
J Comput Neurosci (2014) 37:29–48
DOI 10.1007/s10827-013-0486-0

Encoding certainty in bump attractors

Samuel R. Carroll · Krešimir Josić ·
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Abstract Persistent activity in neuronal populations has
been shown to represent the spatial position of remembered
stimuli. Networks that support bump attractors are often
used to model such persistent activity. Such models usu-
ally exhibit translational symmetry. Thus activity bumps
are neutrally stable, and perturbations in position do not
decay away. We extend previous work on bump attractors
by constructing model networks capable of encoding the
certainty or salience of a stimulus stored in memory. Such
networks support bumps that are not only neutrally stable
to perturbations in position, but also perturbations in ampli-
tude. Possible bump solutions then lie on a two-dimensional
attractor, determined by a continuum of positions and ampli-
tudes. Such an attractor requires precisely balancing the
strength of recurrent synaptic connections. The amplitude
of activity bumps represents certainty, and is determined by
the initial input to the system. Moreover, bumps with larger
amplitudes are more robust to noise, and over time provide
a more faithful representation of the stored stimulus. In net-
works with separate excitatory and inhibitory populations,
generating bumps with a continuum of possible amplitudes,
requires tuning the strength of inhibition to precisely cancel
background excitation.
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1 Introduction

Neuronal populations in many cortical areas exhibit sus-
tained activity during the delay period in a spatial working
memory task (Wang 2001; Curtis 2006). Groups of cells
responsive to the presence of a stimulus that needs to be
stored in memory can remain active after the stimulus
is removed (Rao et al. 2000; Vijayraghavan et al. 2007).
Which subset of neurons is active depends on the spatial
location of the cue (Funahashi et al. 1989). Such sustained
activity has been observed in prefrontal cortex (Goldman-
Rakic 1995), parietal cortex (Pesaran et al. 2002), as well as
superior colliculus (Basso and Wurtz 1997).

Such persistent elevation in firing rates is captured in
model networks by “bumps” of activity. The peaks of these
activity bumps represent the remembered location of the
cue (Compte et al. 2000; Durstewitz et al. 2000; Gutkin
et al. 2001). Maintaining a stable activity bump during the
delay is hence crucial for representing the remembered cue
(Brody et al. 2003). The recurrent architecture of the local
neuronal networks appears to play a crucial role in main-
taining such selective activation (Constantinidis and Wang
2004). Tuned excitatory neurons reciprocally connect to one
another with both fast and slow synapses (Wang 2001). In
addition, inhibitory cells broadly project back to the rest of
the network keeping spatial tuning sharp (Rao et al. 2000).
Understanding how synaptic architecture can be tuned to
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produce reliable bumps is essential for understanding the
mechanism behind spatial working memory.

Models that can store a continuous range of spatial loca-
tions typically possess solutions that are neutrally stable
(Amari 1977; Seung 1996; Brody et al. 2003). Due to the
neutral stability of such attractors, perturbations that change
the location of a bump of activity do not decay away (Amari
1977; Camperi and Wang 1998; Compte et al. 2000). Aside
from experimentally-introduced distractors in spatial work-
ing memory experiments (Miller et al. 1996), cue memories
can also be degraded by internal variability within corti-
cal networks (Faisal et al. 2008). Stochastic models show
that such variability causes bump attractors to wander dif-
fusively, due to their inherent neutral stability (Camperi and
Wang 1998; Compte et al. 2000; Laing and Chow 2001;
Kilpatrick and Ermentrout 2013). Psychophysical studies
show that errors made recalling remembered spatial loca-
tions scale roughly linearly with delay time, suggesting
the remembered location may diffuse in time (White et al.
1994; Ploner et al. 1998). Also, heterogeneities in the spa-
tial structure of the underlying neuronal network can further
degrade the relation between the stored memory and the ini-
tial cue (Seung 1996; Renart et al. 2003; Itskov et al. 2011;
Hansel and Mato 2013). One solution to this problem is
to structure the spatial arrangement of excitatory synapses
(Kilpatrick and Ermentrout 2013; Kilpatrick et al. 2013)
to make networks robust to dynamic and static paramet-
ric perturbations. Thus, the spatial organization of synaptic
architecture can play a major role in accurately encoding
stimuli for future recall.

To explore the relation between network architecture and
the neural computation underlying working memory, we
consider bump attractor networks capable of encoding cue
certainty. We define certainty as the likelihood that the pre-
sented cue was faithfully communicated to the network gen-
erating delay period activity. A number of experiments have
shown that the certainty of a decision can be encoded by the
instantaneous firing rates of neurons in medial temporal cor-
tex (Shadlen and Newsome 1998; Gold and Shadlen 2002;
Beck et al. 2008; Kiani and Shadlen 2009). In this way, the
activity of a network can represent the encoded signal as
well as the likelihood that the encoded signal accurately rep-
resents reality (Zemel et al. 1998). We introduce this notion
here in the context of spatial working memory. Recordings
from superior colliculus by Basso and Wurtz (1997) suggest
that increased uncertainty in a remembered cue position is
represented by lower neural activity during the delay period.
Conversely, work by Meyer et al. (2011) shows that train-
ing in a spatial working memory task that leads to improved
performance is also accompanied by a rise in delay period
firing rates. These observations suggest that certainty about

stimulus location in a spatial working memory task may be
represented by the level of neural activity during the delay
period.

Like cue position, the degree of certainty in a signal is
an analog quantity. Phenomenological models of decision
making in the presence of two alternatives also frequently
exhibit line attractors. In such models the state along the
line attractor represents the likelihood, or certainty, that
one of the choices is correct (Bogacz et al. 2006). This
can be accomplished in more biophysically realistic models
by choosing synaptic time constants to match the slope of
the input-output relationship of a firing rate model (Wang
2002). Precisely balancing the rate of feedback excitation
with the timescale of synaptic decay leads to a model that
behaves as a pure integrator. In the absence of external
inputs, networks that behave as pure integrators can store the
value of a continuous variable (Goldman et al. 2003). Sim-
ilar tuning can also be accomplished in mutually inhibitory
rate models for parametric working memory (Machens et al.
2005; Polk et al. 2012).

We build on these ideas to study spatial working mem-
ory networks that can encode certainty. Typically, bump
attractor networks only possess a single stable bump ampli-
tude at each orientation (Amari 1977; Ermentrout 1998). We
explore networks that support a continuum of bump ampli-
tudes at each orientation. These are dynamical systems that
contain two-dimensional attractor surfaces: One dimension
corresponded to the amplitude, and the other the position
of the bump. In this two-dimensional manifold, bumps are
neutrally stable to perturbations that change their amplitude
and/or position. To accomplish this, excitation and inhibi-
tion must be balanced, and the shape of the synaptic input
to output firing rate function chosen appropriately (Amari
1977). Namely, there is a monotonic relationship between
the total synaptic excitation and total synaptic inhibition that
must be maintained to represent a continuum of possible
bump amplitudes.

Including a certainty code in networks for bump attrac-
tors has several consequences. First, the strength of the
original input can be encoded in the amplitude of the bump.
Bumps with larger amplitudes stay closer to their original
position when the effects of noise are considered during the
storage period. However, since certainty is encoded in the
amplitude of the bump, memory of the original certainty can
also be degraded by dynamic noise. Also, arbitrarily weak
inputs can still be stored as a bump attractor, which is not the
case in networks that support a single stable bump amplitude
(Amari 1977; Ermentrout 1998). Using a stochastic neural
field model of a bump attractor network with noise, we can
develop explicit formulae for most of these results using
asymptotic methods.
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2 Bump attractor networks

Bump attractor networks were originally developed as gen-
eral models of recurrent neuronal circuits that can sup-
port spatiotemporal patterns of activity (Wilson and Cowan
1973; Amari 1977). Since then they have been used to repre-
sent activity subserving spatial working memory (Camperi
and Wang 1998; Compte et al. 2000) and visual orientation
processing (Ben-Yishai et al. 1995). We consider a spatially
organized neural field model where the positions of neurons
correspond to their preferred stimulus orientation. We focus
on a ring architecture, but we believe these ideas will extend
to more general models.

Consider a single population which incorporates local
excitation and broadly tuned inhibition (Amari 1977; Ben-
Yishai et al. 1995; Ermentrout 1998)

∂u(x, t)

∂t
= −u(x, t)+

∫ π

−π
w(x − y)

×f (u(y, t))dy

+ I (x, t). (2.1)

Here u(x, t) is the total synaptic input to spatial location
x ∈ [−π,π] at time t . The integral kernel, w(x − y), repre-
sents the synaptic feedback from the whole network which
encodes the strength of connections from y to x. Since we
consider translationally symmetric synaptic weight func-
tions, w(x − y), bump solutions will be neutrally stable
to translations in position (Amari 1977; Ermentrout 1998;
Veltz and Faugeras 2010). This relies on the assumption of
a spatial homogeneity in the net excitability of any partic-
ular neuron in the network (Renart et al. 2003; Kilpatrick
and Ermentrout 2013). For simplicity, we use a unimodal
synaptic weight function

w(x − y) = w0 + w1 cos (x − y), (2.2)

where w0 − w1 represents the amplitude of broadly tuned
inhibition, and w0 + w1 represents the amplitude of locally
tuned excitation. Results on the existence and stability of
stationary bump solutions can easily be extended to synaptic
weights with many more modes (Veltz and Faugeras 2010).
However, the anatomical structure of recurrent connectivity
is not known at such a fine level of detail (Rao et al. 2000).
We therefore use canonical functions that represent the short
range excitation and broad inhibition known to exist.

The nonlinearity, f, is the firing rate function which maps
the synaptic inputs, u, to a resulting fraction of active neu-
rons (or probability of activation of a single neuron). Typi-
cally, f is a saturating, non-negative function (Coombes and
Owen 2004; Bressloff 2012). In this study, we consider a

piecewise linear firing rate function of the form (Hansel and
Sompolinsky 1998; Pinto and Ermentrout 2001a; Kilpatrick
and Bressloff 2010)

f (u) =

⎧
⎨

⎩

0, if u < θ

s(u − θ), if θ ≤ u ≤ 1
s + θ

1, if u > 1
s + θ ,

(2.3)

where s is the gain parameter, and θ the threshold. This
choice will allow for a straightforward construction of a net-
work capable of storing a continuum of bump amplitudes.
In typical analyses of the spatiotemporal dynamics of neu-
ral fields, the parameters in Eq. (2.3) are chosen so that the
underlying space-clamped system is bistable (Hansel and
Sompolinsky 1998; Pinto and Ermentrout 2001a). Since we
assume the population u is quite large, we make the assump-
tion θ = 0 throughout this study, so arbitrarily weak inputs
always activate a small fraction of the population (Hansel
and Sompolinsky 1998).

In addition, we will analyze a two population network
containing separate excitatory and inhibitory populations.
The model we employ ignores inhibitory-inhibitory interac-
tions – the small proportion of inhibitory-inhibitory synaptic
connections observed in prefrontal cortex is not expected to
alter our results substantially (Somogyi et al. 1998). Thus,
we consider the system of integro-differential equations
(Pinto and Ermentrout 2001b)

∂u(x, t)

∂t
= −u(x, t)+

∫ π

−π
wee(x − y)f (u(y, t))dy

−
∫ π

−π
wie(x − y)v(y, t)dy + I (x, t)

τ
∂v(x, t)

∂t
= − v(x, t)+

∫ π

−π
wei(x−y)f (u(y, t))dy,(2.4)

where u(x, t) is the total synaptic input to the excitatory net-
work and v(x, t) is the total synaptic input to the inhibitory
network. The integral kernel, wee, is the synaptic strength
of the excitatory network onto itself, wei is the strength of
the excitatory network onto the inhibitory network, and wie

is the strength of the inhibitory network onto the excita-
tory network. Additionally, τ is the inhibitory time constant
which denotes the speed at which inhibition acts on the exci-
tatory population. We will consider weight functions of the
form

wee(x) = w̄ee(1 + cos x)

wei(x) = w̄ei (1 + cos x)

wie(x) = w̄ie (2.5)

where w̄ee,w̄ei ,w̄ie > 0. These functions are non-negative.
Constant inhibition was chosen both to represent the broader
tuning of inhibition compared to excitation, and to ease
mathematical analysis.
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We note that in the limit of fast inhibition, τ → 0,
Eq. (2.4) reduces to

∂u(x, t)

∂t
= −u(x, t)+ (wee − wie ∗ wei)f (u)

v(x, t) =
∫ π

−π
wei(x − y)f (u(y, t))dy. (2.6)

where w∗f (u) =
∫ π
−π w(x − y)f (u(y))dy.

Here the first equation is equivalent to the single pop-
ulation case in Eq. (2.1), and the second equation has no
impact on stability. Therefore, the study of a single pop-
ulation can provide insight into the behavior of the two
population network.

We first describe the general procedure for construct-
ing stationary bump solutions with arbitrary firing rate and
weight functions in the network Eq. (2.1). In the absence of
external input, we look for the stationary bump solutions,
u(x, t) = U(x), by plugging into Eq. (2.1) and obtaining
U(x) =

∫ π
−π w(x − y)f (U(y))dy. Since U(x) must be

periodic we expand it in a Fourier series

U(x) =
N∑

k=0

Ak cos (kx)+
N∑

l=1

Bl sin (lx) (2.7)

where N is the maximal mode. The assumption of there
being a finite number of terms in the Fourier expansion
for U(x) relies on the weight function w(x − y) having a
finite Fourier expansion. This is reasonable since most typ-
ical smooth weight functions can be well approximated by
a few terms in a Fourier series (Veltz and Faugeras 2010).
Doing so allows us to always construct solvable systems for
the coefficients of the bump and its stability. In the most
general case for a spatially homogeneous weight kernel we
write

w(x − y) =
N∑

k=0

wk cos (k(x − y))

=
N∑

k=0

wk[cos (kx) cos (ky)+ sin (kx) sin (ky)],

(2.8)

so that

Ak = wk

∫ π

−π
cos (kx)f (U(x))dx,

Bl = wl

∫ π

−π
sin (lx)f (U(x))dx. (2.9)

Since the system is translationally symmetric, solutions cen-
tered at any position imply a translated solution of that same
shape exists. In addition, Eq. (2.1) will be reflection sym-
metric as well (Amari 1977). With this in mind, we look

solely for even solutions (Amari 1977; Veltz and Faugeras
2010), so that Bl = 0 for all l, and Eq. (2.7) becomes

U(x) =
N∑

k=0

Ak cos (kx). (2.10)

By plugging the expression Eq. (2.10) into Eq. (2.9), we
have

Ak = wk

∫ π

−π
cos (kx)f

(
N∑

k=0

Ak cos (kx)

)

dx.

In general, numerical methods must be used to solve for
the coefficients. However for particular functions the solu-
tions can be found analytically as we show in subsequent
sections. In addition, we can typically compute the spectrum
of the linear system governing perturbations of the bump
(Coombes and Owen 2004; Folias and Bressloff 2004; Veltz
and Faugeras 2010), which yields relationships between the
eigenvalues determining bump stability and parameters of
w and f . It is then straightforward to tune parameters to
attain neutral stability along the two eigendirections of inter-
est: one corresponding to translations of the bump (position)
and the other corresponding to expansions/contractions of
the bump (amplitude). We start by demonstrating this in a
single population model.

3 Neutral stability in a single population

We first derive conditions for a network that supports bump
solutions with a continuum of possible amplitudes. We find
that the parameters of the network must be tuned precisely.
We find that recurrent excitation must be inversely propor-
tional to the gain of the firing rate function. Similar results
have been derived for single population rate models of deci-
sion making (Wang 2002). This suggests fine tuned working
memory networks may be employed for other cognitive
tasks like decision making. The resulting network supports a
continuum of bump amplitudes, and is capable of encoding
certainty in the level of initial activation. This initial activa-
tion is controlled by both the duration of cue exposure, and
the contrast (intensity) of the cue. That is, longer cue times
and/or higher contrast cue lead to higher initial amplitude,
corresponding to higher certainty. Finally, we examine the
dynamics of bumps during the delay period using a stochas-
tic neural field equation with additive white noise. We find
that the spatial diffusion of the bump depends on its ampli-
tude, and stronger initial activation results in more stable
bumps. This has interesting implications for working mem-
ory: strong initial activation is reflected in stronger initial
certainty, so the stimulus is remembered better during the
delay period.
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3.1 Stationary bump solution

First we construct stationary bump solutions in the absence
of external input and noise. An excited region of a solution
to Eq. (2.1) is an interval x ∈ [x1, x2] ⊂ [−π,π] (smaller
than the whole domain) on which U(x) > 0. A stationary
bump is a solution, u(x, t) = U(x), that does not change in
time and contains a nontrivial excited region. Plugging the
stationary solution u(x, t) = U(x) into Eq. (2.1) assuming
a unimodal weight function given in Eq. (2.2). We obtain

U(x) =
∫ π

−π
(w0 + w1 cos(x − y))f (U(y))dy. (3.1)

We then write,

U(x) = A0 +
N∑

k=1

Ak cos (xk)+
N∑

k=1

Bk sin (xk),

where N is the maximum mode of U(x), and find that

A0 = w0

∫ π

−π
f (U(y))dy,

A1 = w1

∫ π

−π
cos yf (U(y))dy,

B1 = w1

∫ π

−π
sin yf (U(y))dy, (3.2)

and Ak = Bk = 0 for k ̸= 0, 1. Eq. (3.2) allows us to find
all possible bump solutions, Eq. (3.1). Due to the underly-
ing translation invariance of Eq. (2.1), we could solve the
system Eq. (3.2) as it is to find a continuum of possible solu-
tions. Here, B1 would essentially be a free parameter that
would determine A0 and A1. To remove this degeneracy for
the time being, we restrict our analysis to even stationary
bump solutions, and we thus set B1 = 0. Since f (U(x)) is
then even, the last integral in Eq. (3.2) will be zero, so the
equation for B1 is satisfied.

Given the piecewise linear firing rate function in
Eq. (2.3), it is useful to set certain conditions on the sta-
tionary bump solution U(x). To start, we consider bump
solutions where 0 ≤ U(x) ≤ 1/s. In other words, we
will consider strictly positive bumps U(x) whose peaks lie
below the saturating threshold of Eq. (2.3). We will now
show that excitation must properly balance inhibition as
well as the gain of the firing rate function in order to attain a
line of neutrally stable bump amplitudes. When 0 ≤ U(x) ≤
1/s, Eq. (3.2) becomes

A0 = 2πw0sA0

A1 = πw1sA1 (3.3)

where |A0| ≥ A1, so that U(x) > 0 for all x. We addi-
tionally require that A1 > 0, so that the peak of the bump
corresponds to the stored spatial position. To ensure that a
continuum of values of (A0, A1) exist that solve Eq. (3.3)
in this case, we require that s = 1

πw1
and w1 = 2w0. Thus,

excitation w1 must properly balance inhibition and the tun-
ing of the firing rate gain s must be inversely proportional
to excitation for proper parameter balance.

Next, we will examine solutions that obey the restriction
U(x) ≤ 1/s, but have some values at which U(x) < 0.
This corresponds to bumps in which only a portion of the
population is active. Again, we will show that the recurrent
excitation in the network must be properly balanced by the
gain of the system to yield a continuum of allowable bump
amplitudes. From our analysis in Section 2, we can con-
clude that if the synaptic weight function w is unimodal,
then U(x) may be unimodal as well and the solution will
exhibit two roots, U(±a) = 0. Then Eq. (3.2) becomes

A0 = 2sw0[aA0 +A1 sin a]
A1 = sw1[A0 sin a + aA1]. (3.4)

Solutions to Eq. (3.4) must satisfy A1 = A0 or A0 = 0,
along with the additional requirement we have assumed that
means (A0+A1) < 1/s. Therefore, we must either have that

U(x) = A(1 + cos x), (3.5)

or

U(x) = A cos x. (3.6)

Since Eq. (3.5) satisfies the more restrictive condition 0 ≤
U(x) ≤ 1/s that we have already considered, we will focus
on bump solutions of the form given by Eq. (3.6). To obtain
solutions of this form, we must have w0 = 0. Now using
Eq. (3.2) we find that

A =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sAw1

[
π
2 − cos−1

(
1
sA

)
− 1

sA

√
1 −

(
1
sA

)2
]

+ 2w1

√
1 −

(
1
sA

)2
, for sA > 1,

sAw1
π
2 , for sA ≤ 1,

which requires that w1 = 2
πs . This means that recurrent

excitation must be inversely proportional to the gain of the
system. When sA ≤ 1 we have a continuum of solutions
for A ∈ [0, 1/s] that are all stationary solutions. When
sA > 1 there is no solution for A for the given fixed value
of s. Thus the only fixed points are in the interval [0, 1/s]
as illustrated in Fig. 1a. As we will show in the next sec-
tion, any amplitude above the threshold will decay back
down to the boundary of the line attractor (red dashed plot in
Fig. 1a). We also illustrate in Fig. 1b, and show in the stabil-
ity analysis, that bumps are neutrally stable to perturbations
that shift their position. Thus we have a two-dimensional
attractor surface on the closed disc of radius 1/s each point
of which corresponds to a bump solution. Thus, properly
tuned networks can support bumps that take on a continuum
of possible amplitudes and positions. It is conceivable that
cortical networks encoding spatial working memory could
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Fig. 1 Stationary bump
solutions. a Blue and black
indicate neutrally stable
solutions for U(x) while red
indicates unstable solutions that
are attracted to the boundary of
the line attractor. b Polar plot of
neutrally stable region, with the
amplitude A as the radial
parameter and % as phase
parameter. The grey area shows
where solutions of the form
A cos (x − %) are neutrally
stable

exploit such a strategy, if their architecture was such that
delay period activity had a tunable rate (Goldman-Rakic
1995).

3.2 Stability of bump solutions

We now address the stability of the solutions we derived in
the previous sections. Note, these solutions will generally
not be linearly stable, since bumps can have a continuum
of possible positions and amplitudes. Any perturbation that
alters the bump’s position or amplitude will not decay away
over time. We will show that these perturbations do not
grow in time. Calculating these results will require lineariz-
ing Eq. (2.1) about the stationary bump solutions U(x).
For a detailed review concerning linear stability analysis
of waves, see Sandstede (2002), and for details of our cal-
culations see Appendix A. It is important to calculate the
linear stability of the bumps we have derived because, even
though we have found solutions with a continuum of pos-
sible positions and amplitudes, it is not apparent that the
manifold containing all these solutions is stable. We prove
that the solutions are neutrally stable, sitting at the boundary
between linear stability and instability. In total, our stability
calculations verify that there is a two-dimensional manifold
of bump solutions. Within this manifold, solutions are neu-
trally stable to perturbations that alter bumps’ amplitudes or
position, while bumps are exponentially stable to all other
perturbations transverse to this manifold.

Our stability calculations show that bump solutions of
Eq. (2.1) are neutrally stable to both even and odd pertur-
bations when model parameters satisfy the condition w1 =
2/(πs), which we derived in Section 3.1. Then, when the
bump amplitude A ∈ [0, 1/s], we find there are eigenvalues
λ = 0 corresponding to both even and odd perturbations.
That is, since λ = 0, when a bump U(x) is perturbed by
associated spatial function ψ(x), the long term asymptotic
behavior u(x, t) → U(x) + ψ(x). For translating pertur-
bations u(x, t) → A cos(x) + B sin(x), and in the case

of amplitude altering perturbations u(x, t) → A cos(x) +
B cos(x). The fact that we have found all eigenvalues λ ≤ 0
associated with perturbations to the bump ensures bumps
will be neutrally stable, not linearly unstable. Thus, while
some perturbations do not decay away, they also do not
grow. We are concerned with the effect of perturbations on
bump solutions because, in cortex, there are many sources
of noise that can affect persistent activity (Faisal et al.
2008). For bumps to provide an effective working mem-
ory code, they should not be destroyed by arbitrarily small
perturbations.

On the other hand, when A > 1/s, we find bumps are
linearly stable to perturbations that alter their amplitude (see
Eq. (A.9) in Appendix A). Thus if the amplitude of the bump
exceeds this threshold 1/s, it will decay back to 1/s. There-
fore, the saturating threshold 1/s sets an upper limit on the
certainty that can be encoded by the amplitude A. Even in
this region, though, bumps will be neutrally stable to (odd)
perturbations that alter their positions. The two-dimensional
surface of bump position and amplitudes in Fig. 1 consists of
neutrally stable bumps to which all solutions are attracted.

3.3 Integrating input

In an oculomotor delayed response task, an observer is pre-
sented with a spatial cue, for a time period T0, during which
the position of the cue must be remembered (Funahashi
et al. 1989). During this period, the cue location is encoded
in the network activity by integration of the stimulus. By
the end of the presentation a bump of activity arises setting
the initial condition for the solution during the delay period.
We next propose a way of determining how the cue is inte-
grated by the network. More specifically we study how the
amplitude of the bump evolves during this integration period
and how it evolves during the delay period, once the cue
disappears. We assume the stimulus current has the form

I (x, t) = I0(t)(H(t) − H(t − T0)) cos x, (3.7)
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so that input starts at t = 0, ends at t = T0 and has mag-
nitude I0(t). We write the solution to Eq. (2.1) in the form
u(x, t) = A(t) cos x. Substituting this into Eq. (2.1) we find

Ȧ(t) =
{
I0(t), if T0 ≤ tmax,

g(t), if T0 > tmax,
(3.8)

where g(t) is the piecewise function

g(t)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

I0(t), if t < tmax ,

I0(t)−sA(t)w1

[

cos−1
(

1
sA(t)

)
+ 1

sA(t)

√
1 −

(
1

sA(t)

)2
]

+2w1

√
1 −

(
1

sA(t)

)2
, if t > tmax ,

and tmax is the time at which A(t) = 1/s. We see that, in
the line attractor region, the network simply integrates the
amplitude of I (t). Numerical methods must be employed
to solve for A(t) when it exceeds this value. However for
amplitudes beyond this range, solutions are attracted toward
the boundary of the line attractor, and hence

lim
t→∞A(t) =

{∫ T0
0 I0(t), if T0 ≤ tmax,

πw1
2 , if T0 > tmax.

Typically, in an experiment, an observer would be
exposed to the spatial cue for a short time, T0. Furthermore
the cue would be at full contrast instantly. We therefore set
I0(t) ≡ I0 to be constant, and find from Eq. (3.8) that if
T0 ≤ tmax then

A(t) =
{
I0t, for t ≤ T0,

I0T0, for t > T0.

It is easy to find that tmax = 1/(sI0) by solving A(tmax) =
1/s. In general, the integration of the spatial cue has a very
important consequence in terms of encoding certainty. As
mentioned above, (Basso and Wurtz 1997) performed exper-
iments revealing that higher uncertainty is associated with
by lower neuronal activity and vice versa. Thus we show
here that in our model, longer cue exposure leads to greater
bump amplitudes which we interpret as greater initial cer-
tainty. Additionally, greater cue contrast, I0, will also lead
to larger bump amplitudes. Therefore we can reach the same
bump amplitudes for shorter cue times by increasing the
contrast of the cue. This provides an experimentally testable
prediction: Stronger initial cues should lead to higher ampli-
tude persistent activity and thus more certainty and better
performance in working memory related tasks. It is also
important to note that the amplitude eventually saturates
to a maximum value, even in the presence of infinite cue
time (see Fig. 2a). Therefore we always have an upper
bound on the amount of transient initial certainty, corre-
sponding to transient high values of bump amplitude. Once
the cue is turned off the amplitude relaxes to the bound-
ary of the line attractor set by the saturating threshold 1/s

and corresponding to the maximal long-term certainty of the
system.

3.4 Diffusion of bump in a single population network

Cortical neurons in vivo typically have high variability in
their spike train output (Softky and Koch 1993), arising
from channel noise (White et al. 2000) as well as a high
level of background synaptic input not linked to a circuit’s
immediate task (Faisal et al. 2008). Effects of these fluc-
tuations are typically incorporated into neural field models
by considering finite sized corrections to the mean field
(Ginzburg and Sompolinsky 1994; El Boustani 2009 and
Destexhe 2009). Truncating stochastic terms to linear order
then yields Langevin equations that can be analyzed using
asymptotic techniques for stochastic partial differential
equations (Hutt et al. 2008; Bressloff 2012). Here, we
consider a phenomenological model that incorporates fluc-
tuations into a neural field model, which has recently been
used to study the effects of noise on spatiotemporal patterns
(Hutt et al. 2008; Bressloff and Webber 2012; Kilpatrick and
Ermentrout 2013)

dU(x, t) =
[
−U(x, t)+

∫ π

−π
w(x − y)f (U(y, t))dy

]

dt + ε1/2dW(x, t), (3.9)

where ⟨dW(x, t)⟩ = 0,

⟨dW(x, t)dW(y, s)⟩ = C(x − y)δ(t − s)dtds, (3.10)

and ε ≪ 1 is the amplitude of noise. In our analysis, we
use an ansatz originally used to study the effects of noise
on wave propagation in stochastic reaction-diffusion equa-
tions (Armero et al. 1998). In line with previous studies
(Armero et al. 1998; Bressloff and Webber 2012; Kilpatrick
and Ermentrout 2013), we assume that the noise term leads
to diffusion of the bump’s position. In addition, due to
the additional neutrally stable direction associated with the
bump’s amplitude, we assume the amplitude will diffuse in
response to noise too. With this in mind we can express the
solution, U , as the sum of a fixed bump profile, U , shifted in
its phase by %(t) (which represents the remembered posi-
tion), increased/decreased in amplitude by amount ξ(t), and
higher order time-dependent fluctuations ε1/2+ + ε+1 +
ε3/2+2 + ... in the profile of the bump. Hence, we write

U(x, t) = (1 + ξA(t))U(x − %(t)) + ε1/2+(x − %(t), t),

Author's personal copy



36 J Comput Neurosci (2014) 37:29–48

Fig. 2 The integration of
constant external input I (t) = I0
lasting for T0 time units by the
single population network
Eq. (2.1). a The amplitude of the
bump in response to a current
injection of the form Eq. (3.7). b
Bump solution as t → ∞

where, for convenience, we use the normalized stochastic
variable ξA(t) = ξ(t)/A0. Plugging this into Eq. (3.9) we
get

d+(x,t)=ε−1/2U ′(x)d%(t)+L+(x, t)−ε−1/2dξA(t)U(x)

+ ε−1/2ξA(t)LU(x) + ε−1/2ξA(t)U
′(x)d%(t)

+ dW(x, t), (3.11)

where

Lp(x) = −p(x) +
∫ π

−π
w(x − y)f ′(U(y))p(y)dy. (3.12)

In the case of the weight function given by Eq. (2.2) tuned
so that the amplitude of the bump is neutrally stable, we also
have that LU(x) = 0. Then Eq. (3.11) can be rewritten as

d+(x, t) = ε−1/2U ′(x)(1 + ξA(t))d%(t) + L+(x, t)

−ε−1/2dξA(t)U(x)+ dW(x, t). (3.13)

We can ensure that a bounded solution exists by requiring
that the inhomogeneous part of Eq. (3.13) be orthogonal
to all elements of the nullspace of the adjoint operator L∗,
(Bressloff 2001; Kilpatrick and Ermentrout 2013), where

L∗q(x) = −q(x)+ f ′(U(x))

∫ π

−π
w(x − y)q(y)dy. (3.14)

Therefore, the equation defining the elements ϕ(x) of the
nullspace of L∗ is

ϕ(x) = f ′(U(x))

∫ π

−π
w(x − y)ϕ(y)dy. (3.15)

To identify the nullspace elements of L∗, recall that we have
required neutral stability (λ = 0) with respect to the linear
operator L, defined in Eq. (3.12), for an odd φo(x) and even
φe(x) eigenfunction, so

ϕj (x) =
∫ π

−π
w(x − y)f ′(U(y))ϕj (y)dy, j = o, e. (3.16)

Setting ϕj (x) = f ′(U(x))ϕj (x) (j = o, e) in Eq. (3.15),
we have

ϕj (x) = f ′(U(x))ϕj (x) = f ′(U(x))

∫ π

−π
w(x − y)

× f ′(U(y))ϕj (y)dy, j = o, e,

which holds according to Eq. (3.16). Thus, there are two
functions that span the nullspace of L∗: one even function,
ϕe(x), and one odd function, ϕo(x). Taking the inner prod-
uct of both sides of Eq. (3.13) with respect to each of these
functions yields the following equations:

∫ π

−π
ϕo(x)

[
U ′(x)(1 − ξA(t))d%(t)+ ε1/2dW(x, t)

]
dx = 0,

∫ π

−π
ϕe(x)

[
−U(x)dξA(t)+ ε1/2dW(x, t)

]
dx = 0,

(3.17)

since U(x) is even and U ′(x) is odd. Solving for d%(t) and
dξA(t), we find that

d%(t) = − ε1/2

1 + ξA(t)

∫ π
−π ϕo(x)dW(x, t)dx
∫ π
−π ϕo(x)U ′(x)dx

, (3.18)

dξA(t) = ε1/2

∫ π
−π ϕe(x)dW(x, t)dx
∫ π
−π ϕe(x)U(x)dx

, (3.19)

and we see that the stochastic variable %(t) depends on ξ(t).
Therefore %(t) will not undergo linear diffusion.

We proceed by first computing the distribution of ξ(t),
then we use it to find the distribution of %(t). Since ⟨ξ(t)⟩ =
0 (the additive noise we apply is white in time), computing
the variance of ξ(t) we find that it evolves according to pure
diffusion since

⟨ξ(t)2⟩ = εA2
0

∫ π
−π

∫ π
−π ϕe(x)ϕe(y)⟨W(x, t)W(y, t)⟩dxdy

[∫ π
−π ϕe(x)U(x)dx

]2 t,

= Dξ (ε)t (3.20)

Using Eq. (3.10) we write the diffusion coefficient as

Dξ (ε) = εA2
0

∫ π
−π

∫ π
−π ϕe(x)ϕe(y)C(x − y)dxdy
[∫ π

−π ϕe(x)U(x)dx
]2 .
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Note that since L∗ϕe(x) = L∗ϕo(x) = 0, we use Eq. (3.14)
and the general weight function given by Eq. (2.8) to find
that

ϕo(x) = f ′(U(x)

N∑

k=1

Sk sin (kx),

ϕe(x) = f ′(U(x)

N∑

k=1

Ck cos (kx), (3.21)

where

Sk = wk

∫ π

−π
sin (kx)ϕo(x),

Ck = wk

∫ π

−π
cos (kx)ϕe(x). (3.22)

This system can in general be solved using methods of
linear algebra, (Veltz and Faugeras 2010; Kilpatrick and
Ermentrout 2013). For the weight function w(x − y) =
w1 cos (x − y) the system simplifies to

ϕo(x) = w1Sf ′(A0 cos x) sin x,

ϕe(x) = w1Cf ′(A0 cos x) cos x. (3.23)

Therefore, we can solve Eq. (3.20) by first computing the
integral in the denominator as
∫ π

−π
ϕe(x)U(x)dx = w1CA0

∫ π

−π
f ′(A0 cos x) cos2 xdx

= π

2
sw1CA0,

where we impose the condition for neutral stability, s =
2

πw1
. Thus, Eq. (3.20) becomes

Dξ (ε) = ε

∫ π

−π

∫ π

−π
cos x cos yf ′(U(x))f ′(U(y))C(x−y)dxdy.

We can approximate %(t) by expanding the ξA(t) dependent
term in Eq. (3.18) to second order, so

d%(t) = −ε1/2(1−ξA(t)+ξA(t)
2)

∫ π
−π ϕo(x)dW(x, t)dx
∫ π
−π ϕo(x)U ′(x)dx

,

where we know that ⟨ξA(t)⟩ = 0 and
〈
ξA(t)

2〉 = 1
A2

0

〈
ξ(t)2〉.

For short timescales we can approximate %(t) as a pure
diffusion process by ignoring the ξA(t) terms. We proceed
similarly to find Dξ (ε) for unimodal solutions U(x). Noting
that U ′(x) = −A0 sin x, we find that

D%(ε)=
ε

A2
0

∫ π

−π

∫ π

−π
sin x sin yf ′(U(x))f ′(U(y))C(x−y)dxdy.

Thus the diffusion coefficient decreases as the inverse
square of the initial bump amplitude. Since we interpreted
this amplitude as a measure of certainty, this implies that the

greater the certainty of the stored position the less the posi-
tion diffuses during the delay period. We have shown that
the initial amplitude can be controlled by the duration and
contrast at which the spatial cue presented to an observer.
Therefore longer exposure times along with contrast will
determine the accuracy of recall.

3.5 Calculating effective stochastic motion of bumps

We now compute the diffusion coefficients using cosine
shaped spatial correlations, C(x − y) = cos (x − y). Under
this assumption, we find that for A0 ∈ [0, 1/s]

Dξ (ε) = ε, D%(ε) =
ε

A2
0

.

As demonstrated by comparing single realizations of the
stochastic equation Eq. (3.18) in Fig. 3a, bumps with ini-
tially smaller amplitudes (A0 = π/16) diffuse more than
bumps with larger amplitudes (A = π/4). In fact, we can
see that both the relationship predicted by Eq. (3.24) and
simulations show that the diffusion of the bump’s posi-
tion decreases as the initial amplitude increases (Fig. 3b).
Theory and simulations agree well, for noise amplitude of
ε = 0.001. To account for dynamics occurring for larger
values of ε or longer timescales, we consider nonlinearities
in Eq. (3.18). Additionally we must pay special attention
to deriving the effective stochastic differential equation for
ξ(t), as a linear truncation becomes insufficient.

To derive a more accurate approximation of the vari-
ances of %(t) and ξ(t) in the case of cosine shaped spatial
noise correlations, we propose a more precise ansatz for the
stochastic motion of the bump

U(x, t) = U0(x)+ A1(t) cos x + A2(t) sin x (3.24)

where both A1(t), A2(t) are stochastic variables. Using the
trigonometric identity for the sum of a sine and a cosine and
the initial condition, U0(x) = A0 cos(x), we can write

U(x, t) =
√
(A0 + A1(t))2 + A2(t)2 cos (x − %(t))

where %(t) = tan−1
(

A2(t)
A0+A1(t)

)
. We use the equality,

ξ(t) =
√
(A0 +A1(t))2 + A2(t)2−A0, to track the stochas-

tic variable that measures the displacement of the amplitude
from it’s initial point. Therefore as long as this effective
amplitude is in the interval [0, 1/s], then

U(x, t) =
∫ π

−π
w(x − y)f (U(y, t))dy,

is satisfied by the condition of neutral stability. Therefore
Eq. (3.9) simplifies to

dA1(t) cos x + dA2(t) sin x

= ε1/2(dW1(t) cos x + dW2(t) sin x),
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Fig. 3 Diffusion of bump
solution. a Space-time plot of
bump during the delay period
for both low and high initial
amplitude. The bump’s position
diffuses more for smaller initial
bump amplitude. b Variance of
the bump center, %(t), and bump
amplitude ξ(t) as a function of
time as well as the the diffusion
coefficient for %(t) as a
function of initial amplitude,
A0. Other parameters used:
ε = .001, s = 2/π , w1 = 1. For
the variance plots, A0 = π/4

which we rewrite as

dA1(t) = ε1/2dW1(t), dA2(t) = ε1/2dW2(t).

We see that this is equivalent to a 2D diffusion process with
initial condition, (A1(0), A2(0)) = (0, 0) and

⟨A1(t)
2⟩ = ⟨A2(t)

2⟩ = εt, ⟨A1(t)⟩ = ⟨A2(t)⟩ = 0.

Therefore to compute the variance of the amplitude we must
compute

⟨ξ(t)2⟩ − ⟨ξ(t)⟩2 = A2
0 + 2εt −

〈√
(A0 + A1(t))2 +A2(t)2

〉2
,

where the last term must be determined using Monte Carlo
simulations. Again, we obtain the relationship that %(t)

decreases with increasing initial bump amplitude, A0.
As shown in Fig. 4b the Monte Carlo simulation of the
stochastic process %(t) agrees well with the full system.
Additionally, we see that the variance of %(t) indeed does
decrease with initial amplitude, A0. Thus, the certainty of
bumps relates to how sensitive they will be to stochastic
fluctuations. More initial certainty (higher A0) translates to

a lower diffusion coefficient across a broad range of noise
amplitudes. Therefore, as suggested by previous experi-
ments (Basso and Wurtz 1997; Meyer et al. 2011), there
may be a correspondence between the firing rate during
persistent activity and resulting performance on an associ-
ated cognitive task. Higher rates could lead to better spatial
working memory storage, due to less degradation of the
stored position.

4 Obtaining neutral stability through excitatory-
inhibitory balance

So far we have considered a network described by Eq. (2.2)
which lumps excitatory and inhibitory cells into a single
population. In doing so, we were able to restrict the set of
parameters to generate a network which supported a set of
bump solutions with a continuum of amplitudes. We can
perform a similar analysis in a network with two sepa-
rate populations for excitatory and inhibitory cells, but our

Fig. 4 Diffusion of bump
solution. a Space-time plot of
bump during the delay period
for both low and high initial
amplitude. The bump’s position
diffuses more for smaller initial
bump amplitude. b Variance of
the bump center, %(t), and bump
amplitude ξ(t) as a function of
time as well as the the variance
for %(t), evaluated at t = 20, as
a function of initial amplitude,
A0. Other parameters used:
ε = .01, s = 2/π , w1 = 1. For
the variance plots, A0 = π/4
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restrictions on parameters simply involve more conditions.
As explained in section 2, the single population network
is equivalent to the two population network in the limit of
fast inhibition, τ → 0. However, as inhibition becomes
slower, τ > 0, it is no longer clear that stability in the single
population implies stability in the two population network.
We will see that the conditions for finding a continuum of
fixed points are exactly the same as in the single population,
since the stationary solutions do not depend on τ . How-
ever the equations used in the stability analysis do depend
on τ . Excessively slow inhibition can destabilize stationary
bump solutions. Perturbations that translate the position of
the bump are always neutrally stable, due to the underly-
ing translation symmetry of the network (Bressloff 2001;
Kilpatrick and Ermentrout 2013). However, generating a
network with bumps that are neutrally stable to even sym-
metric perturbations depends on conditions that relate to the
speed of inhibition.

By considering separate excitatory and inhibitory pop-
ulations allows for another dimension – the balance of
excitation/inhibition – that should be properly tuned for a
network to support bumps with a continuum of possible
amplitudes. Excitation/inhibition balance has received a lot
of interest recently for a variety of reasons. First, much
of the observed variability in cortical networks is thought
to be generated by precisely balanced but strong excita-
tory and inhibitory connectivity (Haider et al. 2006; Renart
et al. 2010). There is growing evidence that such balanced
networks are very effective at a variety of neural computa-
tions, like orientation selectivity (Hansel and van Vreeswijk
2012). Finally, with the advent of optogenetic techniques,
the alteration of excitatory/inhibitory balance in vivo is pos-
sible, so its effects on in vivo network computations can be
studied in detail (Yizhar et al. 2011).

4.1 Stationary bump solutions

We now state our results concerning the existence of a con-
tinuum of possible bump amplitudes in the network with
separate excitatory and inhibitory populations. The details
of this analysis are provided in Appendix B. Essentially, to
obtain a line attractor of bump amplitudes, we must have
that the parameters of the weight defined in Eq. (2.5) sat-
isfy w̄ee = 2πw̄ei w̄ie (or w̄ = w̄ee − 2πw̄ei w̄ie = 0).
Essentially, excitation (w̄ee) must be precisely balanced by
feedback inhibition. Too much inhibition leads to no stable
bump solutions whereas too much excitation leads to only a
single stable bump solution. In the case of excess inhibition,
w̄ < 0, and when U(x) < 1/s we find that

A0 = 2sw̄[aA0 + sin aA1]
A1 = sw̄ee[sin aA0 + aA1] (4.1)

where a = cos−1
(
−A0

A1

)
and |A0| ≤ |A1|. In the case of

excess excitation, w̄ > 0, and U(x) > 1/s for some x, then

A0 = 2sw̄[(a − b)A0 + (sin a − sin b)A1] + 2w̄b,

A1 = sw̄ee[(sin a − sin b)A0 + (a − b)A1] + 2w̄ee sin b,

(4.2)

where b = cos−1
(

1−sA0
sA1

)
such that U(b) = 1/s. We com-

pute the solutions numerically and plot them in Fig. 5. We
see that for any given w̄ there is either only a single solu-
tion or two solutions for U(x), therefore there are no line
attractors in this case. This means that the only case that
yields a line attractor of bump amplitudes is when w̄ =
w̄ee − 2πw̄ei w̄ie = 0, when recurrent excitation is perfectly
balanced by feedback inhibition. Thus, by considering sep-
arate excitatory and inhibitory populations, we see that we
must place additional restrictions on the parameters of our
model to attain a continuum of bump amplitudes (Fig. 6).

Now, we perform a stability analysis on the fixed bump
solution, considering the set of parameters A0 = 0 and
A1 = A ∈ [0, 1/s] that leads to a line attractor of ampli-
tudes. The details of our stability calculations are provided
in Appendix B. Our result is that we can characterize bump
stability with the characteristic equation

λ2(τλ + 1)2
(

τλ2 + (1 − τ )λ + 1 − 16
π2 τ

)
= 0 (4.3)

from which we obtain only two zero eigenvalues corre-
sponding to movement of the bump’s position and ampli-
tude. Obtaining a zero eigenvalue associated with even
perturbations does not depend on the speed of inhibition,
τ . However, neutral stability still does depend on τ , as
it is possible that other eigenvalues associated with even
perturbations may have positive real part. The only two
eigenvalues that can possibly be positive are given by the
formula

λ± = 1
2

(
1 − 1

τ

)
± 1

2τ

√(
1 + 64

π2

)
τ 2 − 6τ + 1. (4.4)

Note that if τ = π2

16 , then we obtain one more zero eigen-
value, however the corresponding eigenvector is the zero
vector. We plot the two eigenvalues determined by Eq. (4.4)
in Fig. 7, showing λ− is negative for all τ whereas λ+
is only negative when τ < π2

16 . Thus we can ensure that
all eigenvalues are zero or have negative real part as long
as τ < π2

16 . Note that for a certain range of values for τ

we have a non-zero imaginary component in λ, however
both eigenvalues have negative real part so that oscillatory
instabilities never arise.

When τ = 0, then the u equation is equivalent to the
single population by letting w1 = wee. The analysis we
performed on the system Eq. (2.1) then applies, and we
can derive the same conditions for neutral stability. Thus,
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Fig. 5 Amplitudes of the
stationary bump solutions
U(x) = A0 + A1 cos x for
varying w̄ values as per equation
Eq. (4.2). a A0 as a function of
w̄. b A1 as a function of w̄. Other
values used: s = 2

π , w̄ee = 1

we conclude that one of the major differences between net-
works with one and two populations is that it is possible
to destabilize stationary bumps with sufficiently slow inhi-
bition (τ large enough). In the case of two populations,
the restrictions required to derive a network possessing a
line attractor of bump amplitudes generate a relationship
implying a monotone increasing correspondence between
the strength of excitation and inhibition.

4.2 Stochastic motion of bumps in the two population
network

As in the case of the single population network, we now
study how fluctuations affect the motion of bumps in the
network Eq. (2.4). To do so, we consider a phenomenolog-
ical model that incorporates noise as an additive term in a
Langevin equation

dU(x, t) =
[
−U(x, t) +

∫ π

−π
wee(x − y)f (U(y, t))dy

−
∫ π

−π
wie(x − y)V(y, t)dy

]
dt + ε1/2dW(x, t)

τdV(x, t) =
[
−V(x, t) +

∫ π

−π
wei(x − y)f (U(y, t))dy

]
dt (4.5)

with ⟨dW(x, t)⟩ = 0 and ⟨dW(x, t) dW(y, s)⟩ = C(x − y)

δ(t − s)dtds, where ε parameterizes the level of noise.
Note that, because we could convert the system in Eq. (4.5)
into a single second order stochastic differential equation,
it would be redundant to include a noise term in the V
equation. Rather than performing an asymptotic analysis
on the system Eq. (4.5), we now briefly present the results
of numerical simulations, showing that bumps diffuse in a
similar way to the single population network (see Fig. 8a).

First we note that in the limit of fast inhibition, τ → 0,
Eq. (4.5) is equivalent to Eq. (3.9). Therefore, we would
expect identical results for the numerically computed vari-
ance of the bump position and amplitude as compared to the
single population model in this limit. Moving away from
this limit we see slightly different behaviors in the vari-
ances of the bump center and maximum as shown in Fig. 8b.
First, we see that the variance of the position %(t) of the
bump scales more quickly than in the single population net-
work. One reason for this may be that the excitatory and
inhibitory populations are not instantaneously coupled to
one another, so the transient behavior of the excitatory popu-
lation involves more activation than in the single population
network. Next, we note that the variance of the bump ampli-
tude saturates more quickly than in the single population

Fig. 6 Stability regions of stationary bumps in two population net-
work, whose amplitudes are determined by Eq. (B.4). Eigenvalues that
determine linear stability are given by Eq. (4.3). a The line indicates all
the values of w̄ee and s that induce neutral stability in the network. b

The line w̄ee = 2πw̄ei w̄ie divides parameter space into unstable region
(excess inhibition) and stable region (excess excitation). We achieve
neutral stability when excitatory and inhibitory strengths are balanced
properly

Author's personal copy



J Comput Neurosci (2014) 37:29–48 41

Fig. 7 Dependence of
eigenvalues, defined by
Eq. (4.4) plotted against τ for
(a) λ+ and (b) λ−

network. Based on the stability analysis we have carried
out, we speculate that this saturation may arise because the
initial build up in variance is mostly along weakly stable
eigendimensions. After this, variance in the amplitude may
continue to build up along the remaining neutrally stable
eigendimension, happening at a considerably slower pace.
However, fully understanding this behavior will require
studying the stochastic system in depth, which we leave for
future work. Finally, we still see that the variance of the
bump center decreases with increasing initial amplitude as
we saw in the single population. Once again, this implies
that a signal that initially possesses more certainty will
be more robust to dynamic fluctuations during the storage
period.

We discussed in Section 4.1 that all the remaining
nonzero eigenvalues increase towards zero as τ increases
for τ ≤ π2/16. Thus we would expect that as inhibition
becomes slower (τ increases), the variance of the bump’s
position would increase due to the stability of the bump to
certain odd perturbations becomes weaker. We observe this
numerically across a broad range of τ values in Fig. 9b.
Essentially, when the inhibitory population does not respond
as quickly to transient motion of the excitatory population,
noise causes the bump’s position to alter more rapidly. Addi-
tionally, for τ > π/16, one of the eigenvalues associated

with the linear stability of the bump becomes positive. In
this case we would expect a total loss of the instantiated
bump solution, which we can associated with a total loss of
the remembered position, as seen in Fig. 9a with τ = 0.7.
Thus, by considering two separate excitatory and inhibitory
populations, we see that the speed of inhibition plays a cru-
cial role in the response of the bump to noise. Previously,
(Pinto and Ermentrout 2001a) showed that bumps on an
unbounded domain are destabilized by oscillatory instabil-
ities for sufficiently slow inhibition. Here, we extend this
work by showing non-oscillatory instabilities can occur on
the bounded domain of a ring, but these instabilities are still
associated with bump extinction.

5 Discussion

We have derived conditions under which networks can sup-
port bumps with a continuum of amplitudes. While the
location of the bump represents the stored location of a
stimulus, its amplitude can represent the certainty of this
internal representation. These stationary bump solutions are
neutrally stable to perturbations in position as well as ampli-
tude. Our analysis shows that recurrent excitation must be
balanced by inhibition to obtain a network that supports

Fig. 8 Diffusion of bump
solution in the two population
E-I network. a Space-time plot
of bump during the delay period
for both the excitatory network,
U , and inhibitory network, V . b
Variances of the bump center
(left) and peak of bump (middle)
as well as the variance for %(t),
evaluated at t = 20, as a
function of initial amplitude.
Other parameters used: ε = .01,
s = 2/π , w̄ee = w̄ei = 1,
w̄ie = 1/2π , τ = .4, A1 = π/4
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Fig. 9 a Bump extinction
occurring when τ = 0.7. b
Variance of %(t) at t = 20 as a
function of τ . Other values used:
ε = .01, s = 2/π ,
w̄ee = w̄ei = 1, w̄ie = 1/2π ,
A1 = π/4

such neutrally stable bumps. When considering the effects
of noise, we find that the bump diffuses away from its
initial position. Not only does the position in orientation
space change, but so does the amplitude. Using asymp-
totic approximations, we can relate the parameters of the
model to the effective amount of diffusion the bump will
experience. Importantly, bumps with larger initial ampli-
tude diffuse less than bumps with smaller initial amplitudes.
Therefore, the amount of certainty initially attached to the
stored stimulus determines the fragility of the memory.

Obtaining a network capable of storing a continuum
of possible bump amplitudes requires fine tuning of the
synaptic connectivity and firing rate function shape. Other
neuronal networks constructed to exhibit line attractor
dynamics require to be finely tuned in an equivalent
way (Seung 1996; Camperi and Wang 1998; Wang 2001,
2002; Brody et al. 2003). If we had used a sigmoid-shaped,
rather than a piecewise linear firing rate function, other
modifications would be required to obtain networks with the
properties we discussed. Sigmoid shaped firing rate func-
tions would break the neutral stability we have established,
since they do not possess a domain of linear input-output
transfer. Bumps in such networks would slowly move away
from their initial amplitude during the delay period. One
solution to the fine tuning problem in networks with line
attractor dynamics is to consider a series of bistable neu-
ral units. This generates an effective staircase-shaped firing
rate function for the network, creating a chain of stable
nodes and saddles, effectively discretizing the internal net-
work states (Brody et al. 2003). The network can then
retain a high but finite number of possible rates during a
storage period (Goldman et al. 2003). Similar challenges
have been faced in networks that support line attractors
in bump position. Introducing spatial heterogeneity into
a network causes bumps to drift toward one of a small
number of possible positions during the storage period
(Renart et al. 2003; Itskov et al. 2011; Hansel and Mato
2013; Kilpatrick et al. 2013). There are several possible
solutions to this problem: (a) homeostatic plasticity can be
introduced to rebalance network excitation and recover line
attractor dynamics (Renart et al. 2003); (b) short term plas-
ticity can be introduced to slow the drift of bumps, making
the memory of their original location last longer (Itskov

et al. 2011; Hansel and Mato 2013); (c) structured hetero-
geneity can be introduced to create a high but finite number
of possible bump locations, preserving the fidelity of the
input location (Kilpatrick et al. 2013). Incorporating some
of these additional mechanisms in our networks, may make
them more robust to changes in the form of the firing rate
function. Pursuing this will be the topic of a future study.

We believe this work contributes to the established
claims concerning the importance of tuning excitation and
inhibition in cortical networks to support flexible com-
putations for cognitive tasks (Brunel and Wang 2003;
Haider et al. 2006; Yizhar et al. 2011). Note that by
deriving conditions under which a network supports a
neutrally stable line attractor, we tune parameters of the
model so its dynamics lie right at a bifurcation, hence
moving the system to criticality. Pharmacological manip-
ulations of cortical networks have recently revealed that
a precise balance of excitation and inhibition in cortical
networks is crucial for criticality, and in this state a net-
work can maximize the range of inputs it can process
(Shew et al. 2009). The fact that balancing excitation and
inhibition in a network can lead to an increase in the rate
of information transfer was originally shown by the work of
van Vreeswijk and Sompolinsky (1996). As opposed to the
work of Shew et al. (2009), which examines the total tran-
sient activation of a network in response to stimuli, we are
considering the persistent spatially-dependent response of a
network encoding cue position. Nonetheless, we note that
by balancing excitation and inhibition, we have created net-
works that can transfer additional information about the
certainty of a stimulus. Without this balance, the amplitude
of the bump would always relax to a single value.

The networks we considered are not only useful for
studying spatial working memory tasks, but could also be
used as neural circuit models of decision making (Gold
and Shadlen 2002). Balancing synaptic feedback with the
timescale of synaptic decay is a well-established way
to obtain model networks capable of performing two-
alternative forced choice (2AFC) tasks (Wang 2002; Bogacz
et al. 2006). External inputs can then be slowly integrated
along the direction of their bias. In 2AFC tasks, there are
only two possible directions (Gold and Shadlen 2002). In
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this work, we have developed a model capable of integrating
inputs that can be biased to one of a continuum of dimen-
sions around a ring. Thus, we suggest the two-dimensional
attractor we have derived in this work may be ideal for inte-
grating information in the presence of a continuum of alter-
natives. Recent recordings from lateral interparietal cortex
suggest there are neurons whose firing rates climb in corre-
spondence to an animal’s certainty about one of a multitude
of decisions (Churchland et al. 2008). Subsequent computa-
tional work suggested an entire circuit may then be capable
of sequentially updating a probability function that pro-
vides the instantaneous likelihood of each alternative being
true, based on accumulated input (Beck et al. 2008). Our
model may provide a complementary network implemen-
tation of a decision making circuit. Of course, depending
on the form of the synaptic weight function, the accumu-
lating persistent activity would depend differently on the
timing of inputs. We will explore these issues in future
studies.

Conflict of interests The authors declare that they have no conflict
of interest.

Appendix A: Stability analysis of stationary bumps

The stability of a stationary bump solution U(x) is deter-
mined by writing

u(x, t) = U(x)+ ψ̄(x, t), (A.1)

where ||ψ̄(x, t)|| ≪ 1 and expanding Eq. (2.1) to first-order
in ψ̄(x, t). This leads to the linear equation

∂ψ̄(x, t)

∂t
= −ψ̄(x, t) +

∫ π

−π
w(x − y)f ′(U(y))ψ̄(y, t)dy.

(A.2)

Since Eq. (A.2) is linear, we can use separation of vari-
ables to characterize all of its solutions (Ermentrout 1998;
Sandstede 2002; Folias and Bressloff 2004; Veltz and
Faugeras 2010; Bressloff 2012). Plugging the ansatz
ψ̄(x, t) = b(t)ψ(x) into Eq. (A.2), we find

b′(t)ψ(x) = −b(t)ψ(x, t)

+b(t)

∫ π

−π
w(x − y)f ′(U(y))ψ(y)dy.

After rearranging terms, we have

b′(t)
b(t)

= −1 + 1
ψ(x)

∫ π

−π
w(x − y)f ′(U(y))ψ(y)dy, (A.3)

meaning that both the left and right hand sides of Eq. (A.3)
equal a constant λ. Therefore b′(t) = λb(t) implying b(t) =
eλt , and

(λ + 1)ψ(x) =
∫ π

−π
w(x − y)f ′(U(y))ψ(y)dy, (A.4)

which is an eigenvalue problem characterizing the stability
of bump solutions to Eq. (2.1). Since U(x) < 0 over some
portion of the domain, the function f ′(U(x)) will have jump
discontinuities, but since the domain [−π,π] is periodic, we
can always rearrange the limits of integration to ensure these
jump discontinuity points are on the interior of the integral.

To characterize the eigensolutions to Eq. (A.4), we
decompose the function ψ(x) into a Fourier series on the
domain [−π,π] given by

ψ(x) =
N∑

k=1

Ak cos kx +
N∑

k=1

Bk sin kx, (A.5)

where N is directly determined by the number of terms in
the Fourier expansion of w(x). The associated coefficients
of the expansion in Eq. (A.5) are then determined by the
linear system

Ak = wk

∫ π

−π
cos(kx)f ′(U(x))ψ(x)dx,

Bl = wl

∫ π

−π
sin(lx)f ′(U(x))ψ(x)dx,

where k, l = 1, ..., N . Solutions of this system, along with
the associated λ are eigensolutions of Eq. (A.4). We can
directly compute the eigenvalues associated with the stabil-
ity of bumps in the case of the weight function in Eq. (2.2)
so that

(λ + 1)ψ(x) = w1

∫ π

−π
cos (x − y)f ′(U(y))ψ(y)dy.

(A.6)

Analyzing solutions (λ,ψ) of Eq. (A.6) is equivalent to
determining the elements of the spectrum of the linear sys-
tem in the vicinity of the bump. We are mainly interested in
the point spectrum of the linear operator in Eq. (A.6), since
the sign of the real part of λ for these solutions will deter-
mine the associated stability of stationary bump solutions
(see Coombes and Owen 2004; Veltz and Faugeras 2010) for
detailed discussions of the partitioning of spectra in neural
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field models. In particular, we examine the stability of sta-
tionary bump solutions of the form U(x) = A cos xwhen

the firing rate function has the form given in Eq. (2.3).
Hence,

(λ + 1)A1 =

⎧
⎪⎨

⎪⎩
A1sw1

[
π
2 − cos−1

(
1
sA

)
− 1

sA

√
1 −

(
1
sA

)2
]

, for sA > 1,

A1sw1
π
2 , for sA ≤ 1,

(A.7)

(λ + 1)B1 =

⎧
⎪⎨

⎪⎩
B1sw1

[
π
2 − cos−1

(
1
sA

)
+ 1

sA

√
1 −

(
1
sA

)2
]

, for sA > 1,

B1sw1
π
2 , for sA ≤ 1,

(A.8)

and Ak = Bk = 0 for k ̸= 1 and A0 = 0. Therefore,
only sin x and cos x are eigenfunctions of the linearized
system. All other Fourier modes cos(kx) and sin(lx) are lin-
ear combinations of functions associated with the essential
spectrum λ = −1, given by ψ(x) = cos(kx) − Ck cos(x)
and ψ(x) = sin(lx) − Dk sin(x) where

Ck =

∫ π

−π
cos yf ′(U(y)) cos(ky)y.
∫ π

−π
cos2 yf ′(U(y))dy

,

Dk =

∫ π

−π
sin yf ′(U(y)) sin(ky)dy
∫ π

−π
sin2 yf ′(U(y))dy

as well as the eigenfunctions cos(x) and sin(x). Now, bump
solutions of Eq. (2.1) will be neutrally stable to both even
and odd perturbations when parameters in Eqs. (A.7–A.8)
are such that some solutions have Reλ = 0 and others have
Reλ < 0. When A > 1/s, we find

λo = 2
π

⎛

⎝− cos−1
(

1
sA

)
− 1

sA

√

1 −
(

1
sA

)2
⎞

⎠ < 0, (A.9)

λe = 2
π

⎛

⎝− cos−1
(

1
sA

)
+ 1

sA

√

1 −
(

1
sA

)2
⎞

⎠ < 0.

Appendix B: Existence and stability of bumps
in two-population network

To find stationary bump solutions to the excitatory-
inhibitory network defined by Eq. (2.4) with synaptic
weights given by Eq. (2.5), we make the ansatz

u(x, t) = U(x) = A0 + A1 cos x,

v(x, t) = V (x) = M0 +M1 cos x. (B.1)

and substitute the v equation into the u equation in Eq. (2.4)
to generate

U(x) = (wee(x) − wei(x) ∗ wie(x)) ∗ f (U(x)), (B.2)

where f (x) ∗ g(x) =
∫ π
−π f (x − y)g(y)dy. Therefore,

stationary solutions to Eq. (2.4) are the same as stationary
solutions to Eq. (2.1) by assigning

w(x) = wee(x) − wei(x) ∗ wie(x)

= w̄ee − 2πw̄ei w̄ie + w̄ee cos x.

(B.3)

Note that Eq. (B.3) is equivalent to Eq. (2.2) by setting w0 =
w̄ee − 2πw̄ei w̄ie and w1 = w̄ee . Therefore, under an appro-
priate change of variables, solving Eq. (B.2) is equivalent
to solving Eq. (3.1). Therefore, our results concerning the
existence of a continuum of amplitudes concerning Eq. (3.1)
should hold here as well. This means that in order to obtain a
line attractor of bump amplitudes, we must have that A0 = 0
and w̄ee = 2πw̄ei w̄ie (i.e., w0 = 0). However, we can still
have M0 ̸= 0. Additionally, analogous to the single network
in Eq. (3.1), we must require that w̄ee = 2

πs . Again, we have

A =

⎧
⎪⎨

⎪⎩

sAw̄ee

[
π
2 − cos−1

(
1
sA

)
− 1

sA

√
1 −

(
1
sA

)2
]

+ 2w̄ee

√
1 −

(
1
sA

)2
, for sA > 1,

sAw̄ee
π
2 , for sA ≤ 1,

(B.4)
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and, for the v equation

V (x) = w̄ei

∫ π

−π
(1 + cos (x − y))f (U(y))dy,

so that

M0 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2sw̄eiA

[

1 −
√

1 −
(

1
sA

)2
]

+ 2w̄ei cos−1
(

1
sA

)
, for sA > 1,

2sw̄eiA, for sA ≤ 1,

M1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sAw̄ei

[
π
2 − cos−1

(
1
sA

)
− 1

sA

√
1 −

(
1
sA

)2
]

+ 2w̄ei

√
1 −

(
1
sA

)2
, for sA > 1,

sAw̄ei
π
2 , for sA ≤ 1.

(B.5)

Again, we have a continuum of values for A ∈ [0, πw̄ee
2 ]

that are fixed points, and the coefficients for v will depend
on A, and upon substituting values for s we obtain

M0 = 4w̄ie

πw̄ee
A, M1 = w̄ie

w̄ee
A.

To study the way in which the line attractor globally orga-
nizes dynamics, we consider effects of breaking this balance
condition in two ways: excess excitation or excess inhibi-
tion. As we shall see, too much inhibition leads to no stable
bump solutions whereas too much excitation leads to only a
single stable bump solution. To do this, we define the quan-
tity w̄ = w̄ee − 2πw̄ei w̄ie and simply consider when w̄ > 0
(excess excitation) and w̄ < 0 (excess inhibition).

First let w̄ < 0 (excess inhibition) and consider when
U(x) < 1/s. Then, similar to Section 3.1, we find that

A0 = 2sw̄[aA0 + sin aA1]
A1 = sw̄ee[sin aA0 + aA1] (B.6)

where a = cos−1
(
−A0

A1

)
and |A0| ≤ |A1|. We must con-

sider the cases when A0 > 0, A0 < 0 and A0 = 0. If
A0 > 0, then since 0 ≤ a ≤ π we know that sin a ≥ 0.
Also, we impose that A1 ≥ 0 so that the peak of the bump
corresponds to the remembered location of the stimulus.
Then, since w̄ < 0, Eq. (B.6) implies that A0 equals some-
thing negative, which is a contradiction. Now assume that
A0 < 0. Then Eq. (B.6) implies that

a ≥ A1

|A0|
sin a, and a ≥ |A0|

A1
sin a,

which implies that |A0| = A1. Then our only choices are
U(x) = A1(cos x − 1) or U(x) ≡ 0. However, if the former
were true, then f (u) ≡ 0 which forces U(x) ≡ 0. Finally it
is easy to see that if A0 = 0 then A1 = 0 for w̄ ̸= 0.

Now assume that w̄ > 0 (excess excitation). In the case
U(x) < 1/s, we find that the only solution is U(x) ≡ 0.
When U(x) > 1/s for some x, then Eq. (B.6) becomes

A0 = 2sw̄[(a − b)A0 + (sin a − sin b)A1] + 2w̄b,

A1 = sw̄ee[(sin a − sin b)A0 + (a − b)A1] + 2w̄ee sin b,

(B.7)

where b = cos−1
(

1−sA0
sA1

)
such that U(b) = 1/s. To sim-

plify the analysis, we will let s = 2
πw̄ee

as was the condition
for the line attractor.

We now perform a stability analysis on the fixed bump
solution in Eq. (B.1). We consider the set of parameters
A0 = 0 and A1 = A ∈ [0, 1/s] that leads to a line attractor
of amplitudes. Similar to Section 3.2, we study the temporal
evolution of perturbations to the original bump solutions by
plugging in the linear expansion

u(x, t) = U(x)+ ψ̄(x, t),

v(x, t) = V (x)+ φ̄(x, t), (B.8)

where ||ψ̄(x, t)||, ||φ̄(x, t)|| ≪ 1. As before, we can show
that these solutions are separable, so that ψ̄(x, t) = eλtψ(x)

and φ̄(x, t) = eλtφ(x). Therefore, by plugging the expan-
sion Eq. (B.8) into Eq. (2.4), and noting separability, we
find

(λ + 1)ψ(x) = wee∗(f ′(U(x))ψ(x)) − wie∗φ(x),

(τλ + 1)φ(x) = wei∗(f ′(U(x))ψ(x)). (B.9)

We then expand both spatial functions in Fourier series

ψ(x) =
N∑

k=0

Ak cos (kx)+
N∑

k=1

Bk sin (kx),

φ(x) =
N∑

k=0

Mk cos (kx)+
N∑

k=1

Nk sin (kx). (B.10)

Similar to Section 3, we analyze the solutions (λ,ψ,φ) to
determine the stability of the perturbations by observing
the sign of the real part of λ. By plugging Eq. (B.10) into
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Eq. (B.9), we see that when using the weight functions in
Eq. (2.5) we have the system

(λ + 1)A0 = w̄ee

∫ π

−π

(A0 +A1 cos y + B1 sin y)f ′(U(y))dy

−w̄ie

∫ π

−π
(M0 +M1 cos y +N1 sin y)dy,

(λ + 1)A1 = w̄ee

∫ π

−π
cos y(A0 +A1 cos y + B1 sin y)f ′(U(y))dy,

(λ + 1)B1 = w̄ee

∫ π

−π
sin y(A0 +A1 cos y + B1 sin y)f ′(U(y))dy,

(τλ + 1)M0 = w̄ei

∫ π

−π
(A0 +A1 cos y + B1 sin y)f ′(U(y))dy,

(τλ + 1)M1 = w̄ei

∫ π

−π
cos y(A0 +A1 cos y + B1 sin y)f ′(U(y))dy,

(τλ + 1)N1 = w̄ei

∫ π

−π

sin y(A0 +A1 cos y + B1 sin y)f ′(U(y))dy,

(B.11)

where Ak = Bk = 0 for k ̸= 0, 1. When τ ̸= 0, we can
compute the integrals and set conditions of the parameters
for the line attractor to find that the system in Eq. (B.11) is
equivalent to the linear system

λ

⎛

⎜⎜⎜⎝

A0
A1
B1
M0
M1
N1

⎞

⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 4
π

0 −2πw̄ie 0 0
4
π

0 0 0 0 0

0 0 0 0 0 0
1

πw̄ieτ
2

π2w̄ieτ
0 − 1

τ 0 0

2
π2w̄ieτ

1
2πw̄ieτ

0 0 − 1
τ 0

0 0 1
2πw̄ieτ

0 0 − 1
τ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

A0
A1
B1
M0
M1
N1

⎞

⎟⎟⎟⎠
.

The associated matrix has the characteristic equation

λ2(τλ + 1)2
(

τλ2 + (1 − τ )λ + 1 − 16
π2 τ

)
= 0

from which we obtain only two zero eigenvalues cor-
responding to odd perturbations

(
0, 0, 1, 0, 0, w̄ei

w̄ee

)
and

even perturbations
(

0, 1, 0, 4w̄ei
πw̄ee

, w̄ei
w̄ee

, 0
)

. Thus we see that
obtaining a zero eigenvalue associated with even pertur-
bations does not depend on the speed of inhibition, τ .
However, neutral stability still does depend on τ , as it is
possible that other eigenvalues associated with even pertur-
bations may have positive real part. Looking at the other
eigenvalues, we have two negative ones, λ− = − 1

τ , corre-
sponding to perturbations in M1 and N1. Therefore, if we
only perturb the inhibitory network, then solutions will be
attracted back toward the fixed bump solutions. The final
two eigenvalues can be analyzed by examining

λ± = 1
2

(
1 − 1

τ

)
± 1

2τ

√(
1 + 64

π2

)
τ 2 − 6τ + 1.
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