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I Difference Between Two Population Means

How do two (several) sub-populations compare? In particular, are their
means the same?

For example,
1. Is this drug’ s effectiveness the same in children and adults?
2. Does cig brand A have the same amount of nicotine as brand B?
3. Is this class of students more statistically savvy than the last?

The way we answer these is to collect samples from both (all)
subpopulations, and perform a two-sample test (ANOVA).

Statistically speaking, for two samples, we want to test whether
us — u, = 0 thatis, whether u, = ..



I Example: Difference Between Two Population Means

Forty patients were randomly assigned to a treatment
group (m = 20) or a control group (n = 20).

One patient in the treatment group and four in the control
group dropped out because of complications.

The data analysis is then based on two random samples,
I.e. the treatment group (m = 19) and control group

(n = 16).



| We need some basic assumptions

1. X4, X,,....X,, is a random sample from a distribution with
mean u, and variance o7 .

2.Y, Ys.....Y,is a random sample from a distribution with
mean u, and variance o3 .

3. The X and Y samples are independent of one another.

Note — no distribution form assumed (for now)



[

I Difference Between Two Population Means

|

The data analysis can be based on two samples with
uneven sample sizes.

The natural estimator of u, — u, is X— Y, the difference
between the corresponding sample means.

Inferential procedures are based on standardizing this
estimator, so we need expressions for the expected value

and standard deviation of X - Y.



I Difference Between Two Population Means

Proposition

The expected value of X — Y is uq — p, SO X — Y isan
unbiased estimator of uq — u,. The standard deviation of
X—Yis

The sample variances must be used to estimate this
when population variances are unknown.



I Normal Populations with Known Variances

If both of the population distributions are normal, both x
and Y have normal distributions.

Furthermore, independence of the two samples implies that
the two sample means are independent of one another.

Thus the difference X — Y is normally distributed, with
expected value us — u, and standard deviation o 5



I Test Procedures for Normal Populations with Known Variances

Standardizing X — Y gives the standard normal variable

X—Y— (u — i

/ =
2 2
o7 g5
_l_|__-
m n

In a hypothesis-testing problem, the null hypothesis
states that u, — u, has a specified value.

If we are testing equality of the two means, then
uy — uo, Will be 0 under the null hypothesis.



I Test Procedures for Normal Populations with Known Variances

In general:
Null hypOtheSiS: HO: U= Up = AO

X—y— A,
Test statistic value: z = \/

(\0]

‘72



I Test Procedures for Normal Populations with Known Variances

Null hypothesis: Hy: ui— uy, = Ay

Alternative Hypothesis Rejection Region for Level a Test

H,: wug— uy > Ag z =z, (upper-tailed)
H,: wy— up < Ag z< — z,(lower-tailed)
Ha: U — Us 7 AO either z = Z,o Ol Z=s— Za/z(tWO'tailed)

Because these are z tests, a P-value is computed as it was for the z
tests [e.g., P-value = 1 — ®(z) for an upper-tailed test].
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| Example 1

Analysis of a random sample consisting of 20 specimens of
cold-rolled steel to determine yield strengths resulted in a
sample average strength of ¥ = 29.8 ksi.

A second random sample of 25 two-sided galvanized steel
specimens gave a sample average strength of
y = 34.7 ksi.

Assuming that the two yield-strength distributions are
normal with o, = 4.0 and o, = 5.0, does the data indicate
that the corresponding true average yield strengths u, and
u, are different?

Let’ s carry out a test at significance level a = 0.01
11



Large-Sample Tests

12




| Large-Sample Tests

The assumptions of normal population distributions and
known values of o, and o, are fortunately unnecessary
when both sample sizes are sufficiently large. WHY?

Furthermore, using 52 and s2 in place of o1 and o2 gives a
variable whose distribution is approximately standard
normal:

X—Y— (0 — )
¢ﬁ+ﬁ
m n

These tests are usually appropriate if both m >40 and n >
40.

/. =
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| Example

Data on daily calorie intake both for a sample of teens who
said they did not typically eat fast food and another sample
of teens who said they did usually eat fast food.

Eat Fast Food Sample Size Sample Mean Sample SD
No 663 2258 1519
Yes 413 2637 1138

Does this data provide strong evidence for concluding that
true average calorie intake for teens who typically eat fast
food exceeds more than 200 calories per day the true

average intake for those who don’ t typically eat fast food?

Let’ s investigate by carrying out a test of hypotheses at a
significance level of approximately .05.



l Confidence Intervals for u, — u,

When both population distributions are normal,
standardizing X — Y gives a random variable Z with a
standard normal distribution.

Since the area under the z curve between — z_, and z, is
1 — a, it follows that

P(za/z — (U, — Mz) Zm) 1 —gq
\/_ + n
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| Confidence Intervals for u, — u,

Manipulation of the inequalities inside the parentheses to
Isolate uq — u, yields the equivalent probability statement

— = o} 03 - = o} 03
P\ X =Y — 2z, E+7<M1_M2<X_Y+Za/2 E—I—;‘Zl—a

This implies that a 100(1 — a)% CI for u, — u, has lower
limit x —y — z,, - ox_y and upper limit x —y + z, * ox_3,
where oy _y Is the square-root expression.

This interval is a special case of the general formula
0 = z4n 0y
16



| Confidence Intervals for u, — u,

If both m and n are large, the CLT implies that this interval
Is valid even without the assumption of normal populations;
in this case, the confidence level is approximately

100(1 — )%.
Furthermore, use of the sample variances $° and 53 in the

standardized variable Z yields a valid interval in which §2
and S3 replace o1 and o>
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| Confidence Intervals for u, — u,

Provided that m and n are both large, a Cl for u, — u, with a
confidence level of approximately 100(1 — )% is

Our standard rule of thumb for characterizing sample sizes
as large is m > 40 and n > 40.
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' Example

An experiment carried out to study various characteristics
of anchor bolts resulted in 78 observations on shear

strength (kip) of 3/8-in. diameter bolts and 88 observations
on the strength of 1/2-in. diameter bolts.

Type 2 1 _— —

Type 1 1

T > Strength
7

A comparative box plot of the shear strength data
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' Example

The sample sizes, sample means, and sample standard
deviations agree with values given in the article “Ultimate
Load Capacities of Expansion Anchor Bolts” (J. of Energy
Engr., 1993: 139-158).

The summaries suggest that the main difference between
the two samples is in where they are centered.

Variable N Mean Median TrMean StDev SEMean
diam 3/8 78 4.250 4.230 4.238 1.300 0.147
Variable Min Max 01 03
diam 3/8 1.634 7.327 3.389 5.075
Variable N Mean Median TrMean StDev SEMean
diam 1/2 88 7.140 7.113 7.150 1.680 0.179
Variable Min Max 01 03
diam 1/2 2.450 11.343 5.965 8.447
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| Example

cont’ d

Calculate a confidence interval for the difference between
true average shear strength for 3/8-in. bolts (u4) and true
average shear strength for 1/2-in. bolts (u,) using a
confidence level of 95%.
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Not-so-large Sample Tests
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I The Two-Sample t Test and Confidence Interval

For large samples, the CLT allows us to use these methods we have
discussed even when the two populations of interest are not normal.

In practice, it will often happen that at least one sample size is small
and the population variances have unknown values.

Without the CLT at our disposal, we proceed by making specific
assumptions about the underlying population distributions.
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I The Two-Sample t Test and Confidence Interval

When the population distribution are both normal, the
standardized variable

X—Y— () — iy

9.2
\/ .t -
- _|_ —=
m n

has approximately a t distribution with df v estimated
from the data by
(3+3)
- _|_ _——
m n

N (s1/m)? N (s3/n)>
m — 1 n—1

T =
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I The Two-Sample t Test and Confidence Interval

The two-sample t confidence interval for u, — u, with
confidence level 100(1 — a ) % is then

2 2
}__—l—t ﬂ + &
y_ a/2.v m n

The two-sample t test for testing Hy: ui— 1, = Ay is as
follows:

Test statistic value: t =

x—y— A,
2 2
i, 8
m n

25



I The Two-Sample t Test and Confidence Interval

Alternative Hypothesis Rejection Region for
Approximate Level a Test

H,: ui— uy,> Ag t=1t,,(upper-tailed)

H,: wi— up, < Ag t<—t,,(lower-tailed)

H,: uqy— us = Ay eithert=t,,, ort=—t,,
(two-tailed)
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| Example

cont’ d

Consider the following data on two different types of
plainweave fabric:

Fabric Type Sample Size Sample Mean Sample Standard Deviation

Cotton 10 51.71 .79
Triacetate 10 136.14 3.59

Assuming that the porosity distributions for both types
of fabric are normal, let’ s calculate a confidence interval
for the difference between true average porosity for the
cotton fabric and that for the acetate fabric, using a 95%
confidence level
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Pooled t Procedure
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| Pooled f Procedures

Alternatives to the two-sample t procedures just described:

what if you know that the two populations are normal,
AND also that they have equal variances? (07 = 07)

That is, the two population distribution curves are assumed
normal with equal spreads, the only possible difference
between them being where they are centered.

29



| Pooled t Procedures

Let o2 denote the common population variance. Then
standardizing x — Y gives

Z:X_?_(:Uﬂ_:“z):X_?_(:Uq_:“z)
o’ 0 \/2<1 1)
— + — o — + -
m n m n

which has a standard normal distribution. Before this
variable can be used as a basis for making inferences

about u, — u,, the common variance must be estimated
from sample data.

30



| Pooled f Procedures

One estimator of 02 is $2, the variance of the m
observations in the first sample, and another isS3, the

variance of the second sample. Intuitively, a better
estimator than either individual sample variance results

from combining the two sample variances.

A first thought might be to use (7 + /2. Why might this be
a problem?

31



| Pooled t Procedures

The following weighted average of the two sample
variances, called the pooled (i.e., combined) estimator of
o?,adjusts for any difference between the two sample

sizes:

, m— 1 , n—1
S = - S57 + .
! m+n— 2 m+n—2

3

The first sample contributes m — 1 degrees of freedom to
the estimate of o2, and the second sample contributes
n— 1 df, for atotal of m+ n -2 df.

32



| Pooled f Procedures

It has been suggested that one could carry out a
preliminary test of H,: 07 = o5 and use a pooled t procedure
if this null hypothesis is not rejected. This is the “F test” of
equal variances.

Note the F-test is quite sensitive to the assumption of
normal population distributions—much more so than ¢
procedures. We *need* normally distributed samples here.

33



The F Distribution
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| The F Distribution

The F probability distribution has two parameters, denoted
by v, and v,. The parameter v, is called the nhumerator
degrees of freedom, and v, is the denominator degrees of
freedom.

A random variable that has an F distribution cannot
assume a negative value. The density function is
complicated and will not be used explicitly, so it’ s not
shown.

There is an important connection between an F variable
and chi-squared variables.
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| The F Distribution

If X; and X, are independent chi-squared rv’ s with v, and
v, df, respectively, then the rv

X,/v,
X5/v,

(the ratio of the two chi-squared variables divided by their
respective degrees of freedom), can be shown to have an

F distribution.

Recall that a chi-squared distribution was obtain by
summing squared standard Normal variables (such as
squared deviations for example). So a scaled ratio of two
variances is a ratio of two scaled chi-squared variables.
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| The F Distribution

Figure below illustrates a typical F density function.

F density curve with
} v and % df

/ Shaded area = «
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| The F Distribution

We use I for the value on the horizontal axis that

captures a of the area under the F density curve with v,
and v, df in the upper tail.

The density curve is not symmetric, so it would seem that
both upper- and lower-tail critical values must be tabulated.
This is not necessary, though, because of the fact that

F = 1/F

1 —a.\"lq\"z a.\’z.\’l'
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| The F Distribution

F-testing is used in a lot in statistics for scaled ratios of
“squared” (often “sums of squares”) quantities.

Appendix Table A.9 givesF, , , for a=.10, .05, .01, and
.001, and various values of v, (in different columns of the
table) and v, (in different groups of rows of the table).

For example, F 5610 = 3.22 and F o5 106 = 4.06. The critical
value F g5 5 19 , Which captures .95 of the area to its right
(and thus .05 to the left) under the F curve with v, = 6 and
Vo, =10, is Fos610 = 1/F g5106 = 1/4.06 = .246.
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The F Test for Equality of Variances
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| The F Test for Equality of Variances

A test procedure for hypotheses concerning the ratio oi/o3
Is based on the following result.

Theorem

Let X;,..., X, be a random sample from a normal
distribution with variance o7, let Y;,..., Y, be another

random sample (independent of the X/’ s) from a normal
distribution with variance 3. and let ST and S3 denote the
two sample variances. Then the rv

S%/O'%

S3/o73

has an F distribution withv, =m-1and v, =n—1.
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| The F Test for Equality of Variances

This theorem results from combining the fact that the
variables (m — 1)Si/oiand (n — 1)S5/05 each have a
chi-squared distribution with m—1 and n— 1 df,
respectively.

Because F involves a ratio rather than a difference, the test
statistic is the ratio of sample variances.

The claim that o1 = o3 is then rejected if the ratio differs by
too much from 1.

42



I The F Test for Equality of Variances

Null hypothesis: H,: o7 = o3

Test statistic value: f = si/s3

Alternative Hypothesis Rejection Region for a Level

Test
. 2 2 =
Ha‘ 0-1 > 0-2 f — Fa.m—l.n—l
.« 2 2 <<
Ha‘ 0-1 < 0-2 f_ Fl—a.m—l.n—l
o 2 2 > -~ <
Ha' 0-1 ;& 0-2 eltherf - Fa/Z.m—l./l—l Oor f_ Fl—a/Z.m—l.n—l
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| Example

On the basis of data reported in the article “Serum Ferritin in
an Elderly Population™ (J. of Gerontology, 1979:

521-524), the authors concluded that the ferritin distribution
In the elderly had a smaller variance than in the younger
adults. (Serum ferritin is used in diagnosing iron deficiency.)

For a sample of 28 elderly men, the sample standard
deviation of serum ferritin (mg/L) was s; = 52.6; for 26 young
men, the sample standard deviation was s, = 84.2.

Does this data support the conclusion as applied to men?
Use alpha = .01.
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9.4

Inference Concerning a Difference

Between Population Proportions

Copyright © Cengage Learning. All rights reserved.
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I Difference Between Population Proportions

Having presented methods for comparing the means of two
different populations, we now turn attention to the
comparison of two population proportions.

Regard an individual or object as a success S if some
characteristic of interest is present (“graduated from
college”, a refrigerator “with an icemaker”, etc.).

Let
p, = the true proportion of S’ s in population # 1
p, = the true proportion of S’ s in population # 2

46



I Inferences Concerning a Difference Between Population Proportions

Suppose that a sample of size m is selected from the first
population and independently a sample of size nis
selected from the second one.

Let X denote the number of S’ s in the first sample and Y
be the number of S’ s in the second.

Independence of the two samples implies that X and Y are
Independent.

47
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I Inferences Concerning a Difference Between Population Proportions

Provided that the two sample sizes are much smaller than
the corresponding population sizes, X and Y can be
regarded as having binomial distributions.

The natural estimator for p, — p,, the difference in

population proportions, is the corresponding difference in
sample proportions X/m — Yin.

48
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I Inferences Concerning a Difference Between Population Proportions

L

Proposition

Let p, = X/m and p, = Y/n. where X ~ Bin(m, p,) and

Y ~ Bin(n, p, ) with X and Y independent variables. Then
E(p, —p) =p, — P,

So 1, — P, is an unbiased estimator of p; — p,, and

Py
m

V(p, — py) = (where g;=1- p))
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| A Large-Sample Test Procedure

The most general null hypothesis an investigator might
consider would be of the form Hy: p1 — p, = A,

Although for population means the case A, = 0 presented
no difficulties, for population proportionsA,=0andA,= 0
must be considered separately.

Since the vast majority of actual problems of this sort
involve A,= 0 (i.e., the null hypothesis p; = p,). we'll
concentrate on this case.

When Hy: p1 — p, =0 s true, let p denote the common
value of p; and p, (and similarly for q).

50



| A Large-Sample Test Procedure

Then the standardized variable

lA71 o lA72 — 0
1 1

NCRE)

has approximately a standard normal distribution when H,
IS true.

/ =

However, this Z cannot serve as a test statistic because the
value of p is unknown—H, asserts only that there is a
common value of p, but does not say what that value is.
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| A Large-Sample Test Procedure

A test statistic results from replacing p and g in by
appropriate estimators.

Assuming that p, = p, = p, instead of separate samples of
size m and n from two different populations (two different
binomial distributions), we really have a single sample of
size m + n from one population with proportion p.

The total number of individuals in this combined sample
having the characteristic of interestis X + Y.

The natural estimator of p is then

X +Y m N n
- Pyt
m + n m + n m + n

]3:
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| A Large-Sample Test Procedure

The second expression for 7 shows that it is actually a
weighted average of estimators p and p. obtained from the
two samples.

Using pand ¢ =1 — p in place of p and g in (9.4) gives a
test statistic having approximately a standard normal
distribution when H, is true.

Null hypothesis: Hy: py—p, =0

Test statistic value (large samples): z = L I [ 1
Vi )

53



| A Large-Sample Test Procedure

Alternative Hypothesis Rejection Region for
Approximate Level o Test

Ha:p1_p2>o Z=zZ,

Ha:p1_p2<0 Z=—Z,

H,.p;—p,=0 eitherzzz ,orz=-z_

A P-value is calculated in the same way as for previous z
tests.

The test can safely be used as long as mp,. mq,. np,. and ngq,
are all at least 10.
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| Example 11

The article “Aspirin Use and Survival After Diagnosis of
Colorectal Cancer” (J. of the Amer. Med. Assoc., 2009:
649-658) reported that of 549 study participants who
regularly used aspirin after being diagnosed with colorectal
cancer, there were 81 colorectal cancer-specific deaths,
whereas among 730 similarly diagnosed individuals who
did not subsequently use aspirin, there were 141 colorectal
cancer-specific deaths.

Does this data suggest that the regular use of aspirin after
diagnosis will decrease the incidence rate of colorectal
cancer-specific deaths? Let’ s test the appropriate
hypotheses using a significance level of .05.
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| A Large-Sample Confidence Interval

As with means, many two-sample problems involve the
objective of comparison through hypothesis testing, but
sometimes an interval estimate for p, — p, is appropriate.

Both p, = X/m and p, = Y/n have approximate normal
distributions when m and n are both large.

If we identify 6with p,—p,, thend = p, — p, satisfies the
conditions necessary for obtaining a large-sample ClI.

In particular, the estimated standard deviation of 0 is
\/(131211/””) + (Paga/n).
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| A Large-Sample Confidence Interval

The general 100(1 — a )% interval 6 + z_, - 6; then takes
the following form.

A ClI for p; — p, with confidence level approximately
100(1 — a )% is

A s D\, | D>
Pl_PziZa/z\/m + n

This interval can safely be used as long as mp,, mq,, np,, and
nq, are all at least 10.
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| Example 13

The authors of the article “Adjuvant Radiotherapy and
Chemotherapy in Node- Positive Premenopausal Women
with Breast Cancer” (New Engl. J. of Med., 1997: 956-962)
reported on the results of an experiment designed to
compare treating cancer patients with chemotherapy only
to treatment with a combination of chemotherapy and
radiation.

Of the 154 individuals who received the chemotherapy-only
treatment, 76 survived at least 15 years, whereas 98 of the
164 patients who received the hybrid treatment survived at
least that long.

What is the 99% confidence interval for this difference in
proportions? 58



| Small-Sample Inferences

On occasion an inference concerning p; — p, may have to

be based on samples for which at least one sample size is
small.

Appropriate methods for such situations are not as
straightforward as those for large samples, and there is
more controversy among statisticians as to recommended
procedures.

One frequently used test, called the Fisher—Irwin test, is
based on the hypergeometric distribution.

Your friendly neighborhood statistician can be consulted for
more information. 59



