation

GðhrxiÞ ¼ hrxi �
x0

2p
ðt2 � t1Þ ¼ 0; (A10)

where t1 and t2 depend implicitly on hrxi through Eq. (A4)

and Eqs. (A6)–(A9).
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