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TWO-DIMENSIONAL BUMPS IN PIECEWISE SMOOTH NEURAL
FIELDS WITH SYNAPTIC DEPRESSION∗
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Abstract. We analyze radially symmetric bumps in a two-dimensional piecewise-smooth neural
field model with synaptic depression. The continuum dynamics is described in terms of a nonlocal
integrodifferential equation, in which the integral kernel represents the spatial distribution of synaptic
weights between populations of neurons whose mean firing rate is taken to be a Heaviside function of
local activity. Synaptic depression dynamically reduces the strength of synaptic weights in response
to increases in activity. We show that in the case of a Mexican hat weight distribution, sufficiently
strong synaptic depression can destabilize a stationary bump solution that would be stable in the
absence of depression. Numerically it is found that the resulting instability leads to the formation of
a traveling spot. The local stability of a bump is determined by solutions to a system of pseudolinear
equations that take into account the sign of perturbations around the circular bump boundary.
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1. Introduction. Continuum neural field models provide an important example
of spatially extended excitable systems with nonlocal interactions. These models
represent the large-scale dynamics of populations of neurons in terms of nonlinear
integrodifferential equations, whose associated integral kernels represent the spatial
distribution of neuronal synaptic connections [2, 3, 5, 11, 40]. As in the case of
nonlinear PDE models of diffusively coupled excitable systems [17], neural field models
can exhibit a variety of coherent pulse-like structures, including both stationary and
traveling solitary pulses. Traveling pulses tend to occur when synaptic connections
are predominantly excitatory and there is some form of slow local adaptation or
recovery [30], whereas stationary pulses (activity bumps) occur in the presence of
lateral inhibition [2, 31]. The formation of localized activity states can be used to
model a number of neurobiological phenomena. For example, traveling pulses have
been observed in disinhibited slice preparations [6, 41, 42] using voltage sensitive dyes
and multiple electrodes. A second example is given by a delayed response task in
which an animal is required to retain information of a sensory cue across a delay
period between the stimulus and behavioral response. Physiological recordings in the
prefrontal cortex have shown that spatially localized groups of neurons fire during
the recall task and then stop firing once the task has finished [38]. Thus persistent
localized states of activity are thought to be neural correlates of spatial working
memory.
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The simplest example of a one-dimensional (1D) neural field model is the scalar
equation [2]

τ
∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− x′)f(u(x′, t))dx′ + h(x, t).(1.1)

The neural field u(x, t) represents the local activity of a population of neurons at
position x at time t, τ is a membrane or synaptic time constant, h(x, t) represents an
external input, and w(x) is a synaptic weight distribution. We assume that w is a
continuous function satisfying w(−x) = w(x) and

∫∞
−∞ w(x)dx <∞. The nonlinearity

f denotes an output firing rate function. A typical choice for f is a bounded, positive
monotonic function such as the sigmoid

(1.2) f(u) =
1

1 + e−η(u−θ)
,

with gain η and threshold θ. Considerable insight into particular classes of spatially
localized solutions of (1.1) and various generalizations involving vector-valued fields
can be obtained by taking the high-gain limit η → ∞ such that f becomes a Heaviside
function

f(u) = H(u− θ) =

{
0 if u < θ,
1 if u > θ.

(1.3)

It is then possible to establish existence of stationary and traveling pulse solutions
by explicit construction, and to determine local stability in terms of an associated
Evans function by linearizing the neural field equations about the pulse solution [2,
7, 30, 31, 32, 43]. In the case of stationary pulses or bumps, local stability reduces to
the problem of calculating the effects of perturbations at the bump boundary, where
u(x) = θ.

Equation (1.1) was first analyzed in detail by Amari [2], who showed that in the
case of a Heaviside function H and a homogeneous external input h, the network can
support a stable stationary bump solution when the weight distribution w(x) is given
by a so-called Mexican hat function with the following properties:1

(i) w(x) > 0 for x ∈ [0, x0) with w(x0) = 0.
(ii) w(x) < 0 for x ∈ (x0,∞).
(iii) w(x) is decreasing on [0, x0].
(iv) w(x) has a unique minimum on R

+ at x = x1 with x1 > x0 and w(x) strictly
increasing on (x1,∞).

On the other hand, in the case of a purely excitatory network with w(x) a posi-
tive, monotonically decreasing function, any bump solution is unstable and tends to
break up into a pair of counterpropagating fronts. Following Amari’s original analy-
sis, Kishimoto and Amari [23] proved the existence of a stationary pulse for a smooth

1The Mexican hat weight function is based on the assumption that there is short-range excitation
and long-range inhibition. From a mathematical perspective, it would also be possible to generate
stable bumps using an inverted Mexican hat function. Which form is more realistic from the biological
perspective depends on which classes of neurons are being taken into account by the neural field
model. For example, in the visual cortex it is known that excitatory pyramidal cells make both local
synaptic contacts as well as long-range horizontal connections. However, the latter innervate both
excitatory and local inhibitory neurons so they could have a net inhibitory effect, thus providing a
possible source of long-range inhibition; whether long-range connections generate net excitation or
net inhibition also depends on stimulus conditions [27].
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sigmoidal nonlinearity f , rather than a Heaviside function, using a fixed point theo-
rem. Moreover, rigorous functional analytical techniques have been used to study the
existence and (absolute) stability of stationary bump solutions for a general class of
neural field models with smooth f , where the spatial domain is taken to be bounded
rather than infinite [12].

The constructive approach based on the use of Heaviside functions has been gen-
eralized in a number of ways (see the review by Coombes [5]). These include more
general weight distributions for which multiple bump states can arise [24, 25], inho-
mogeneous neural fields [18], two-dimensional (2D) bumps [14, 15, 25, 39], and weakly
interacting bumps [4]. There has also been a lot of recent interest in neural field mod-
els with some form of local negative feedback. The inclusion of negative feedback is
motivated by the fact that the scalar model given by (1.1) cannot support traveling
pulse solutions in the absence of synaptic inhibition, which is inconsistent with what
is observed in disinhibited slice experiments [6, 41, 42]. Negative feedback is typically
taken to be linear by analogy with the FitzHugh–Nagumo equation [13], leading to a
neural field model of the form [30, 31]

τ
∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x, x′)f(u(x′, t))dx′ − v(x, t) + h(x, t),(1.4)

τv
∂v(x, t)

∂t
= γu(x, t)− v(x, t).(1.5)

The auxiliary field v(x, t) represents a slow local negative feedback component with
τv and γ determining the time constant and strength of the feedback, respectively.
One of the interesting dynamical consequences of linear negative feedback is that the
linear operator obtained by linearizing about a stationary bump solution can have
complex-valued eigenvalues, thus providing a possible mechanism for the generation
of spatially structured oscillations [14, 15, 33, 35].

One possible limitation of linear negative feedback is that it does not have a
direct physiological interpretation. This motivates the study of neural field models
with more realistic nonlinear forms of negative feedback such as synaptic depression.
Synaptic depression is the process by which presynaptic resources such as chemical
neurotransmitters or synaptic vesicles are depleted [45]. It can be incorporated into
the scalar neural field model (1.1) by introducing a dynamic prefactor q in the nonlocal
term according to [19, 20]

τ
∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
q(x′, t)w(x − x′)f(u(x′, t))dx′,(1.6a)

∂q(x, t)

∂t
=

1− q(x, t)

α
− βq(x, t)f(u(x, t)).(1.6b)

The factor q(x, t) can be interpreted as a measure of the fraction of available presynap-
tic resources, which are depleted at a rate βf [34, 37] and are recovered on a timescale
specified by the constant α (experimentally shown to be 200–800 msec [1, 36, 37]).
Suppose that the strength of a synapse is reduced by a factor κ of its maximal value
in response to a sustained input of rate f = 1 with κ ∼ 0.05 − 0.9 [1]. A simple
steady-state calculation shows that β ≈ (1−κ)/(κα). Hence β ∼ 0.0001− 0.1 (ms)−1

for the given range of values of α. In previous work we focused on the role of synap-
tic depression in generating spatially structured oscillations in 1D [19] and 2D [20]
excitatory neural networks with continuous firing rate functions. In the high-gain
limit, oscillatory solutions no longer exist but stationary and traveling wave solutions
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can be constructed. However, the presence of a Heaviside function in the dynam-
ics of the synaptic depression variable means that the resulting dynamical system
is piecewise smooth, which considerably complicates the stability analysis. Indeed,
we have recently shown how the local stability of a 1D stationary bump can be for-
mulated in terms of a system of pseudolinear equations that keep track of the sign
of perturbations of the bump boundary [21]. Solutions to these equations establish
that sufficiently strong synaptic depression can destabilize a bump. In this paper we
extend our analysis of piecewise smooth neural fields with synaptic depression to the
case of a 2D network. We also give a more detailed derivation of our previous stability
results for a 1D network.

2. One-dimensional bumps.

2.1. Existence of one-dimensional bumps. On setting f(u) = H(u − θ), a
stationary solution (U(x), Q(x)) of (1.6) satisfies the pair of equations

U(x) =

∫ ∞

−∞
Q(x′)w(x − x′)H(U(x′)− θ)dx′,(2.1)

Q(x) = 1− αβ

1 + αβ
H(U(x)− θ).(2.2)

Let R[U ] = {x|U(x) > θ} be the region over which the field is excited or super-
threshold. Exploiting the fact that any solution can be arbitrarily translated along
the x-axis, we define a stationary bump solution of half-width a to be one for which
R[U ] = (−a, a). Substituting (2.2) into (2.1) then yields

U(x) =
1

1 + αβ
[W (x+ a) +W (x− a)],(2.3)

where W (x) =
∫ x

0
w(y)dy. As a simple example, consider a Mexican hat distribution

given by the difference-of-exponentials

w(|x − x′|) = e−|x−x′| −Ae−|x−x′|/σ.(2.4)

Substituting the weight function (2.4) into the steady-state solution for U(x) and
evaluating the integral yields

U(x) =
1

(1 + αβ)

⎧⎨⎩
2 sinh ae−x − 2Aσ sinh(a/σ)e−x/σ, x > a,

2− 2e−a coshx− 2Aσ[1− e−a/σ cosh(x/σ)], |x| < a,

2 sinh aex − 2Aσ sinh(a/σ)ex/σ, x < −a.
Applying the threshold conditions U(±a) = θ, we arrive at an implicit expression
relating the bump half-width a to all other parameters:2

1

(1 + αβ)

[
1− e−2a −Aσ(1 − e−2a/σ)

]
= θ.(2.5)

The transcendental equation (2.5) can be solved numerically using a root finding
algorithm. Since 0 < A < 1 and σ > 1, it is straightforward to show that e−2a −
Aσe−2a/σ is a unimodal function of a and, hence, the maximum number of bump
solutions is two. The variation of pulse width with the parameters θ and β is shown
in Figure 2.1; the stability of the bumps is analyzed next.

2These threshold-crossing conditions are necessary but not sufficient for existence of a bump. A
rigorous proof of existence, which establishes that activity is superthreshold everywhere within the
domain |x| < a and subthreshold for all |x| > a, has not been obtained except in special cases [2].
However, it is straightforward to check numerically that these conditions are satisfied.
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Fig. 2.1. One-dimensional bumps. (a) Plots relating bump width a to amplitude of synaptic
depression β for different values of θ using (2.5). The stability analysis of section 3.3 establishes
that bumps along the dashed portions of the existence curves are unstable. The solid curves indicate
bumps that appear to be numerically stable. Other parameter values are A = 0.6, σ = 4, α = 20.
(b) Bump profile when θ = 0.1 and β = 0.005.

2.2. Stability of one-dimensional bumps. In the case of the scalar equation
(1.1) it was possible to determine the local stability of a stationary bump by formally
differentiating the Heaviside firing rate function inside the convolution integral, which
is equivalent to differentiating with respect to the locations of the bump boundary.
This is no longer possible for the neural field system (1.6), since the steady-state
depression variable Q(x) is a discontinuous function of x, reflecting the piecewise-
smooth nature of the depression dynamics. One way to handle the discontinuity
would be to formally Taylor expand (1.6) about a bump solution in the case of a
sigmoid firing rate function and then to take the high-gain limit of the associated
Evans function [7]. However, as we have recently shown [21], the size of perturbations
for which the linear theory remains valid vanishes in the high-gain limit so that the
Evans function approach breaks down; the resulting stability conditions underestimate
the effectiveness of synaptic depression in destabilizing a bump. In our previous
paper [21], we developed a more careful treatment of local stability that explicitly
takes into account the piecewise-smooth nature of the dynamics. Here we present
a more detailed version of our 1D analysis in order to lay the groundwork for the
stability analysis of 2D bumps.

Let u(x, t) = U(x) + εψ(x, t) and q(x, t) = Q(x) + εϕ(x, t). Substituting into the
full system (1.6), imposing the stationary bump solutions (2.1) and (2.2), and dividing
through by ε gives

∂ψ(x, t)

∂t
= −ψ(x, t)

+
1

ε

∫ ∞

−∞
w(x − x′)Q(x′) [H(U(x′) + εψ(x′, t)− θ)−H(U(x′)− θ)] dx′

+

∫ ∞

−∞
w(x − x′)ϕ(x′, t)H(U(x′) + εψ(x′, t)− θ)dx′,(2.6)

∂ϕ(x, t)

∂t
= −ϕ(x, t)

α
− β

ε
Q(x) [H(U(x) + εψ(x, t)− θ)−H(U(x)− θ)]

−βϕ(x, t)H(U(x) + εψ(x, t)− θ).(2.7)
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Denote the perturbations of the bump boundary by εΔ±(t) such that

u(a+ εΔ+(t), t) = u(−a+ εΔ−(t), t) = θ

for all t > 0. Taylor expanding these threshold conditions to first order in ε, we find
that

Δ±(t) ≈ ±ψ(±a, t)|U ′(a)| .(2.8)

We then introduce the auxiliary field

Φ(x, t) =

∫ a+εΔ+(t)

−a+εΔ−(t)

w(x − x′)ϕ(x′, t)dx′.(2.9)

The motivation for this is that a small shift in the location of the bump boundary
means that in a small neighborhood of the bump boundary the synaptic depression
variable will start to switch its steady-state value from q = 1 to q = (1 + αβ)−1 or
vice-versa according to (1.6b). That is, ϕ(x, t) will undergo O(1/ε) changes over a
timescale of α−1. However, this doesn’t necessarily imply that the bump solution is
unstable, since the region over which ϕ(x, t) = O(1/ε) may shrink to zero. This is
captured by the dynamics of the auxiliary field Φ(x, t), which will remain O(1) when
ϕ(x, t) is O(1/ε) over an infinitesimal interval.

Differentiating (2.9) with respect to time shows that

∂Φ(x, t)

∂t
=

∫ a+εΔ+(t)

−a+εΔ−(t)

w(x − x′)
∂ϕ(x′, t)

∂t
dx

+ εw(x− a− εΔ+(t))ϕ(a + εΔ+(t), t)Δ̇+(t)

− εw(x+ a− εΔ−(t))ϕ(−a+ εΔ−(t), t)Δ̇−(t),

where Δ̇ = dΔ/dt. Substituting for ∂ϕ/∂t using (2.7) and replacing the final term on
the right-hand side of (2.6) by Φ leads to the pair of equations

∂ψ(x, t)

∂t
= −ψ(x, t) + Φ(x, t)(2.10)

+
1

ε

∫ a+εΔ+(t)

−a+εΔ−(t)

w(x− x′)Q(x′)dx′ − 1

ε

∫ a

−a

w(x − x′)Q(x′)dx′,

∂Φ(x, t)

∂t
= − (α−1 + β

)
Φ(x, t)

−β
ε

∫ a+εΔ+(t)

−a+εΔ−(t)

w(x − x′)Q(x′)H(U(x′) + εψ(x′, t)− θ)dx′

+
β

ε

∫ a+εΔ+(t)

−a+εΔ−(t)

w(x − x′)Q(x′)H(U(x′)− θ)dx′

+ εw(x − a− εΔ+(t))ϕ(a + εΔ+(t), t)Δ̇+(t)

− εw(x + a− εΔ−(t))ϕ(−a+ εΔ−(t), t)Δ̇−(t).(2.11)

We now “linearize” (2.10) and (2.11) by expanding in powers of ε and collecting all
O(1) terms. Note that it is important to keep track of the signs of Δ± when approx-
imating the various integrals, since the stationary solution Q(x) is discontinuous at
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the bump boundary. For example,

∫ a+εΔ+

a

w(x − x′)Q(x′)dx′ ≈ εΔ+ lim
ε→0+

w(x − a− εΔ+)Q(a+ εΔ+)

= εΔ+ w(x − a)G(Δ+)(2.12)

and ∫ −a

−a+εΔ−
w(x − x′)Q(x′)dx′ ≈ −εΔ− lim

ε→0+
w(x + a− εΔ−)Q(−a+ εΔ−)

= −εΔ−w(x + a)G(−Δ−),(2.13)

where G is the step function

(2.14) G(Δ) =

{
1 ifΔ > 0,

(1 + αβ)−1 if Δ < 0.

Similarly, the two integrals on the right-hand side of (2.11) can be approximated by
the expression

(2.15) εΔ+(t)w(x − a)G(Δ+)H(Δ+)− εΔ−(t)w(x + a)G(−Δ−)H(−Δ−).

Finally, collecting all O(1) terms and using (2.8), we obtain the following pseudolinear
system of equations:

∂ψ(x, t)

∂t
= −ψ(x, t) + Φ(x, t) + γw(x+ a)ψ(−a, t)G(ψ(−a, t))(2.16)

+ γw(x − a)ψ(a, t)G(ψ(a, t)),

∂Φ(x, t)

∂t
= − (α−1 + β

)
Φ(x, t)

− βγw(x + a)ψ(−a, t)G(ψ(−a, t))H(ψ(−a, t))
− βγw(x − a)ψ(a, t)G(ψ(a, t))H(ψ(a, t)).(2.17)

Here

(2.18) γ−1 = U ′(−a) = −U ′(a) =
w(0)− w(2a)

1 + αβ
.

Although it is not possible to determine a complete set of solutions to (2.16),
we can simplify the equations under the ansatz that the perturbations ψ(±a, t) (or,
equivalently, Δ±(t)) do not switch sign for any time t > 0. In other words, we
assume that (2.16) and (2.17) have separable solutions of the form (ψ(x, t),Φ(x, t)) =
eλt(ψ(x),Φ(x)), where λ is real and ψ(x),Φ(x) are bounded continuous functions on
R that decay to zero exponentially as x → ±∞. (The latter reflects the asymptotic
properties of the weight distribution w(x).) Under the assumption that λ is real, the
step functions H,G are time-independent so that there is a common factor eλt that
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cancels everywhere. We thus obtain the pair of time-independent equations3

(λ+ 1)ψ(x)− Φ(x) = γw(x+ a)ψ(−a)G(ψ(−a)) + γw(x− a)ψ(a)G(ψ(a)),

(2.19)

(λ+ α−1 + β)Φ(x) = −βγw(x+ a)ψ(−a)G(ψ(−a))H(ψ(−a))
− βγw(x − a)ψ(a)G(ψ(a))H(ψ(a)).(2.20)

One class of solutions to (2.20) is given by λ = −(α−1 + β) and ψ(a) ≤ 0, ψ(−a) ≤
0. The functions ψ(x) and Φ(x) are then related according to (2.19). However,
such solutions do not contribute to any instabilities. Therefore, we will assume that
λ �= −(α−1 + β). We can then algebraically eliminate Φ(x) to obtain the following
nonlinear “eigenvalue” equation for λ:

(λ+ 1)ψ(x) = γw(x − a)ψ(a)G(ψ(a))

[
1− β

λ+ α−1 + β
H(ψ(a))

]
(2.21)

+ γw(x+ a)ψ(−a)G(ψ(−a))
[
1− β

λ+ α−1 + β
H(ψ(−a))

]
.

We now show how solutions to (2.21) can be related to the spectra of a set of
compact linear operators, generalizing the analysis of the scalar equation (1.1) by
Guo and Chow [16]. Let C[−a, a] denote the space of bounded, continuous functions
on the interval [−a, a]. Introduce the set of λ-dependent linear operators Lmn(λ) :
C[−a, a] → C[−a, a] with m = ±1, n = ±1,

Lmn(λ)ψ(x) = γw(x − a)ψ(a)

[
δm,1 +

1

1 + αβ
δm,−1

] [
1− β

λ+ α−1 + β
δm,1

]
(2.22)

+ γw(x + a)ψ(−a)
[
δn,1 +

1

1 + αβ
δn,−1

] [
1− β

λ+ α−1 + β
δn,1

]
,

where δm,n is the Kronecker delta. We then consider a corresponding set of eigenvalue
problems (for fixed λ)

(2.23) μnm(λ)ψ(x) = Lmn(λ)ψ(x) on C[−a, a], m = ±1, n = ±1.

Following Guo and Chow [16], it can be shown that Lmn(λ) for λ �= −(α−1 + β) is a
compact linear operator (with respect to the L1 norm, say). Hence, the eigenvalues
μmn(λ) of Lmn(λ) have only zero as an accumulation point, so that μmn = 0 belongs
to the essential spectrum of Lmn(λ); the corresponding solutions ψ(x) of (2.23) vanish
at the boundaries of the bump, that is, ψ(±a) = 0. The discrete spectrum of Lmn(λ)
is then obtained by setting x = ±a in (2.23) and solving the resulting λ-dependent
matrix equation for the pair ψ(±a). Having obtained the complete spectrum of each
of the linear operators Lmn(λ) for fixed λ, we can then obtain all solutions of (2.21)
by solving the corresponding nonlinear equations for λ,4

(2.24) λ+ 1 = μnm(λ),

3It is important to note that our analysis can provide only sufficient conditions for instability
but not stability of a bump. This follows from the fact that we are assuming that λ is real in order
to construct separable solutions of the pseudolinear equations (2.16) and (2.17).

4As a slight abuse of notation, we will refer to a solution λ of (2.21) as belonging to the discrete
(essential) spectrum if the corresponding solution μnm(λ) of (2.23) belongs to the discrete (essential)
spectrum of the linear operator Lmn(λ).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2D BUMPS IN PIECEWISE SMOOTH NEURAL FIELDS 387

-8 -6 -4 -2 0 2 4 6 8
-0.2

-0.1

0

0.1

0.2

0.3

0.4

x

U
(x

) +-

(a)

-8 -6 -4 -2 0 2 4 6 8
-0.2

-0.1

0

0.1

0.2

0.3

0.4

x

U
(x

)

(b)

+-

-8 -6 -4 -2 0 2 4 6 8
-0.2

-0.1

0

0.1

0.2

0.3

0.4

x

U
(x

)

(c)

+-

-8 -6 -4 -2 0 2 4 6 8
-0.2

-0.1

0

0.1

0.2

0.3

0.4

x

U
(x

) +-

(d)

Fig. 2.2. Illustration of different eigenmodes for bump perturbations: (a) left-shift, (b) right-
shift, (c) expansion, (d) contraction.

after imposing the appropriate restrictions on the signs of ψ(±a) together with the
requirement that λ is real and λ �= −(α−1 + β). In the special case μnm = 0, we
see that λ = −1 and ψ(±a) = 0 irrespective of n,m. Thus, the essential spectrum
does not contribute to any instabilities. On the other hand, in the case of the discrete
spectrum, we require sign(ψ(a)) = m and sign(ψ(−a)) = n. Once the eigenvalues
have been obtained, the corresponding eigenfunctions are completely determined in
terms of ψ(±a) and w(x) according to (2.21). The restrictions on the signs of ψ(±a)
also have a physical interpretation in terms of four different classes of perturbation of
the stationary bump solution, which we refer to as expansions (ψ(−a) > 0, ψ(a) > 0),
contractions (ψ(−a) < 0, ψ(a) < 0), leftward shifts (ψ(−a) > 0, ψ(a) < 0), and
rightward shifts (ψ(−a) < 0, ψ(a) > 0). (Note, however, that this classification is
slightly misleading because if |ψ(a)/ψ(−a)| �= 1, then the width of the bump also
changes in the case of shift perturbations.) These basic perturbations are shown in
Figure 2.2. We now consider the discrete spectrum in each of the above four cases.

(i) ψ(±a) ≥ 0. Taking m = n = 1 in (2.23) and rearranging gives(
λ+ α−1 + β

)
(λ + 1)ψ(x) = γw(x + a)ψ(−a) (λ+ α−1

)
+ γw(x − a)ψ(a)

(
λ+ α−1

)
.(2.25)

Setting x = ±a and noting that ψ(±a) must have the same sign, we have ψ(a) =
ψ(−a) with λ satisfying the quadratic equation(

λ+ α−1 + β
)
(λ+ 1) =

(
λ+ α−1

)
(1 + αβ)Ω,(2.26)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

388 PAUL C. BRESSLOFF AND ZACHARY P. KILPATRICK

where

Ω =
w(0) + w(2a)

w(0)− w(2a)
.(2.27)

We have substituted for γ using (2.18). It follows that λ = λ± with

λ± =
1

2

[
Ω(1 + αβ) − (1 + α−1 + β

)]
± 1

2

√
[Ω(1 + αβ) − (1 + α−1 + β)]

2
+ 4(Ω− 1) (α−1 + β).(2.28)

The corresponding eigenfunctions represent expansions of the bump and take the form

(2.29)

(
ψ(x)
Φ(x)

)
= [w(x + a) + w(x − a)]

⎛⎝ 1

− λ± + 1

λ± + α−1

⎞⎠ .

As we illustrate below, for certain ranges of parameters the eigenvalues λ± form a
complex conjugate pair, and thus must be excluded from our analysis since they
violate the separability assumption.

(ii) ψ(±a) ≤ 0. Taking m = −1, n = −1 in (2.23) gives

(λ+ 1)ψ(x) = γw(x+ a)ψ(−a) 1

1 + αβ
+ γw(x− a)ψ(a)

1

1 + αβ
.(2.30)

Setting x = ±a and noting that ψ(±a) must have the same sign shows that ψ(a) =
ψ(−a) and λ = λ0 with

λ0 = Ω− 1.(2.31)

Hence, there is a single eigenfunction corresponding to a contraction of the bump
given by

(2.32)

(
ψ(x)
Φ(x)

)
= −

(
w(x + a) + w(x − a)

0

)
.

(iii) ψ(a) ≤ 0, ψ(−a) ≥ 0. Taking m = −1, n = 1 in (2.23) gives(
λ+ α−1 + β

)
(λ+ 1)ψ(x) = γw(x+ a)ψ(−a) (λ+ α−1

)
+ γw(x− a)ψ(a)

λ + α−1 + β

1 + αβ
.(2.33)

Setting x = ±a then yields the matrix equation(
Γβ(λ) − γw(0)

(
λ+ α−1

) −γ (λ+ α−1
)
w(2a)

−γ (λ+ α−1
)
w(2a) Γβ(λ) − γw(0)

(
λ+ α−1

) )( ψ(−a)
ψ(a)

)

= − γαβλ

1 + αβ

(
w(2a)ψ(a)
w(0)ψ(a)

)
,(2.34)

where

Γβ(λ) =
(
λ+ α−1 + β

)
(λ+ 1).
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Fig. 2.3. Eigenvalues associated with expansion and contraction perturbations (cases (i) and
(ii)). Eigenvalues of the expansion (solid curves) and contraction (dashed curves) perturbations
when (a) θ = 0.1 and (b) θ = 0.07. In the grey regions, the roots of (2.28) are complex, thus
violating the ansatz that λ is real. Other parameters are A = 0.6, σ = 4, and α = 20.

We thus obtain a quartic characteristic equation for λ. It is straightforward to
show that there always exists a zero eigenvalue λ = 0 with corresponding eigenmode
ψ(−a) = −ψ(a). The existence of a zero eigenvalue reflects the translation invariance
of the full system (1.6).5 In order to calculate the other eigenvalues, we assume that
β 
 1 (which is consistent with physiological values for the depletion rate of synaptic
depression [34, 37]) and use perturbation theory. First, setting β = 0 in (2.34) we
find that there are three eigenvalues λ0 = Ω − 1, 0,−α−1. The first eigenvalue is
λ0 = Ω − 1, which can be excluded since the corresponding eigenmode violates the
assumption that ψ(±a) have opposite sign; the associated solution branch for β > 0
can also be excluded. The second eigenvalue is λ0 = 0, which persists when β > 0
(see above). Finally, the third eigenvalue λ0 = −α−1 is doubly degenerate so that one
needs to use degenerate perturbation theory in order to determine the splitting of the
eigenvalue into two branches as β increases from zero; λ is a continuous function of
β on both branches. Again, one of the branches is excluded by requiring that ψ(±a)
have opposite sign. We conclude that for sufficiently small β, shift perturbations do
not lead to any instabilities.

(iv) ψ(a) ≥ 0, ψ(−a) ≤ 0. As expected from the reflectional symmetry of the
original system (1.6) when w(x) is an even function, the spectrum associated with
rightward shifts is identical to that of leftward shifts.

We illustrate the above analysis by considering stationary bumps in a network
with the Mexican hat weight function (2.4). Specifically, we plot the eigenvalues
for each type of perturbation in the case of the wider bump shown in Figure 2.1,
which is stable as β → 0. In Figure 2.3, we plot the real eigenvalues associated
with expansion and contractions (cases (i) and (ii)) as functions of β. In the case
of contractions, there is a single negative branch that approaches zero at the critical
value β = βc. Equations (2.31) and (2.27) imply that the variation in λ is due
to the β-dependence of the bump width a such that Ω → 1 as β → βc. Hence,
a → ac as β → βc, where ac is the width at which the upper and lower existence
curves meet in Figure 2.1, that is, w(2ac) = 0 (see also section 2). In the case of

5Although a small uniform shift of the bump corresponds to O(1) pointwise changes in the
depression variable q, these occur over an infinitesimal spatial domain so that the auxiliary variable
Φ is still small. Hence, the response to small uniform shifts is covered by our linear stability analysis.
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Fig. 2.4. Eigenvalues associated with shift perturbations (cases (iii) and (iv)). (a) Nonzero
real eigenvalue plotted as a function of β for θ = 0.1. Bump is unstable with respect to shifts for
sufficiently large β. (b) Corresponding plot of the ratio Ψ(a) = ψ(a)/ψ(−a) for a leftward shift and
θ = 0.1. As β increases, the ratio approaches zero. (c), (d) Same as (a), (b) for θ = 0.07. Other
parameters are A = 0.6, σ = 4, α = 20. Results are the same for a rightward shift on exchanging
x = −a and x = a.

expansions, there are two negative branches for sufficiently small β, which annihilate
each other at the left-hand side of a forbidden region in which the eigenvalues λ±
given by (2.28) are complex, so that stability with respect to expansion perturbations
cannot be determined. At the other end of this forbidden region there is a jump in the
value of the real eigenvalue from which a pair of positive branches λ = λ± emerges.
Moreover, the lower expansion branch merges with the contraction branch at the
saddle-node bifurcation where the bump comes into existence. That is, λ− → 0 as
β → βc, which follows from setting Ω = 1 in (2.28). In Figure 2.4 we plot the
nonzero eigenvalue λ for shift perturbations; the other two nonzero solutions to the
characteristic equation (2.34) violate the condition that ψ(±a) have opposite sign.
As β increases, the eigenvalue becomes positive, representing destabilization of the
bump with respect to shift perturbations. Moreover, Figure 2.4 shows that beyond
the point of instability we have 0 > Ψ(a) ≡ ψ(a)/ψ(−a) > −1, so that the width of
the bump also increases. Since the shift instability occurs at smaller values of β than
expansion perturbations, the former dominates bump instabilities in the case of the
given Mexican hat weight function.

We summarize our results in Figure 2.5, which shows the parameter space (α,β)
divided into separate regions, where either no bumps exist (black); bumps are stable
with respect to perturbations associated with real eigenvalues (dark grey); or bumps
are unstable (light grey). Even when the stability analysis of the expansion mode
breaks down, bumps destabilize under shift perturbations. We conclude that strong
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Fig. 2.5. Phase diagram in (α, β) parameter space. Black denotes nonexistence of bumps; light
grey denotes unstable bumps; dark grey denotes bumps that are stable with respect to perturbations
associated with real eigenvalues. The dashed black line denotes location points where numerically
stable bumps transition to traveling pulses. Other parameters are A = 0.6, σ = 4, and θ = 0.1.

enough synaptic depression (large β) can destabilize a stationary bump that would
be stable in the absence of depression.

3. Two-dimensional bumps. There have been few studies regarding the exis-
tence and stability of standing bumps in 2D neural fields [9, 15, 25, 29]. Laing and
Troy [25] were the first to introduce partial differential equation (PDE) methods to
study symmetry-breaking of rotationally symmetric bumps. Since then, PDE methods
have been used to study the formation of multiple bump solutions, Turing patterns,
traveling spots, and labyrinthine patterns in 2D neural fields with local negative feed-
back [9, 29]. In addition, standard stability analysis of stimulus-driven 2D neural
fields with local linear negative feedback revealed symmetry-breaking breathers [15].
In all of these studies, the eigenmodes associated with instabilities were pure Fourier
modes, which were straightforward to pick out using linear stability analysis. In our
2D neural field model, the rotationally nonsymmetric perturbations of bumps possess
eigenmodes that are a mixture of pure Fourier modes. This makes the derivation of
eigenvalues significantly more complex. Also, we must employ stability analysis tech-
niques that heed the piecewise-smooth nature of the system. Thus, we now extend our
analysis of stationary bumps in a 1D network to derive conditions for the existence
and stability of radially symmetric stationary bump solutions of the corresponding
2D piecewise-smooth neural field model

τ
∂u(r, t)

∂t
= −u(r, t) +

∫
R2

q(r′, t)w(|r − r′|)H(u(r′, t)− θ)dr′,(3.1a)

∂q(r, t)

∂t
=

1− q(r, t)

α
− βq(r, t)H(u(r, t) − θ),(3.1b)

where r = (r, φ) ∈ R
2 and |r− r′| denotes Euclidean distance in the plane.
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3.1. Existence. Consider a circularly symmetric bump solution of radius a such
that u(r, t) = U(r), q(r, t) = Q(r) with U(a) = θ, and

U(r) ≷ θ for r ≶ a,

(U(r), Q(r))) → (0, 1) as r → ∞.

Imposing such constraints on a stationary solution of (3.1) gives

U(r) =

∫
U
Q(r′)w(|r − r′|)dr′,(3.2)

Q(r) = (1 + αβH(U(r) − θ))−1,(3.3)

where U = {r = (r, φ) : r ≤ a} is the domain on which the bump is superthreshold.
Substituting (3.3) back into (3.2) yields

(1 + αβ)U(r) = Π(a, r),(3.4)

where

Π(a, r) =

∫ 2π

0

∫ a

0

w(|r− r′|)r′dr′dφ′.(3.5)

We can calculate the double integral in (3.5) using the Hankel transform and Bessel
function identities, as in [14, 29]. Thus, we find that

Π(a, r) = 2πa

∫ ∞

0

ŵ(ρ)J0(rρ)J1(aρ)dρ,(3.6)

where ŵ(ρ) is the Hankel transform of w.
For the sake of illustration consider a Mexican hat weight distribution given by a

combination of modified Bessel functions of the second kind [14, 26, 29]:

w(r) =
2

3π
(K0(r)−K0(2r) −A(K0(r/σ) −K0(2r/σ))) .(3.7)

Such a weight function is qualitatively similar to a difference of exponential weight
functions w(r) = (2π)−1(e−r − Ae−r/σ). Moreover, following previous studies of 2D
neural field models [20, 25, 26, 29, 35], we can transform system (3.1) into a fourth-
order PDE, which is computationally less expensive to evaluate. Using the fact that
the corresponding Hankel transform of K0(sr) is H(ρ, s) = (ρ2 + s2)−1, we have

ŵ(ρ) =
2

3π
(H(ρ, 1)−H(ρ, 2)−A(H(ρ, 1/σ)−H(ρ, 2/σ))).(3.8)

Thus, the integral (3.6) can be evaluated explicitly by substituting (3.8) into (3.6)
and using the identity∫ ∞

0

1

ρ2 + s2
J0(rρ)J1(aρ)dρ ≡ I(a, r, s) =

{
1
sI1(sa)K0(sr), r > a,

1
as2

− 1
s I0(sr)K1(sa), r < a,

where Iν is the modified Bessel function of the first kind of order ν. Thus, the
stationary bump U(r) given by (3.4) has the form

U(r) =
4a

3(1 + αβ)
(I(a, r, 1)− I(a, r, 2)−A(I(a, r, 1/σ)− I(a, r, 2/σ))) .(3.9)
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Fig. 3.1. Two-dimensional bumps. (a) Plots relating bump radius a to amplitude of synaptic
depression β for various values of threshold θ based on (3.10). Dashed curves indicate bumps that
are unstable with respect to D1 symmetric perturbations, whereas solid curves indicate bumps that
appear to be numerically stable. Other parameters are A = 0.3, σ = 4, α = 20. (b) Bump profile
when θ = 0.05, α = 20, β = 0.01.

The bump radius may then be computed by finding the roots a of the equation

(1 + αβ)θ = Π(a),(3.10)

with

Π(a) ≡ Π(a, a) =
4a

3

(
I1(a)K0(a)− 1

2
I1(2a)K0(2a)(3.11)

−A
(
σI1(a/σ)K0(a/σ)− σ

2
I1(2a/σ)K0(2a/σ)

))
.

We typically find a maximum of two bump solutions as illustrated in Figure 3.1,
where the bump radius a is plotted as a function of depression strength β for various
thresholds θ.

3.2. Stability. We now analyze the linear stability of radially symmetric 2D
bump solutions. As in the case of 1D bumps, we must consider the sign of the pertur-
bations of the bump boundary when carrying out the pseudolinearization. However,
there are now an infinite number of cases to consider with regard to how perturbations
subdivide the continuum boundary of a 2D bump.

Let u(r, t) = U(r) + εψ(r, t) and q(r, t) = Q(r) + εϕ(r, t). Substituting into the
full 2D system (3.1) and imposing the stationary bump solutions (3.2) and (3.3) gives

∂ψ(r, t)

∂t
= −ψ(r, t)

+
1

ε

∫
R2

w(|r − r′|)Q(r′)[H(U(r′) + εψ(r′, t)− θ)−H(U(r′)− θ)]dr′

+

∫
R2

w(|r− r′|)ϕ(r′, t)H(U(r′) + εψ(r′, t)− θ)dr′(3.12)

∂ϕ(r, t)

∂t
= −ϕ(r, t)

α
− β

ε
Q(r)[H(U(r) + εψ(r, t)− θ)−H(U(r)− θ)]

− βϕ(r, t)H(U(r) + εψ(r, t)− θ).(3.13)
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If εΔ(φ, t) denotes the perturbation of the circular bump boundary at polar coordinate
(a, φ), then

u(a+ εΔ(φ, t), φ, t) = θ

for φ ∈ [0, 2π) and all t > 0. Following our analysis of the 1D case (section 3), we
introduce the auxiliary field

Φ(r, t) =

∫ 2π

0

∫ a+εΔ(φ′,t)

0

w(|r − r′|)ϕ(r′, t)dr′dφ′.(3.14)

Differentiating Φ(r, t) with respect to t and combining this with (3.12) and (3.13)
leads to the pair of equations

∂ψ(r, t)

∂t
= −ψ(r, t) + Φ(r, t) +

1

ε

∫ 2π

0

∫ a+εΔ(φ′,t)

0

w(|r − r′|)Q(r′)r′dr′dφ′

− 1

ε

∫ 2π

0

∫ a

0

w(|r − r′|)Q(r′)r′dr′dφ′,(3.15)

∂Φ(r, t)

∂t
= −(α−1 + β)Φ(r, t)− β

ε

∫ 2π

0

∫ a+εΔ(φ′,t)

0

w(|r − r′|)Q(r′)

× [H(U(r′, t) + εψ(r′, t)− θ)−H(U(r′, t)− θ)]r′dr′dφ′

+ ε

∫ 2π

0

w(|r − r′|)ϕ(r′, t)Δ̇(φ′, t)dr′dφ′.(3.16)

We now expand these equations in powers of ε and collect all O(1) terms. It is
important to keep track of the sign of Δ(φ, t) at all values of φ when approximating
the integrals, since Q(r) is discontinuous on the boundary. For example,

(3.17)∫ 2π

0

∫ a+εΔ(φ′,t)

a

w(|r− r′|)Q(r′)r′dr′dφ′ ≈ εa

∫
A+(t)

Δ(φ′, t)w(|r − |)dφ′

+ ε
a

1 + αβ

∫
A−(t)

Δ(φ′, t)w(|r − |)dφ′,

where = (a, φ′) and the domain A+(t) (A−(t)) defines the intervals in φ over which
the perturbation Δ(φ, t) > 0 (Δ(φ, t) < 0) at time t > 0. We have used the fact that
in the region A+(t) (A−(t)), we approach the stationary bump boundary from the
exterior (interior) of the bump in the limit ε → 0+ so that Q = 1 (Q = 1/(1 + αβ)).
Likewise, the first integral on the right-hand side of (3.16) can be approximated by
εa
∫
A+

Δ(φ′, t)w(|r − |)dφ′. Finally, we use the approximation

θ = u(a+ εΔ(φ, t), φ, t) = U(a+ εΔ(φ, t)) + εψ(a+ εΔ(φ, t), φ, t),

≈ U(a) + εU ′(a)Δ(φ, t) + εψ(a, φ),

and U(a) = θ so that

Δ(φ, t) ≈ ψ(a, φ, t)

|U ′(a)|
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to lowest order in ε. This leads to the following pair of equations:

∂ψ(r, t)

∂t
= −ψ(r, t) + Φ(r, t) + aγ

∫
A+(t)

ψ(a, φ′, t)w(|r − |)dφ′

+
aγ

1 + αβ

∫
A−(t)

ψ(a, φ′, t)w(|r − |)dφ′,(3.18)

∂Φ(r, t)

∂t
= −(α−1 + β)Φ(r, t)− aγβ

∫
A+(t)

ψ(a, φ′, t)w(|r − |)dφ′.(3.19)

Here

γ−1 = |U ′(a)| = 2πa

1 + αβ

∫ ∞

0

ρŵ(ρ)J1(aρ)J1(aρ)dρ,(3.20)

which, for the Mexican hat weight function (3.7), can be explicitly computed as

|U ′(a)| = 4a

3(1 + αβ)
(I1(a)K1(a)− I1(2a)K1(2a)(3.21)

−A(I1(a/σ)K1(a/σ)− I1(2a/σ)K1(2a/σ))) .

Equations (3.18) and (3.19) imply that the local stability of a stationary bump solu-
tion depends on solutions to a system of pseudolinear equations. As in the 1D case,
we can obtain a class of solutions under the ansatz that the perturbation ψ(a, φ, t)
(equivalently, Δ(φ, t)) does not switch sign at each φ for any time t. Thus, we assume
(3.18) and (3.19) have separable solutions (ψ(r, t),Φ(r, t)) = eλt(ψ(r),Φ(r)), where
λ is real and (ψ(r),Φ(r)) are bounded continuous functions that decay to zero expo-
nentially as |r| → ∞. Under this assumption, the domains A± are constant in time,
so there is a common factor eλt that cancels everywhere. In a similar fashion to the
analysis of 1D bumps, one class of solution is given by λ = −(α−1+β) and ψ(a, φ) ≤ 0
for all φ. However, this does not contribute to any instabilities. Therefore, suppose
that λ �= −(α−1 +β). We can then eliminate Φ(x) to obtain a nonlinear “eigenvalue”
equation for λ of the form

(λ+ 1)ψ(r) =
aγ(λ+ α−1)

λ+ α−1 + β

∫
A+

ψ(a, φ′)w(|r − |)dφ′(3.22)

+
aγ

1 + αβ

∫
A−

ψ(a, φ′)w(|r − |)dφ′.

We could now proceed along lines similar to the 1D case by reformulating the
problem in terms of finding the spectra of a set of compact linear operators acting
on continuous, bounded functions ψ(r, φ) defined on the disc of radius r ≤ a with
the sign of ψ(a, φ), φ ∈ [0, 2π), prescribed. However, here we simply summarize the
results. First, one class of solutions to (3.22) consists of functions ψ(r) that vanish on
the boundary, ψ(a, φ) = 0 for all φ such that λ = −1. (It also follows that Φ(x) ≡ 0.)
This belongs to the essential spectrum, which does not contribute to any instabilities.
The discrete spectrum for given A± is then determined by setting r = a in equation
(3.22):

(λ+ 1)ψ(a, φ) =
aγ(λ+ α−1)

λ+ α−1 + β

∫
A+

ψ(a, φ′)w
(
2a sin

φ− φ′

2

)
dφ′(3.23)

+
aγ

1 + αβ

∫
A−

ψ(a, φ′)w
(
2a sin

φ− φ′

2

)
dφ′,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

396 PAUL C. BRESSLOFF AND ZACHARY P. KILPATRICK

where we have simplified the argument of w(r) using

|(a, φ)− (a, φ′)| =
√
(a sinφ− a sinφ′)2 + (a cosφ− a cosφ′)2 = 2a sin

φ− φ′

2
.

There are three classes of solution to (3.23): (i) radially symmetric expansions such
that ψ(a, φ) = ψ(a) > 0 for φ ∈ [0, 2π); (ii) radially symmetric contractions such that
ψ(a, φ) = ψ(a) < 0 for φ ∈ [0, 2π); and (iii) radially nonsymmetric perturbations for
which ψ(a, φ) changes sign as a function of φ.

In the limit β → 0, (3.23) reduces to the simpler form

(λ + 1)ψ(a, φ) = aγ

∫ 2π

0

ψ(a, φ′)w
(
2a sin

φ− φ′

2

)
dφ′.(3.24)

The eigenmodes are then given by pure Fourier modes ψ(a, φ) = Δn(φ) ≡ cne
inφ +

c̄ne
−inφ, where c̄n denotes the complex conjugate of cn for integer n, with correspond-

ing real eigenvalues λn = −1 + γμn,

(3.25) μn = 2a

∫ 2π

0

w(2a sinφ)e−2inφdφ.

Some examples of low-order Fourier eigenmodes Δn(φ) are shown in Figure 3.2, to-
gether with the associated boundary domains A±. It can be seen that the nth order
boundary perturbation has Dn symmetry, meaning the resulting solution has the n
reflectional and rotational symmetries of the dihedral group Dn. As β is increased
from zero, only the zeroth-order eigenmodes persist (expansions and contractions),
whereas the nonradially symmetric eigenmodes become a mixture of Fourier modes:

ψ(a, φ) =
∞∑

n=−∞
cn(a)e

inφ.

We find numerically, at least for sufficiently small β, that the eigenmodes still haveDn

symmetry for n ≥ 1, but the A+ subdomains are now larger than the A− subdomains
(see below).

(i) ψ(a, φ) = ψ(a) > 0. In this case, (3.23) becomes

(λ+ 1)ψ(a) =
aγ(λ+ α−1)ψ(a)

λ+ α−1 + β

∫ 2π

0

w

(
2a sin

φ− φ′

2

)
dφ′,(3.26)

where we have used the fact that A+ = [0, 2π), A− is empty, and ψ(a, φ) is constant
in φ. Therefore, the right-hand side of (3.26) is independent of φ, and λ satisfies the
quadratic equation

(λ + α−1 + β)(λ+ 1) = (λ+ α−1)(1 + αβ)Ω0,(3.27)

where

Ω0 =
μ0(a)

(1 + αβ)|U ′(a)| , μ0(a) = 2a

∫ π

0

w(2a sinφ)dφ.(3.28)

For the Mexican hat weight function (3.7), we can use∫ π

0

K0(2a sinφ)dφ = πI0(a)K0(a)
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Fig. 3.2. Low-order perturbations of a radially symmetric 2D bump. (a) Expansion (Δ0 > 0);
(b) contraction (Δ0 < 0); (c) D1-symmetric shift Δ1(φ); (d) D2-symmetric perturbation Δ2(φ).

to calculate

μ0(a) =
4a

3
(I0(a)K0(a)− I0(2a)K0(2a)(3.29)

−A(I0(a/σ)K0(a/σ)− I0(2a/σ)K0(2a/σ))).

It follows that λ = λ±0 with

λ±0 =
1

2

[
Ω0(1 + αβ)− (1 + α−1 + β)

]
± 1

2

√
[Ω0(1 + αβ) − (1 + α−1 + β)]2 + 4(Ω0 − 1)(α−1 + β).(3.30)

The associated eigenmodes correspond to an expansion of the bump.
(ii) ψ(a, φ) = ψ(a) < 0. In this case, (3.23) becomes

(λ + 1)ψ(a) =
aγψ(a)

1 + αβ

∫ 2π

0

w

(
2a sin

φ− φ′

2

)
dφ′,(3.31)

where we have used the fact that A+ is empty, A− = [0, 2π), and ψ(a, φ) is constant
in φ. Therefore, the right-hand side of (3.31) is independent of φ and λ = λ0 with

λ0 = Ω0 − 1.(3.32)

The associated eigenmode corresponds to a contraction of the bump.
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(iii) ψ(a, φ) radially nonsymmetric. In this final case, the characteristic equa-
tion (3.23) involves integrals over subdomains of [0, 2π) and is no longer a standard
Fredholm integral equation. Hence, as we have already indicated, eigenmodes will
be more complicated than the pure Fourier modes einφ found in previous studies
of bump instabilities in two dimensions [14, 15, 25, 29]. This is due to the faster
growth of the lobes of the perturbation ψ(a, φ) that are superthreshold versus those
that are subthreshold. There is then no systematic way of finding the exact general
solutions of the spectral problem (3.23), and we must resort to numerical solutions
(see below). However, since the underlying system (3.1) is translationally symmetric,
the 2D bump solution given by (3.2) and (3.3) should be invariant with respect to
uniform translations. We can check this fact by explicitly showing that the pure shift
eigenmode is neutrally stable, as it usually is in studies of the stability of 1D and 2D
bumps [2, 24, 29]. Specifically, we wish to verify that there is a solution to (3.23)
that moves the bump, while keeping its profile invariant such that λ = 0. Thus, upon
setting λ = 0 in (3.23), we find that

ψ(a, φ) =
aγ

1 + αβ

∫ 2π

0

ψ(a, φ′)w
(
2a sin

φ− φ′

2

)
dφ′.(3.33)

If we now assume that ψ(a, φ) = eiφ, a pure shift eigenfunction, and make the change
of variables φ′ = φ− 2φ′, then (3.33) becomes

1 + αβ

2aγ
=

∫ π

0

e−2iφ′
w(2a sinφ′)dφ′(3.34)

(after rescaling φ). Notice that the right-hand side of (3.34) is real since

Im

{∫ π

0

e−2iφ′
w(2a sinφ′)dφ′

}
=

∫ π

0

sin(2φ′)w(2a sinφ′)dφ′ = 0,

owing to the integrand being odd-symmetric about π/2. Therefore,

1 + αβ

2aγ
=

∫ π

0

cos(2φ)w(2a sinφ)dφ.(3.35)

For the Mexican hat weight function (3.7), we can use the identity∫ π

0

K0(2a sinφ) cos(2φ)dφ = πI1(a)K1(a)(3.36)

to compute∫ π

0

cos(2φ)w(2a sinφ)dφ =
2

3
(I1(a)K1(a)− I1(2a)K1(2a)(3.37)

−A(I1(a/σ)K1(a/σ)− I1(2a/σ)K1(2a/σ))) ,

which we plug into (3.35) so that it becomes

(3.38) γ−1 =
4a

3(1 + αβ)
(I1(a)K1(a)− I1(2a)K1(2a)

−A(I1(a/σ)K1(a/σ)− I1(2a/σ)K1(2a/σ))) ,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2D BUMPS IN PIECEWISE SMOOTH NEURAL FIELDS 399

0 0.1 0.2 0.3

0

2

4

6

β

λ

0 0.02 0.04 0.06 0.08

 0.5

0

0.5

1

1.5

β

λ

(a) (b)

0 0.01 0.02 0.03
-1

-0.8

-0.4

0

0.4

0.8

β

λ

(c)

0 1 2 3 4 5
x 10-3

 -0.5

 -0.4

 -0.3

 -0.2

 -0.1

0

0.1

β

λ

(d)

Fig. 3.3. Eigenvalues associated with radially symmetric perturbations of a stationary circular
bump. Eigenvalues of the expansion (solid curves) and contraction (dashed curves) perturbations
are plotted for (a) θ = 0.01, (b) θ = 0.03, (c) θ = 0.05, and (d) θ = 0.07. Stability analysis of
expansion perturbations breaks down in the grey region due to the roots (3.30) being complex. Other
parameters are A = 0.3, σ = 4, and α = 20.

which we verify to be true using (3.20) and (3.21). Therefore, we are able to show
the existence of a zero eigenvalue, reflecting that a 2D stationary bump will be trans-
lationally invariant, as we would expect.

We now illustrate the stability properties of 2D bumps in the case of the Mexican
hat weight function (3.7). We consider the upper branches of the existence curves
shown in Figure 3.1, which in the given parameter regime are stable in the limit
β → 0. (As shown elsewhere [29], for a sufficiently small threshold θ such bumps
would destabilize in the absence of synaptic depression, leading to the formation of
stationary multibump solutions.) Since 2D bumps in neural fields with local nega-
tive feedback have previously been shown to give rise to moving spots—analogous to
traveling pulses in one dimension—we expect that the dominant instability will be
associated with a D1-symmetric mode corresponding to a shift perturbation. There-
fore, we will restrict ourselves to calculating the eigenvalues associated with low-order
eigenmodes. In Figure 3.3, we plot the real eigenvalues corresponding to radially
symmetric expansions and contractions as functions of β; see (3.30) and (3.32). As
in the 1D case, the expansion mode dominates over contraction, due to more re-
sources existing outside of the bump. Moreover, as β increases, two negative roots
of the characteristic equation (3.30) meet, and they become complex, violating our
ansatz. When the eigenvalues become real again, they are both greater than zero,
implying the bump will certainly be unstable. On the other hand, the real eigenvalue
associated with contraction perturbations is always negative, approaching zero (and
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the lower positive branch of expansions) as the bump width approaches the value at
which the upper and lower existence curves meet. As we show below (see Figure 3.4),
the instability associated with positive real eigenvalues of the expansion perturbations
typically occurs at larger values of β than D1-symmetric or shift perturbations. More-
over, in numerical simulations we were unable to find other types of instabilities, such
as oscillatory ones, when systematically perturbing the bump with a wide range of
perturbations; see section 4. This suggests that Hopf bifurcations do not arise within
the forbidden β region of the expansion perturbations shown in Figure 3.3. Hence,
shift perturbations tend to dominate radially symmetric bump instabilities.

Since we cannot derive an effective analytical method for computing nonradially
symmetric eigensolutions of (3.23), we shall resort to numerically computing some
of these solutions. Thus, we assume that each of the subdomains A+ and A− is
nonempty. We then develop a numerical approximation scheme to find solutions to
the system of equations

(λ+ 1)ψ(a, φ) − Φ(a, φ) = aγ

∫
A+

ψ(a, φ′)w
(
2a sin

φ− φ′

2

)
dφ′(3.39)

+
aγ

1 + αβ

∫
A−

ψ(a, φ′)w
(
2a sin

φ− φ′

2

)
dφ′,

(λ+ α−1 + β)Φ(a, φ) = −aγβ
∫
A+

ψ(a, φ′)w
(
2a sin

φ− φ′

2

)
dφ′.(3.40)

We discretize this system by assigning φj := (j−1)Δφ, ψj := ψ(a, φj), Φj := Φ(a, φj),

and wjk := w(2a sin
φj−φk

2 ), where j = 1, . . . , N and Δφ = 2π/N . Also, for a
particular n-mode perturbation, discretized versions of each of the subdomains A+

and A− will be a collection of n identically sized disconnected regions of φj values;
we call these A+ and A−, respectively. We call the n identical disconnected regions of
A+ and A− lobes. To completely characterize the entirety of solutions for a particular
value of n, we assume the number of grid points l in each lobe of A+ is anywhere
between 1 and N/n− 1. Taking l to be 0 or N/n would imply a pure contraction or
expansion perturbation, respectively. Thus, employing Riemann sums, a first-order
accurate discretization of the system of equations (3.39) and (3.40) is

λψj = −ψj +Φj + aγΔφ
∑
A+

ψkwjk +
aγΔφ

1 + αβ

∑
A−

ψkwjk,(3.41)

λΦj = −(α−1 + β)Φj − aγβΔφ
∑
A+

ψkwjk,(3.42)

where j = 1, . . . , N . We now have a linear system, whose eigensolutions are approxi-
mations to the n-mode eigensolutions of (3.23). Thus, we can use an iterative method
to solve for all of the eigensolutions of the system of equations (3.41) and (3.42).
Although (3.41) and (3.42) will have many solutions, we find that only one or two
will satisfy the original assumption regarding the number of grid points in the subdo-
mains of A+ and A−. With all possible eigensolutions in hand, we thus pick out those
corresponding to perturbations of the 2D bump by employing the self-consistency
conditions that ψj > 0 when j ∈ A+ and ψj < 0 when j ∈ A−. For each of the
n-mode perturbations that we have studied, a maximum of two different values of l
can occur (see Figure 3.5).

In Figure 3.4, we plot the real eigenvalues associated with some of the radially
nonsymmetric perturbations (case (iii)) as functions of β. In particular, we plot
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Fig. 3.4. Eigenvalues associated with radially nonsymmetric perturbations of a stationary cir-
cular bump. Eigenvalues of the D1 (thick line), D2 (grey line), and D3 (dashed line) symmetric
modes for (a) θ = 0.01, (b) θ = 0.03, (c) θ = 0.05, and (d) θ = 0.07. We also plot the eigenvalues
of the radially symmetric expansion mode D0 (thin line) from Figure 3.3. Other parameters are
A = 0.3, σ = 4, and α = 20.

the nonzero D1, D2, and D3 eigenvalues associated with perturbations having the
respective symmetry. We operate in a region of parameter space where bumps are
stable with respect to all Dn-symmetric perturbations as β → 0 (see [29]). Here,
by Dn-symmetry we mean that the solution that results from applying any scaling
of the corresponding perturbation will have all of the n rotational and reflectional
symmetries of the dihedral group Dn. Figure 3.4 shows that there exists a nontrivial
branch of D1 eigenvalues (in addition to the zero eigenvalue arising from translation
invariance) with λ → −α−1 as β → 0. As β increases from zero, this D1 branch
can become positive (see Figure 3.4(a)–(c)), indicating instability of the bump with
respect to shift perturbations. Analogous to the shift mode of the 1D system, which
leads to traveling pulses, this 2D shift mode leads to a traveling spot when unstable;
see section 4. There also exist higher-order (Dn, n = 2, 3) branches over particular
intervals of β, but they all lie below the nontrivialD1 branch, suggesting that the latter
dominates any nonradially symmetric instabilities. In Figure 3.4(a)–(c) the positive
D1 branch also dominates the radially symmetric (D0) perturbations, whereas in
Figure 3.4(d) both the D0 and D1 branches remain negative. (More precisely, there
does exist a pair of positive D0 branches but only for an infinitesimally small range
of β values; see Figure 3.3(d).)

In Figures 3.5 and 3.6, we illustrate how the shape of nonsymmetric perturbations
depends upon changes in β for θ = 0.01 and θ = 0.05, respectively. Let |An| denote
the arc length of each lobe of the domain A+ for a given n. For pure Fourier modes
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Fig. 3.5. The effect of β on the shape of nonsymmetric eigenmodes for θ = 0.01. (a) Arc length
|An| of each positive lobe of a Dn-symmetric eigenmode is plotted against β for n = 1, 2, 3. The
thin dashed line represents π. Note that when more than one solution exists for a given n and β,
the sizes |An| of the lobes are almost identical. (b)–(d) Plot of the Dn-symmetric eigenmode with
the maximal eigenvalue (in the case of multiple solutions) for different values of β and n = 1, 2, 3,
respectively. In each case, the light grey circle represents the unperturbed radially symmetric bump
solution. For sufficiently small β (dark solid curves), the eigenmode is approximately a pure Fourier
mode with |An| ≈ π/n. As |An| changes with increasing β, the eigenmodes become more distorted
(dashed curves). Other parameters are A = 0.3, σ = 4, and α = 20. The stationary bump solution
vanishes at the critical value βc ≈ 0.333.

(β = 0), we would have |A1| = π, |A2| = π/2, and |A3| = π/3. In Figure 3.5(a)
and Figure 3.6(a) we plot |An| as a function of β for n = 1, 2, 3. In the case of
the nontrivial D1 eigenmode, |A1| is a monotonically increasing function of β. As
illustrated in Figures 3.5(b) and 3.6(b), the D1 mode’s positive lobes increase with β
such that |A1| → 2π as β → βc, where βc is the saddle-point at which bumps cease to
exist. In the case of D2 eigenmodes, which typically exist in pairs, the arc length |A2|
is also an increasing function of β, but there are intervals over which D2 eigenmodes
do not exist. We find that |A2| → π as β → β2 < βc, where β2 is the maximum
value of β for which D2 eigenmodes exist. This is illustrated in Figures 3.5(c) and
3.6(c). Finally, we find at most two solutions with D3 symmetry for a particular set
of parameters. In Figure 3.5(a), the two initial D3 branches have slightly different
values of |A3| prior to the solutions annihilating with one another at the critical value
of β ≈ 0.042. We find a sharp decrease in A3 when the two D3 solution modes
reappear at higher values of β. We plot the corresponding shape of the perturbation
with a maximal eigenvalue in Figure 3.5(d) for a relatively small and large β value.
In Figure 3.6(a), we find only one D3 solution branch whose lobe size |A3| slightly
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Fig. 3.6. Same as Figure 3.5 except that θ = 0.05. Here the D3 eigenmode is only weakly
dependent on β. The stationary bump solution vanishes at the critical value βc ≈ 0.027.

decreases as β is increased. We plot the shape of the corresponding perturbation in
Figure 3.6(d). As we alluded to in our discussion of the numerical methods, we find
no more than two solutions, corresponding to two different values of |An|, for each
n-mode we have studied for a particular value of β.

4. Numerical simulations. We now study the full systems (1.6) and (3.1) using
numerical approximation schemes. First, to evolve the 1D system (3.1) in time, we use
a fourth-order Runge–Kutta method with 2000–4000 spatial grid points and a time-
step of dt = 0.01. The integral term in (1.6a) is approximated using Simpson’s rule.
We systematically examined whether taking finer grids changed stability results, and
it does not. This is important because too coarse a grid can drastically alter numerical
results, since discreteness can stabilize bumps that are not stable in the continuous
system [16]. For all of our numerical simulations, we begin with an initial condition
specified by an associated bump solution (2.5) that lies on the unstable part of the
upper branch of the existence curves shown in Figure 2.1. After a brief period, we
stimulate the system by adding an input perturbation of u(x, t) defined as

ψ±(x, t) = χ(t)(w(x + a)± w(x − a)),(4.1)

which is motivated by eigenmodes of the linearized Amari equation (1.1). Leftward
shifts (rightward shifts) correspond to ψ−(x, t) when χ(t) ≥ 0 (χ(t) ≤ 0), while
expansions (contractions) correspond to ψ+(x, t) when χ(t) ≥ 0 (χ(t) ≤ 0). The
resulting dynamics depends specifically on the type of perturbation applied to the
bump.
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Fig. 4.1. Numerical simulation of a bump destabilized by a leftward shift perturbation. (a) Plot
of u(x, t) for an initial condition taken to be a stationary bump specified by (2.5). The solution is
perturbed at t = 10 by a leftward shift ψ−(x, t) such that χ(t) = −0.1 for t ∈ [10, 10.1] and zero
otherwise. (b) Bump width and center of mass plotted versus time. Bump width increases linearly
following the perturbation, but eventually relaxes to a constant value as the solution evolves to a
traveling pulse. The center of mass eventually moves linearly through space at the speed of the
associated traveling pulse. Parameters are A = 0.6, σ = 4, α = 20, β = 0.009, θ = 0.1.
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Fig. 4.2. Numerical simulation of a bump destabilized by an expanding perturbation. (a) Plot
of u(x, t) for an initial condition taken to be stationary bump specified by (2.5). The solution is
perturbed at t = 10 by an expansion ψ+(x, t) such that χ(t) = 0.1 for t ∈ [10, 10.1] and zero
otherwise. (b) Plot of u(x, t) for t = 0 to t = 25, showing initial expansion of the bump prior to
splitting into two counterpropagating pulses. Parameters are A = 0.3, σ = 4, α = 50, β = 0.05,
θ = 0.1.

When shift perturbations destabilize a bump, the resulting dynamics evolves to
a traveling pulse solution. As we showed in previous work, synaptic depression is a
reliable mechanism for generating traveling pulses in excitatory neural fields [19, 20].
As illustrated in Figure 4.1, following a perturbation by a leftward shift, the bump
initially expands and then starts to propagate. Eventually, the traveling pulse’s width
stabilizes to a constant value, larger than the initial bump width. The initial linear
growth in the bump’s width is consistent with our linear stability calculations. In
other simulations, we found that as synaptic depression strength β is increased, the
rate of linear growth in the width increases as well, which is also predicted by our
stability analysis. In Figure 4.2, we show an example of how expansions destabilize
the bump to result in two counterpropagating pulses. A closer look at the solution
as a function of time immediately after the perturbation shows a transient phase,
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where the superthreshold region is still a connected domain, prior to the splitting into
two pulses. As also predicted by our stability analysis, we found that contraction
perturbations did not drive the system to the homogeneous zero state, unless their
amplitude was large enough to drive the system to the other side of the separatrix
given by the smaller unstable bump (see Figure 2.1).

Next, to evolve the 2D system (3.1) in time, we use a fourth-order Runge–Kutta
method with a 200 × 200 spatial grid and a time-step of dt = 0.1. The integral term
in (3.1a) is approximated using Simpson’s rule. We systematically examined whether
taking finer grids changed stability results, and it does not. According to our stability
analysis in the previous section, the dominant instability as β is increased from zero
is given by the shift perturbation. Thus, we explore this phenomenon at a point in
parameter space where the bump is unstable to shifts (see Figure 3.4b). In Figure
4.3, we show the results of a simulation in which the initial condition was taken to be
a bump solution given by (3.9) with a shift perturbation added. We find the solution
evolves to a traveling spot similar to those seen in a previous study of a 2D neural
field with spike frequency adaptation [9]. The solution evolves to have an invariant
profile as it travels along a path in space, roughly indicated by a grey line in Figure
3.5. This is analogous to traveling pulse solutions in one dimension generated due to
bump instabilities in one dimension shown in Figures 4.1 and 4.2.

5. Discussion. In this paper we analyzed the existence and stability of 1D and
2D stationary bumps in a piecewise-smooth neural field model with synaptic depres-
sion. We showed that the local stability of a bump is determined by solutions to
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a system of pseudolinear equations. For concreteness, we considered a Mexican hat
weight function such that stable bumps exist in the limit β → 0, where β is the de-
pletion rate of synaptic resources. As β is increased from zero, the bump becomes
unstable with respect to perturbations that shift the boundary of the bump, leading
to the formation of a traveling pulse (1D) or a traveling spot (2D). One major effect
of synaptic depression is that there is an asymmetry between the regions of contrac-
tion and expansion of the bump boundary. Physically, this can be understood from
the fact that neural populations just outside of the stationary bump have maximal
synaptic resources so they can recruit their nearest neighbors to continue spreading
activity brought about by an initial expansion. On the other hand, neural populations
within the interior of the bump do not possess the resources to continue the damping
of activity via lateral inhibition brought about by an initial contraction.

There are various possible extensions of our work. First, our stability analysis
assumed that the dominant instabilities were associated with nonoscillatory, separa-
ble solutions of pseudolinear equations such as (3.18) and (3.19). However, there are
well-known scenarios in neural field models with linear adaptation, where Hopf bifur-
cations can occur leading to spatially structured oscillations such as breathers, target
patterns, and spiral waves [14, 15, 31, 33, 35]. Recently we have shown how spatially
structured oscillations can also occur in neural fields with synaptic depression, pro-
vided that the firing rate function has finite gain [19, 20]. It would be interesting
to explore scenarios where oscillations arise in neural fields with synaptic depression
and Heaviside nonlinearities via some form of generalized Hopf bifurcation, along
lines analogous to recent studies of nonsmooth dynamical systems [10, 44]. One re-
cent example occurs in a competitive neural network model of binocular rivalry [22].
Second, piecewise-smooth neural field models arise for other types of nonlinear adap-
tation such as threshold dynamics, where negative feedback dynamically increases the
threshold θ in response to an increased firing rate, corresponding to a form of spike
frequency adaptation [8]. As we have recently shown, the treatment of the latter form
of adaptation differs considerably from synaptic depression in the case of Heaviside
firing rate functions [21]. Finally, just as synaptic depression is a direct form of local
negative feedback, synaptic facilitation can provide an indirect feedback mechanism if
it specifically amplifies inhibitory synapses [36, 45]. Thus another extension is to con-
sider a two population model, in which depression acts on excitatory synapses, while
facilitation acts on inhibitory synapses; such a model is suggested by experimental
studies of short term synaptic plasticity [28].
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