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       Stat 4570/5570        

Material from Devore’s book (Ed 8), and Cengage 
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Point Estimation 

Statistical inference: directed toward conclusions about 
one or more parameters. We will use the generic Greek 
letter θ  for the parameter of interest. 
 
Process:  

•  Obtain sample data from each population under study 
•  Based on the sample data, estimate θ  
•  Conclusions based on sample estimates. 

 
The objective of point estimation = estimate θ 
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Some General Concepts of Point Estimation 
 

A point estimate of a parameter θ  is a value (based on a 
sample) that is a sensible guess for θ. 
 
 

A point estimate is obtained by a formula (“estimator”) 
which takes the sample data and produces an point 
estimate.  
 
Such formulas are called point estimators of θ. 
 
Different samples produce different estimates, even 
though you use the same estimator. 
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Example  
20 observations on breakdown voltage for some material: 
 

  24.46    25.61    26.25    26.42    26.66   27.15   27.31   27.54   27.74    27.94 
  27.98    28.04    28.28    28.49    28.50   28.87   29.11   29.13   29.50    30.88 
 

Assume that after looking at the histogram, we think that 
the distribution of breakdown voltage is normal with 
mean value µ.  What are some point estimators for µ? 
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Estimator “quality”  

“Which estimator is the best?” 
 
What does “best” mean? 
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Estimator “quality” 
In the best of all possible worlds, we could find an estimator           

 for which    = θ  always, in all samples.  Why doesn’t 
this estimator exist? 
 
For some samples,   will sometimes be too big, and other 
times too small. 
 
 If we write       = θ + error of estimation 

 

then an accurate estimator would be one resulting in small 
estimation errors, so that estimated values will be near the 
true value. It’s the distribution of these errors  (over all 
samples) that actually matters for the quality of estimators. 
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Measures of estimator quality 

A sensible way to quantify the idea of    being close to θ is 
to consider the squared error (        )2  

 
and the mean squared error  MSE = E[(        )2].  
 
If among two estimators, one has a smaller MSE than the 
other, the first estimator is usually the better one.   
 
Another good quality is unbiasedness:  E[(  )] = θ 
 
Another good quality is small variance, Var[(  )] 
 



8 

Unbiased Estimators 
•  Suppose we have two measuring instruments; one 

instrument is accurately calibrated, and the other 
systematically gives readings smaller than the true value.  

•  When each instrument is used repeatedly on the same 
object, because of measurement error, the observed 
measurements will not be identical.  

•  The measurements produced by the first instrument will 
be distributed about the true value symmetrically, so it is 
called an unbiased instrument. 

•  The second one has a systematic bias, and the 
measurements are centered around the wrong value. 
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Example: unbiased estimator of proportion 

If X denotes the number of sample successes, and has a 
binomial distribution with parameters n and p, then the 
sample proportion X / n can be used as an estimator of p.  
 
Can we show that this is an unbiased estimator? 
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Estimators with Minimum Variance 
Suppose      and      are two estimators of θ  that are both 
unbiased. Then, although the distribution of each estimator 
is centered at the true value of θ, the spreads of the 
distributions about the true value may be different. 
 
Among all estimators of θ  that are unbiased, we will always 
choose the one that has minimum variance. WHY? 
 
The resulting     is called the minimum variance unbiased 
estimator (MVUE) of θ. 
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Estimators with Minimum Variance 
Figure below pictures the pdf’s of two unbiased estimators, 
with     having smaller variance than    .  
 
Then     is more likely than     to produce an estimate close 
to the true θ . The MVUE is, in a certain sense, the most 
likely among all unbiased estimators to produce an 
estimate close to the true θ . 

Graphs of the pdf’s of two different unbiased estimators 
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Reporting a Point Estimate: The Standard Error 

Besides reporting the value of a point estimate, some 
indication of its precision should be given.  
 
The standard error of an estimator    is its standard 
deviation                 . It is the magnitude of a typical or 
representative deviation between an estimate and the true 
value θ . 
 
Basically, the standard error tells us roughly within what 
distance of  true value θ   the estimator is likely to be. 
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Note that the following result shows that the arithmetic 
average is unbiased: 
: 

Proposition 
 

Let X1, X2, …, Xn  be a random sample from a distribution 
with mean µ and standard deviation σ. Then 
 
 
 
 

 
Thus we see that the arithmetic average is an unbiased 
estimator for the mean for any random sample of any 
size from any distribution. 

The Mean is unbiased 

1. E(X) = µ

2. V (X) = �2/n and �X = �/
p
n
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General methods for constructing estimators 

We have:  
 - a sample from a probability distribution (“the model”) 
 - we don’t know the parameters of that distribution  

How do we find the parameters to best match our sample 
data? 

 

Method 1: Methods of Moments (MoM): 
1.  equate sample characteristics (eg. mean, or variance), to the 

corresponding population values 
2.  solve these equations for unknown parameter values  
3.  the solution formula is the estimator (need to check bias). 

Method 2: Maximum Likelihood Estimation (MLE) 
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Statistical Moments 

For k = 1, 2, 3, . . . , define the k-th population moment, 
or k-th moment of the distribution f(x), to be E(Xk).  
 
and the k-th sample moment is 
 
Thus the first population moment is E(X) = µ, and the first 
sample moment is  

    
 
The second population and sample moments are E(X2) and 
M2 = ΣXi

2/n, respectively.  

Mk =
1

n

nX

i=1

Xk
i .

M1 =
1

n

nX

i=1

Xi = X.
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The Method of Moments 
Let X1, X2, . . . , Xn be a random sample from a distribution 
with pmf or pdf f (x; θ1, . . . , θm), where θ1, . . . , θm are 
parameters whose values are unknown. 
  
Then the moment estimators   θ1, . . . , θm are obtained by 
equating the first m sample moments to the corresponding 
first m population moments and solving for    θ1, . . . , θm. 
 
If, for example, m = 2, E(X) and E(X2) will be functions of  
θ1 and θ2.  
 
Setting E(X) = M1 and E(X2) = M2 gives two equations in θ1 
and θ2. The solution then defines the estimators. 
 

✓̂1, ✓̂2, . . . , ✓̂m

✓̂1, ✓̂2, . . . , ✓̂m
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Example for MoM 
Let X1, X2, . . . , Xn represent a random sample of service 
times of n customers at a certain facility, where the 
underlying distribution is assumed exponential with 
parameter λ. 
 
What is the MOM estimate for λ? 
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Example 2 for MoM  
Let X1, X2, . . . , Xn represent a random sample from a 
Gamma distribution with parameters a and b. 
 
How do we use MoM to estimate a and b? 
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MLE 
Method 2: Maximum likelihood estimation (MLE) 
 
The method of maximum likelihood was first introduced by 
R. A. Fisher, a geneticist and statistician, in the 1920s.  
 
Most statisticians recommend this method, at least when 
the sample size is large, since the resulting estimators have 
many desirable mathematical properties. 
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Example for MLE 
A sample of ten independent bike helmets just made in the 
factory A was up for testing.  3 helmets are flawed.  
 
Let p = P(flawed helmet). The probability of X=3 is:  

  P(X=3) = C(10,3) p3(1 – p)7 

 
But the likelihood function is given as: 
     L (p | sample data) = p3(1 – p)7 

Likelihood function = function of the parameter only.  
 
For what value of p is the obtained sample most likely to 
have occurred? bi.e., what value of p maximizes the 
likelihood? 
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Example MLE 
Graph of the likelihood function as a function of p: 

   L (p | sample data) = p3(1 – p)7 

 

cont’d 
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Example MLE 
The natural logarithm of the likelihood: 
log ( L (p | sample data))   = l (p | sample data))  

      = 3 log(p) + 7 log(1 – p) 

 

cont’d 
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Example MLE 
We can verify our visual guess by using calculus to 
find the actual value of p that maximizes the 
likelihood.  
 
Working with the natural log of the likelihood is 
often easier than working with the likelihood itself.  
WHY?  
 
How do you find the maximum of a function? 
 

  

cont’d 
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Example MLE 
That is, our MLE estimate that the estimator     produced is    
0.30. It is called the maximum likelihood estimate because 
it is the value that maximizes the likelihood of the observed 
sample.  
 
It is the most likely value of the parameter that is supported 
by the data in the sample. 
 
Question: 
Why doesn’t the likelihood care about constants in the pdf? 
 

cont’d 
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Suppose X1,. . . , Xn is a random sample (iid) from 
Exp(λ). Because of independence, the joint 
probability of the data = likelihood function  is the 
product of pdf’s: 
 
 
How do we find the MLE? 
 
What if our data is normally distributed? 
 
              

Example 2  - MLE (in book’s notation) 
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Estimating Functions of Parameters 
We’ve now learned how to obtain the MLE formulas for 
several estimators. Now we look at functions of them. 
 
The Invariance Principle 
 

Let                     be the mle’s of the parameters  θ1, θ2...θm.  
 
Then the mle of any function h(θ1, θ2, . . . , θm) of these 
parameters is the function h(                   ) of the mle’s. 
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Example  
 
In the normal case, the mle’s of µ and σ2 are 
                            
 
To obtain the mle of the function 
substitute the mle’s into the function: 
 
 
 
The mle of σ is not the sample standard deviation S, 
though they are close unless n is quite small. 
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The Central Limit Theorem 
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Estimators and Their Distributions 
Any estimator, as it is based on a sample, is a random variable that has 
its own probability distribution. 
 
This probability distribution is often referred to as the sampling 
distribution of the estimator. 
 
This sampling distribution of any particular estimator depends: 

 1) the population distribution (normal, uniform, etc.)  
 2) the sample size n  
 3) the method of sampling  

 
The standard deviation of this distribution is called the standard error 
of the estimator. 
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Random Samples 
The r.v.’s X1, X2, . . . , Xn are said to form a (simple) 
random sample of size n if 
 
1. The Xi’s are independent r.v.’s. 

2. Every Xi has the same probability distribution. 
 
We say that these  Xi’s are independent and identically 
distributed (iid).  
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Example  
A certain brand of MP3 player comes in three models:   

 - 2 GB model, priced $80,  
 - 4 GB model priced at $100,  
 - 8 GB model priced $120.  

 
Suppose the probability distribution of the cost X of a single 
randomly selected MP3 player purchase is given by 
 
                                           
 
 
From here, µ = 106, σ 2 = 244 
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Example, cont 
Suppose on a particular day only two MP3 players are sold. 
Let X1 = the revenue from the first sale and X2 the revenue 
from the second. X1 and X2 are independent, and have the 
previously shown probability distribution. 
 
In other words, X1 and X2 constitute a random sample from 
that distribution. 
 
How do we find the mean and variance of this random 
sample? 
 

cont’d 
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Example cont 
The complete sampling distributions of      is : 
 

cont’d 

Original distribution: 
µ = 106, σ 2 = 244     ‘s distribution  
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Example cont 
What are the mean and variance of this estimator?   
 
What do you think the mean and variance would be if we 
had four samples instead of 2? 

cont’d 
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Example cont 
If there had been four purchases on the day of interest, the 
sample average revenue    would be based on a random 
sample of four Xi’s, each having the same distribution.  
 
More calculation eventually yields the pmf of     for n = 4 as 

cont’d 

From this, µx = 106 = µ and  
     = 61 = σ 2/4.  
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Simulation Experiments 
With a larger sample size, any unusual x values, when 
averaged in with the other sample values, still tend to yield   
    an value close to µ.  
 
Combining these insights yields a result: 
     based on a large n tends to be closer to µ  than  
does     based on a small n. 
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The Distribution of the Sample Mean 

 
Let X1, X2, . . . , Xn be a random sample from a distribution 
with mean value µ and standard deviation σ. Then 
 

 1.  
 

 2.  
 
  
The standard deviation                    is also called the 
standard error of the mean 
 
Great, but what is the *distribution* of the sample mean?   
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The Case of a Normal Population Distribution 

Proposition:  
Let X1, X2, . . . , Xn be a random sample from a Normal 
distribution with mean µ and standard deviation σ. Then for 
any n,    is normally distributed (with mean µ and standard 
deviation            
 
We know everything there is to know about the    
distribution when the population distribution is Normal.  
 
In particular, probabilities such as P(a ≤    ≤ b) can be 
obtained simply by standardizing. 
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The Case of a Normal Population Distribution 
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But what if the underlying 
distribution of Xi’s is not 

Normal?  
 

The Central Limit Theorem 
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The Central Limit Theorem (CLT) 
When the Xi’s are normally distributed, so is     for every 
sample size n.  
 
Even when the population distribution is highly nonnormal, 
averaging produces a distribution more bell-shaped than 
the one being sampled.  
 
A reasonable conjecture is that if n is large, a suitable 
normal curve will approximate the actual distribution of    .  
 
The formal statement of this result is one of the most 
important theorems in probability: CLT 
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The Central Limit Theorem 
Theorem 
The Central Limit Theorem (CLT) 
 
Let X1, X2, . . . , Xn be a random sample from a distribution 
with mean µ and variance σ 

2.  
 
Then if n is sufficiently large,      has approximately a 
normal distribution with            and 
                  
 
The larger the value of n, the better the approximation. 
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The Central Limit Theorem 

The Central Limit Theorem illustrated 
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Example  
The amount of impurity in a batch of a chemical product is a 
random variable with mean value 4.0 g and standard 
deviation 1.5 g. (unknown distribution) 
 
If 50 batches are independently prepared, what is the 
(approximate) probability that the average amount of 
impurity in these 50 batches is between 3.5 and 3.8 g?  
 
Side note: according to the rule of thumb to be stated 
shortly, n = 50 is “large enough” for the CLT to be 
applicable. 
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The Central Limit Theorem 
The CLT provides insight into why many random variables 
have probability distributions that are approximately normal. 
 
For example, the measurement error in a scientific 
experiment can be thought of as the sum of a number of 
underlying perturbations and errors of small magnitude. 
 
A practical difficulty in applying the CLT is in knowing when 
n is sufficiently large. The problem is that the accuracy of 
the approximation for a particular n depends on the shape 
of the original underlying distribution being sampled. 
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The Central Limit Theorem 
If the underlying distribution is close to a normal density 
curve, then the approximation will be good even for a small 
n, whereas if it is far from being normal, then a large n will 
be required. 
 
 

Rule of Thumb 
If n > 30, the Central Limit Theorem can be used. 
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R CODE 


