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We show how a nonlocal version of the real Ginzburg-Landau �GL� equation arises in a large-scale recurrent
network model of primary visual cortex. We treat cortex as a continuous two-dimensional sheet of cells that
signal both the position and orientation of a local visual stimulus. The recurrent circuitry is decomposed into
a local part, which contributes primarily to the orientation tuning properties of the cells, and a long-range part
that introduces spatial correlations. We assume that �a� the local network exists in a balanced state such that it
operates close to a point of instability and �b� the long-range connections are weak and scale with the
bifurcation parameter of the dynamical instability generated by the local circuitry. Carrying out a perturbation
expansion with respect to the long-range coupling strength then generates a nonlocal coupling term in the GL
amplitude equation. We use the nonlocal GL equation to analyze how axonal propagation delays arising from
the slow conduction velocities of the long-range connections affect spontaneous pattern formation.
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I. INTRODUCTION

A reaction diffusion system undergoing spontaneous pat-
tern formation can often be reduced to a �real� Ginzburg-
Landau �GL� amplitude equation by carrying out a center-
manifold reduction in the vicinity of a Turing instability
�1,2�. The GL equation takes the form

�A

�t
= �A − ��A�2A + ��2A ,

where A is the complex amplitude of the evolving pattern
and � ,� ,� are real coefficients. The diffusion term takes into
account long-wavelength modulations of the spatially peri-
odic �roll� pattern arising from excitation of a band of spatial
frequencies in a neighborhood of the critical Turing fre-
quency. �In the case of two spatial dimensions, there must be
some form of spatial anisotropy in the system otherwise one
obtains the Newell-Whitehead-Segel amplitude equation
�3,4��. The GL equation provides qualitative insights into
some universal features of the dynamics of pattern forming
reaction diffusion systems �5�.

The complex Ginzburg Landau �CGL� equation �complex
coefficients � ,� ,�� plays an analogous role in the case of
oscillatory reaction diffusion systems that are close to a su-
percritical Hopf bifurcation �6�. Recently, a modified version
of the CGL equation has been derived in which diffusive
coupling is replaced by nonlocal coupling �7�. At first sight
this appears counterintuitive, since even if the original sys-
tem consisted of oscillators with nonlocal coupling, the CGL
equation describes patterns whose characteristic wavelength
becomes considerably longer than the effective range of cou-
pling as the bifurcation point is approached. However, sup-
pose that a system of chemical components constitute local
�nondiffusing� oscillators that are coupled via an additional
chemical component that diffuses freely. If the strength of
diffusive coupling is sufficiently weak so that it scales with
the associated Hopf bifurcation parameter, then the resulting
CGL amplitude equation has nonlocal coupling. One of the
interesting features of the nonlocal CGL equation is that it

exhibits new types of instability not found in the standard
CGL equation �7–9�.

In this paper we show how a nonlocal version of the real
GL equation arises in a large-scale recurrent network model
of primary visual cortex �V1�. Following Bressloff et al.
�10–12�, we treat cortex as a continuous two-dimensional
sheet of cells that signal both the position and orientation of
a local visual stimulus. The recurrent circuitry is decom-
posed into a local part, which contributes primarily to the
orientation tuning properties of the cells, and a long-range
part that introduces spatial correlations. We also incorporate
axonal propagation delays into the long-range connections in
order to take into account the fact that they have slow con-
duction velocities. In previous work we used symmetric bi-
furcation theory and perturbation methods to derive a set of
amplitude equations for the selection and stability of spa-
tially periodic cortical patterns in the absence of delays;
these amplitude equations took the form of a system of
coupled ODEs �10–12�. We thus showed how spontaneous
cortical activity patterns underlying common visual halluci-
nations can be accounted for in terms of certain symmetry
properties of the long-range recurrent connections, specifi-
cally, that they are invariant under the so-called shift-twist
action of the Euclidean group. The resulting group represen-
tation is twisted due to an anisotropy in the long-range con-
nections, which tends to favor directions that are correlated
with the orientation preferences of the interacting cells. Here
we develop an alternative perturbation scheme for analyzing
cortical pattern formation based on a nonlocal GL equation,
see also Ref. �14�, and use this to explore the effects of
axonal propagation delays on spontaneous pattern formation.
The nonlocal GL equation is derived by assuming that the
long-range connections are weak and scale with the bifurca-
tion parameter of a dynamical instability that is generated by
the local circuitry. One useful feature of the nonlocal GL
equation is that it explicitly separates out the local and long-
range contributions to cortical dynamics, thus simplifying
the analysis of spatiotemporal patterns. It also provides a
continuum modeling framework for studying how long-
range connections modulate the effects of external visual
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stimuli along similar lines to the spatially discrete model of
Bressloff and Cowan �13�.

The structure of the paper is as follows. In Sec. II we
introduce our cortical model. In Sec. III we derive the non-
local GL equation by carrying out a perturbation expansion
with respect to a coupling parameter that determines the
strength of the long-range connections. In Sec. IV we use the
nonlocal GL equation to analyze the effects of axonal propa-
gation delays on spontaneous pattern formation. First, we
show how in the absence of axonal delays, the nonlocal GL
equation undergoes a Turing instability that breaks the un-
derlying Euclidean shift-twist symmetry, leading to spatially
periodic patterns consistent with our previous work. The Tur-
ing instability is generated by purely inhibitory long-range
connections rather than by the standard Mexican hat weight
distribution, reflecting the existence of a gap. We then show
that sufficiently long axonal delays can lead to a bulk Hopf
instability rather than a Turing instability. Note that in this
paper we consider nonlocal synaptic coupling within the
context of large-scale rate based models of cortex. This
should be contrasted with models that study the effects of
nonlocal synaptic coupling between individual neuronal os-
cillators sitting close to a subcritical or supercritical Hopf
bifurcation �15–17�. Here convolution terms representing the
synaptic coupling are incorporated into the normal forms of
the individual oscillators.

II. A CONTINUUM MODEL OF V1 AND ITS INTRINSIC
CIRCUITRY

A. Functional anatomy of V1

Primary visual cortex �V1� is the first cortical area to re-
ceive visual information transmitted by ganglion cells of the
retina via the lateral geniculate nucleus �LGN� of the thalmus
to the back of the brain. A fundamental property of the func-
tional architecture of V1 is an orderly retinotopic mapping of
the visual field onto the surface of cortex, with the left and
right halves of visual field mapped onto the right and left
cortices, respectively. Superimposed upon the retinotopic
map are a number of additional feature maps reflecting the
fact that neurons respond preferentially to stimuli with par-
ticular features �18,19�. For example, most cortical cells sig-
nal the local orientation of a contrast edge or bar—they are
tuned to a particular local orientation �20�. Other possible
stimulus preferences include a left/right eye preference
known as ocular dominance, spatial frequency and color. In
recent years considerable information about the two-
dimensional �21� distribution of both orientation preference
and ocular dominance across the cortical surface has been
obtained using optical imaging techniques �22–24�. The ba-
sic topography revealed by these methods suggests V1 has
an approximately periodic microstructure �with period
around 1 mm in cats and primates� so that cortex can be
partitioned into a set of local functional modules or hyper-
columns �18,25,26�, each of which carries out some form of
local image processing.

The existence of a set of feature preference maps has
implications for the functional anatomy of V1. There appear
to be at least two functional circuits acting on different

length scales within a cortical layer. There is a local circuit
operating at subhypercolumn dimensions in which cells
make connections with most of their neighbors in a roughly
isotropic fashion �27,28�. It has been suggested that such
circuitry provides a substrate for the recurrent amplification
and sharpening of the tuned response of cells to local visual
stimuli �29,30�. The other circuit operates between hypercol-
umns and is mediated by so-called patchy horizontal connec-
tions �31,32�. Optical imaging combined with cell labeling
techniques have generated considerable information concern-
ing the pattern of these connections in superficial layers of
V1 �33–35�. In particular, one finds that the patchy horizontal
connections tend to link cells with similar feature prefer-
ences. Moreover, in tree shrew and cat there is a pronounced
anisotropy in the distribution of patchy connections, with
differing iso-orientation patches preferentially connecting to
neighboring patches in such a way as to form continuous
contours following the topography of the retinocortical map
�35�, see Fig. 1. That is, the major axis of the horizontal
connections tends to run parallel to the visuotopic axis of the
connected cells’ common orientation preference. There is
also a clear anisotropy in the patchy connections of owl �36�
and macaque �37,38� monkeys. However, in these cases most
of the anisotropy can be accounted for by the fact that V1 is
expanded in the direction orthogonal to ocular dominance
columns. Interestingly, the recently observed patchy feed-
back connections from extrastriate areas in primates tend to
be more strongly anisotropic �37� and to exhibit similar
forms of anisotropy as previously found for horizontal con-
nections in tree shrew �39�. Stimulation of a hypercolumn
via lateral connections modulates rather than initiates spiking
activity �41�, suggesting that the long-range interactions pro-
vide local cortical processes with contextual information
about the global nature of stimuli. As a consequence the
horizontal connections have been invoked to explain a wide
variety of context-dependent visual processing phenomena
�42–44�.

hypercolumn

lateral connections

local connections

FIG. 1. Schematic illustration of isotropic local connections
within a hypercolumn and anisotropic lateral connections between
hypercolumns. Each disc represents a local population of cells
whose common orientation preference is indicated by the orienta-
tion of a diagonal bar.
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B. The model

Suppose that cortex is treated as an unbounded two-
dimensional sheet and let a denote the population activity of
a local pool of neurons in a given volume element of a slab
of neural tissue located at r�R2. The neural field a is taken
to evolve according to the Wilson-Cowan equation �45,46�

�m
�a�r,t�

�t
= − a�r,t� + �

R2
w�r�r��f�a�r�,t��dr� + h�r,t� ,

�2.1�

where w�r �r�� is the weight per unit volume of all synapses
at r from neurons at r�, h is the feedforward �excitatory�
input from the LGN or other cortical layers, and �m is a
synaptic time constant. �We fix the units of time by setting
�m=1; for fast synapses the time constant can be around
5 ms.� The nonlinearity f is taken to be a smooth output
function of the form

f�a� =
f0

1 + e−��a−�� , �2.2�

where f0 is the maximum firing rate that is taken to be unity
for the given units of time, � determines the slope or gain of
the input-output characteristics of the population, and � is a
threshold. One common assumption regarding the structure
of the synaptic connections w is that they depend only on
cortical separation �r−r�� so that w�r �r��→w��r−r���. The
weight distribution is then invariant under the action of the
Euclidean group E�2� of rigid motions in the plane, that is,

�w�r�r�� = w��−1 · r��−1 · r�� = w�r�r�� �2.3�

for all ��E�2�. The Euclidean group is composed of the
�semidirect� product of O�2�, the group of planar rotations
r→R�r and reflections �x ,y�→ �x ,−y�, with R2, the group of
planar translations r→r+s. Here

R� = �cos � − sin �

sin � cos �
�, �� �0,2�� . �2.4�

Euclidean symmetry considerably simplifies the analysis
of spontaneous pattern formation and traveling waves in cor-
tical models �see the reviews �47,48��. However, as we have
emphasized elsewhere �49,50�, planar Euclidean symmetry
no longer holds when the structure of patchy horizontal con-
nections is taken into account. Unfortunately, incorporating
this structure into the weight distribution w is nontrivial,
since it requires the specification of a set of feature maps that
describe the variation of stimulus feature preferences as a
function of cortical position r. One way to avoid this prob-
lem is to introduce a different coordinate system for labeling
cortical cells based on a spatial coarse graining of r. One
approach is to partition cortex into a set of hypercolumns
with r specifying the location of an individual hypercolumn
within the cortical sheet, leading to the so-called coupled
hypercolumn model of cortex �10,13�, see also Fig. 1. Neu-
rons are now labeled by the independent set �r ,F� where F
specifies the set of feature preferences of a cell within a
given hypercolumn. One of the potential difficulties in iden-
tifying r as a hypercolumn label is that the level of spatial

coarse graining is rather severe. Moreover, there is not a
unique way of partitioning cortex into a set of functional
hypercolumns, that is, the hypercolumn effectively corre-
sponds to a length scale rather than a well-defined physical
domain.

Here we consider a modified labeling scheme that avoids
the above difficulties by explicitly taking into account the
fact that each cortical neuron responds to light stimuli in a
restricted region of the visual field called its classical recep-
tive field �RF�. Patterns of illumination outside the RF of a
given neuron cannot generate a response directly, although
they can significantly modulate responses to stimuli within
the RF via patchy horizontal and feedback connections
�44,51�. A visual stimulus is typically described in terms of a
function s�X ,Y , t� that is proportional to the difference be-
tween the luminance at point �X ,Y� in the visual field at time
t and the average or background level of luminance �since
the visual system adapts to the background illumination�.
Often s is divided by the background luminance level, mak-
ing it a dimensionless quantity called the contrast. Assuming
a linear relationship between the feedforward input h�r , t� to
a neuron at r and the stimulus s, we can take

h�r,t� = �
0

	�
R2

Dr�X − X̄�r�,Y − Ȳ�r�,��


 s�X,Y,t − ��dXdYd� , �2.5�

where Dr is the space-time RF profile of the neuron and

�X̄�r� , Ȳ�r�� is the RF center in visual coordinates. �Neurons
that carry out a linear RF summation are termed simple cells,
whereas neurons with nonlinear RF properties are called
complex cells �52�.� The RF profile Dr depends on the vari-
ous stimulus feature preferences F�r� of the neuron at r in-
cluding its orientation preference ��r�. Hence, the variation
of the input h�r , t� with cortical position r depends on the

distribution of RF centers �X̄�r� , Ȳ�r�� and the associated fea-
ture preference maps F�r�. It follows that the location of the
RF center is another “feature” of a cortical cell. It is conve-
nient to represent the RF center in cortical coordinates, rather
than visual coordinates. Therefore, we introduce an invert-
ible retinocortical map �, which specifies how a visual im-
age maps to a corresponding activity pattern in V1 �53�; it
can be shown that in appropriate coordinates � is well ap-
proximated by a complex logarithm �54�. We then set r̄
=��X̄ , Ȳ� and relabel cortical cells according to the set �r̄ ,F�
with r̄ and F treated as independent variables. Thus, one can
view the coordinate r̄ as a coarse-grained version of cortical
position r that is nevertheless defined on a finer spatial scale
than a hypercolumn label, commensurate with spatial visual
acuity. Neurons at different spatial locations within the same
hypercolumn tend to have similar RF centers, whereas there
is a systematic shift in the RF center as one moves across
neighboring hypercolumns. Implicit in our labeling scheme
are the assumptions that the various feature maps are inde-
pendent or separable, and that the retinotopic map is smooth.
These assumptions are consistent with a number of experi-
mental studies �55–57�, although nonseparability has also
been observed �58�.
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Having motivated the new labeling scheme, we rewrite r̄
as r with the understanding that r now represents the RF
center in cortical coordinates. For simplicity, we only con-
sider orientation preference by setting F=�� �0,��; this
will be sufficient to incorporate the patchy, anisotropic nature
of long-range connections. Let a�r ,� , t� denote the activity
of the population with cortical label �r ,��, and consider the
evolution equation

�a�r,�,t�
�t

= − a�r,�,t� + h�r,�,t�

+ �
R2
�

0

�

w�r,��r�,���f�a�r�,��,t��
d��

�
dr�.

�2.6�

Note that there is no simple coordinate transformation relat-
ing Eqs. �2.6� and �2.1� and their corresponding weight ker-
nels w. Moreover, both models ignore details at sufficiently
small length scales by treating the cortex as a continuum.
The planar model neglects features at the length scale of
individual neurons, whereas the coupled hypercolumn model
neglects features at length scales smaller than those corre-
sponding to normal visual acuity. The continuum approxima-
tion is valid provided that solutions to the model equations
involve coherent structures whose length scales are at least
an order of magnitude greater than the fundamental length
scale.

Following our discussion regarding the intrinsic circuitry
of V1, we decompose the weight distribution w of Eq. �2.6�
into distinct local and a long-range contributions according
to �59�

w�r,��r�,��� = w�� − ���H�d0 − �r − r���/��d0
2�

+ �whoz�r,��r�,���H��r − r��− d1� ,

�2.7�

where d0d1 with d1 denoting the typical spacing �of around
0.3–1 mm� between neighboring hypercolumns, H is the
Heaviside function, and � is a small coupling parameter that
incorporates the finding that the horizontal connections tend
to be modulatory in nature �40,41�. In order to specify the
size of �, we normalize the total weight of both the local and
long-range connections to be unity, that is, we set
	0
�w���d� /�=1 and

�
R2
�

0

�

whoz�r,��r�,���
d��

�
dr� = 1 �2.8�

for all r ,�. We then set �=��0 where � is a small dimen-
sionless parameter with �1, and �0=�1 specifies whether
the horizontal connections have a net excitatory or inhibitory
effect on the local circuits. Although the horizontal connec-
tions are excitatory, since they are mediated by long axonal
projections of pyramidal cells �47,26�, 20% of the connec-
tions in layers II and III of V1 end on inhibitory interneu-
rons, so the overall action of the horizontal connections can
become inhibitory, especially at high levels of activity �40�.

We assume that cells with sufficiently similar RF centers
��r−r���d0� interact according to a local weight distribution

w��−��� that depends on the relative orientation preference
of interacting cells. On the other hand, cells with sufficiently
well separated RF centers ��r−r���d1� interact according to
the rules of long-range horizontal connections

whoz�r,��r�,��� = G��r − r���w��� − ��P
arg�r − r��

− �� + ���/2� . �2.9�

The first factor G incorporates the observation that the den-
sity of patches tends to decrease monotonically with cortical
separation. For concreteness, we take G�s� to be a Gaussian

G�s� = Ne−�s − d1�2/2�2
, s� d1, �2.10�

where � determines the range of the horizontal connections
and N is a normalization factor such that 	d1

	 sG�s�ds=1. The
horizontal connections have a typical range of 2–6 mm, al-
though the effective range would be considerably longer if
feedback connections were taken into account �38�. �We fix
the units of length by setting �=1.� The second factor in Eq.
�2.9� w� ensures that the long-range connections link cells
with similar orientation preferences, and is taken to be a
positive, narrowly tuned distribution with w����=0 for all
�����c and �c� /2. The final factor P incorporates the
anisotropic nature of the patchy connections, namely, that the
common orientation preference of interacting populations
�taken for mathematical convenience to be the arithmetic
mean ��+��� /2� is correlated with the direction arg�r−r�� in
the plane linking these cell populations. One possible choice
for P is

P��� =
1

4�
�H�� − ���� + H�� − �� − ���� , �2.11�

where � is a measure of the degree of spread or anisotropy in
the horizontal connections. The functions w��� and w���� are
both assumed to be even, �-periodic functions of �, with
corresponding Fourier expansions

w��� = W0 + 2�
n�1

Wn cos 2n� ,

w���� = W0
� + 2�

n�1
Wn
� cos 2n� . �2.12�

The large-scale cortical model given by Eqs. �2.6�, �2.7�,
and �2.9� does not take into account one important aspect of
the orientation preference map, namely, the existence of ori-
entation singularities or pinwheels �23,24�. That is, orienta-
tion domains tend to be organized radially around pinwheel
centers at which the representations of all orientations con-
verge. Intracellular recordings suggest that the spike re-
sponse of individual neurons at pinwheel centers are sharply
tuned for orientation, even though their subthreshold re-
sponse is broadly tuned, whereas cells away from pinwheels
have sharply tuned super- and subthreshold responses
�60,61� �but see Ref. �62��. Hence, it is possible that the role
of local circuitry in generating the tuned response to oriented
stimuli depends on cortical location �28�. The heterogeneous
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nature of the orientation preference map due to pinwheels
has been incorporated into a detailed computational model of
several hypercolumns �52,63�. However, it is difficult to ex-
tend such a model to take into account the large-scale struc-
ture of cortex without carrying out some form of spatial
coarse graining �64�. An alternative approach to modeling
pinwheels is to start with a coarse-grained approach that con-
siders the tuning properties of local populations of cells
rather than of individual neurons. From this perspective, the
high degree of scatter of orientation preferences around a
pinwheel center means that the corresponding population ac-
tivity is poorly tuned for orientation preference. This can be
incorporated into a generalization of the model presented
here, in which F includes both the orientation and the spatial
frequency maps �65�. Now the local weight distribution is
expanded in terms of spherical harmonics rather than simple
Fourier harmonics. Interestingly, a recent topological analy-
sis of population activity in V1 indicates that both spontane-
ous activity and activity evoked by natural images is consis-
tent with the topology of a two sphere �66�.

C. Symmetries of model

If there is no orientation-dependent anisotropy �P1�,
then the weight distribution �2.7� is invariant with respect to
the symmetry group E�2�
O�2�, where O�2� is the group of
rotations and reflections on the ring S1 and E�2� is the Eu-
clidean group acting on R2. The associated group action is

��r,�� = ��r,��, �� E�2� ,

��r,�� = �r,� + �� ,

��r,�� = �r,− �� . �2.13�

Invariance of the weight distribution can be expressed as

�w�r,��r�,�� = w��−1�r,����−1�r�,���� = w�r,��r�,���
�2.14�

for all ��� where �=E�2�
O�2�. Anisotropy reduces the
symmetry group � to E�2� with the following shift-twist ac-
tion on R2
S1 �10,11�:

s�r,�� = �r + s,�� ,

��r,�� = �R�r,� + �� ,

��r,�� = �R�r,− �� , �2.15�

where R� denotes the planar rotation through an angle � and
R� denotes the reflection �x1 ,x2�� �x1 ,−x2�. It can be seen
that the discrete rotation operation comprises a translation or
shift of the orientation preference label � to �+�, together
with a rotation or twist of the position vector r by the angle
�. It is instructive to establish explicitly the invariance
of anisotropic long-range connections under shift-twist sym-
metry. Translation invariance of whoz in Eq. �2.9� follows

immediately from the spatial homogeneity of the interac-
tions, which implies that

whoz�r − s,��r� − s,��� = whoz�r,��r�,��� .

Invariance with respect to a rotation by � follows from

whoz�R−�r,� − ��R−�r�,�� − ��

=G��R−��r − r����P
arg�R−��r − r���

− �� + ���/2 + ��w��� − � − �� + �� ,

=G��r − r���P�arg�r − r�� − �� + ���/2�w��� − ���

=whoz�r,��r�,��� .

We have used the conditions �R�r�= �r� and arg�R−�r�
=arg�r�−�. Finally, invariance under a reflection � about the
x axis holds since

whoz��r,− ���r�,− ��� = G����r − r����P
arg���r − r���

+ �� + ���/2�w��− � + ���,

= G��r − r���P�− arg�r − r��

+ �� + ���/2�w��� − ��� ,

=whoz�r,��r�,��� .

We have used the conditions arg��r�=−arg�r�,
w��−��=w����, and P�−��=P���. The fact that the weight
distribution is invariant with respect to this shift-twist action
has important consequences for the global dynamics of V1 in
the presence of anisotropic horizontal connections �10,11�.

D. Axonal propagation delays

Another important property of long-range horizontal con-
nections is that the speed of action potential propagation
along the axons of these connections is relatively slow. Typi-
cal speeds of 0.2–0.4 m /s have been measured electrically
in both cat V1 �40� and primate V1 �67�; such speeds are at
least an order of magnitude slower than those found for feed-
forward and feedback connections �67�. �In terms of the
given space and time units with �m=5 ms, �=5 mm, and v
=0.2 ms−1, we have the dimensionless quantity v�m /�=0.2�.
A number of theoretical studies have incorporated finite
propagation speeds in neural field models �68–76�, and
shown that for sufficiently small propagation speeds v axonal
delays can lead to oscillatory patterns. In contrast to these
studies, we explicitly distinguish between local and long-
range horizontal connections and assume that axonal propa-
gation delays only occur in the latter. That is, we incorporate
axonal delays into our cortical model given by Eqs. �2.6� and
�2.7� according to
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�a�r,�,t�
�t

= − a�r,�,t� + h�r,�,t� +
1

�d0
2�

R2
�

0

�

w�� − ���H�d0 − �r − r���f�a�r�,��,t��
d��

�
dr�

+ ��
R2
�

0

�

whoz�r,��r�,���H��r − r�� − d1�f�a�r�,��,t − �r − r��/v��
d��

�
dr�. �2.16�

Note that inclusion of axonal delays preserves the Euclidean
shift-twist symmetry of our model.

III. DERIVATION OF NONLOCAL GINZBURG-LANDAU
EQUATION

In previous work we showed how a uniform solution of
Eq. �2.6� for a constant input h can undergo a Turing-like
instability that spontaneously breaks the underlying Euclid-
ean shift-twist symmetry, leading to the formation of spa-
tially periodic patterns. We used symmetric bifurcation
theory to analyze the selection and stability of the resulting
patterns, and by mapping the patterns to visual coordinates
via the inverse retinotopic map, we showed how the patterns
reproduce a variety of common geometric visual hallucina-
tions �10–12�. In particular, we established that the original
Ermentrout-Cowan theory of visual hallucinations �77� can
be extended to the case of contoured images by the inclusion
of the orientation preference label � into the cortical model
�2.6�. Here we follow a different approach by first consider-
ing instabilities of the uniform state in the absence of hori-
zontal connections. We then perform a perturbation expan-
sion with respect to the long-range coupling parameter � in
order to derive an amplitude equation for the growth of cor-
tical activity patterns. The amplitude equation takes the form
of a nonlocal Ginzburg-Landau �GL� equation whose inte-
gration kernel is determined by the horizontal connections.

In the case of zero horizontal connections ��=0� and con-

stant inputs �h�� ,r , t�= h̄�, Eq. �2.6� reduces to

�a�r,�,t�
�t

= − a�r,�,t� + h̄ + �
R2
�

0

�

���r − r���


w�� − ���f„a�r�,��,t�…
d��

�
dr�, �3.1�

where ��s�=H�d0−s� / ��d0
2�. In the case of a constant input

there exists at least one uniform equilibrium solution of Eq.
�3.1�, which satisfies the algebraic equation

ā = W0f�ā� + h̄ �3.2�

with W0=	0
�w���d� /�=1. If h̄ is sufficiently small relative

to the threshold � of the neurons then the equilibrium is
unique and stable. Under the change of coordinates a→a

− h̄, it can be seen that the effect of h̄ is to shift the threshold

by the amount −h̄. Thus, there are two ways to increase the
excitability of the network and thus destabilize the fixed

point: either by increasing the external input h̄ or reducing

the threshold �. The latter can occur through the action of
drugs on certain brain stem nuclei, which provides a mecha-
nism for generating geometric visual hallucinations
�10–12,77�.

The stability of the fixed point can be determined by set-
ting a�r ,� , t�= ā+a�r ,��e�t and linearizing about ā. This
leads to the linear evolution equation

�a�r,�� = − a�r,�� + ��
R2
�

0

�

���r − r���


w�� − ���a�r�,���
d��

�
dr�, �3.3�

where �= f��ā�. This has eigensolutions of the form a�r ,��
=e�teik·re2in� with � satisfying the dispersion relation

� = �n�k�  − 1 + ��̃�k�W�n�, n � Z , �3.4�

where k= �k�,

�̃�k� = �
R2

eik·r���r��dr =
2

d0
2�

0

d0

rJ0�kr�dr �3.5�

and J0 is the zeroth order Bessel function. It follows that for
sufficiently small �, corresponding to a low activity state
�n�k��0 for all n ,k so the fixed point is stable. However, as
� is increased beyond a critical value �c the fixed point
becomes unstable due to excitation of the eigensolutions as-
sociated with the largest Fourier components. Suppose that

WM =maxm
Wm�. Since maxk
�̃�k��= �̃�0�=1, it follows that
the fixed point will become unstable at �c=1 /WM leading to
the growth of a pattern of the form

a�r,�� = z�r�e2iM� + z̄�r�e−2iM� = A�r�cos
2M�� − �0�r���
�3.6�

with complex amplitude z=Ae−2i�0. In the absence of hori-
zontal connections we expect the resulting pattern to be ap-
proximately r independent due to the dominance of the k
=0 mode, that is, orientation tuning will be coherent across
cortex with maximal responses at �=�0+� /M. In this paper,
we will assume that the dominant discrete mode is M =1 so
that orientation tuning curves have a single maximum at �
=�0. The peak �0 is arbitrary and depends only on random
initial conditions, reflecting the spontaneous breaking of the
underlying O�2� symmetry. Since the dominant Fourier com-
ponent is W1, the local distribution w��� is excitatory �inhibi-
tory� for neurons with sufficiently similar �dissimilar� orien-
tation preferences. �This is analogous to the Wilson-Cowan
“Mexican Hat” function �46�.� If the local level of inhibition
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were reduced so that Wn were a monotonically decreasing
function of �n� with M =0, then the homogeneous fixed point
would undergo a bulk instability at �c=1 /W0 and there
would be no orientation tuning.

Let us now consider the effect of perturbatively switching
on the horizontal connections ���0� and that the system
operates within O��� of the bifurcation point for excitation of
the M =1 eigenmode in the absence of horizontal connec-
tions, see Eq. �3.6�, that is, �=�c�1+���� with �c the criti-
cal point. �This is analogous to assuming that weak diffusive
coupling scales with the bifurcation parameter in oscillatory
reaction diffusion systems �7�.� For sufficiently small d0
there will be a wide band of excited modes beyond the criti-

cal point due to the condition �̃�k��1 for k�1 /d0. We as-
sume that the horizontal connections select a particular
wavelength within this band of excited modes that is of order
�, and this determines the coherence length of the resulting
spontaneous activity patterns. Assuming that ��d0, it fol-
lows that the length-scale d0 does not play a significant role
and we can take the limit d0→0 in Eq. �2.16� so that ��s�
→��s�. We then carry out a perturbation expansion of Eq.
�2.16� in powers of the small coupling parameter �. For ease
of notation, we will first carry out the derivation in the ab-
sence of axonal delays by taking v→	 in Eq. �2.16�. We will
then show how to extend the analysis to incorporate delays.

First, perform a Taylor expansion of Eq. �2.16� about the
fixed point ā by setting b�r ,� , t�=a�r ,� , t�− ā and taking
d0→0, v→	:

�b

�t
= − b + w � ��b + �b2 + ��b3 + ¯ � + ��0whoz � ��f�ā�

+ �b + ¯ �� , �3.7�

where �= f��ā� /2, ��= f��ā� /6. The convolution operation �
is defined by

w � b�r,�,t� = �
0

�

w�� − ���b�r,��,t�
d��

�
, �3.8�

whereas

�whoz � b��r,�,t� =� whoz�r,��r�,���H��r − r�� − d1�


b�r�,��,t�
d��

�
dr� �3.9�

and whoz�r ,� �r� ,��� given by Eq. �2.9�. Substitute into Eq.
�3.7� the perturbation expansion

b = �1/2b1 + �b2 + �3/2b3 + ¯ . �3.10�

Finally, introduce a slow time scale �=�t and collect terms
with equal powers of �. This leads to a hierarchy of equa-
tions of the form �up to O��3/2��

Lb1 = 0, �3.11�

Lb2 = v2,

�wb1
2 + �0f�ā�whoz � 1, �3.12�

Lb3 = v3,

−
�b1

��
+ w � ��c��b1 + ��b1

3 + 2�b1b2� ,

+ �c�0whoz � b1 �3.13�

with the linear operator L defined according to

Lb = b − �cw � b . �3.14�

The first equation in the hierarchy, Eq. �3.11�, has solutions
of the form

b1�r,�,�� = z�r,��e2i� + z̄�r,��e−2i�. �3.15�

We obtain a dynamical equation for the complex amplitude
z�r ,�� by deriving solvability conditions for the higher order
equations.

We proceed by taking the inner product of Eqs. �3.12� and

�3.13� with the dual eigenmode b̃���=e2i�. The inner product
of any two functions of � is defined as

�u�v� = �
0

�

u*���v���
d�

�
. �3.16�

With respect to this inner product, the self-adjoint linear op-

erator L satisfies �b̃ �Lbp�= �Lb̃ �bp�=0 for all p. Since Lbp

=vp, we obtain a hierarchy of solvability conditions �b̃ �vp�
=0 for p=2,3 , . . . . It can be shown from Eqs. �3.9�, �3.12�,
and �3.15� that the first solvability condition is identically

satisfied. The solvability condition �b̃ �v3�=0 generates a cu-
bic amplitude equation for z�r ,��. As a further simplification
we set �=0, since this does not alter the basic structure of the
amplitude equation. Using Eqs. �2.9�, �3.9�, �3.13�, and
�3.15� we then find that

�z�r,��
��

= z�r,����� − ��z�r,���2� + �0�c�
R2


�J+�r − r��z�r�,�� + J−�r − r��z̄�r�,���dr�,

�3.17�

where �=−3�� /�c,

J��r� = �
0

��
0

�

e−2i������w��� − ���G��r��P
arg�r�

− �� + ���/2�
d�d��

�2 , �3.18�

and

G�s� = G�s�H�s − d1� . �3.19�

The kernel J+ can be simplified by making the change of
variables � ,��→��= ������ /2 and integrating to obtain

J+�r� = W1
�G��r�� , �3.20�

where W1
� is the first Fourier coefficient of w����, see Eq.

�2.12�. Also note that in the absence of any anisotropy �P
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1�, the second kernel J−�r�0 so that Eq. �3.17� reduces
to

�z�r,��
��

= z�r,����� − ��z�r,���2�

+ �0�cW1
��

R2
G��r − r���z�r�,�� . �3.21�

In order to extend the above analysis to the case of finite
propagation speeds v, we need to assume a certain scaling
rule for v, namely, v=�v0 with v0=O�1�. First note Eq. �3.7�
still holds for finite propagation speeds provided that the
convolution defined by Eq. �3.9� is modified by taking
b�r� ,�� , t�→b�r� ,�� , t− �r�−r� /v�. Introducing a slow time
scale �=�t then leads to the functional form b�r� ,�� ,�− �r�
−r� /v0� provided that v has the prescribed scaling behavior.
Such scaling is consistent with the slow propagation speeds
of the horizontal connections. With this modification, the
perturbation analysis proceeds as before, leading to the de-
layed nonlocal GL equation

�z�r,��
��

= z�r,����� − ��z�r,���2�

+ �0�c�
R2

�J+�r − r��z�r�,� − �r − r��/v0�

+ J−�r − r��z̄�r�,� − �r − r��/v0��dr�. �3.22�

One of the novel features of the nonlocal GL Eqs. �3.17� and
�3.22� when compared to other synaptically coupled ampli-
tude equations �see, e.g., Ref. �16�� is the presence of the
linear term z̄ in the convolutions. This term reflects the an-
isotropy of the horizontal connections and implies that the
amplitude equation is not equivariant with respect to the
phase transformation z→ei�z. The breaking of phase sym-
metry has important implications for the type of eigenmodes
that are excited when the uniform stationary solution be-
comes unstable, and is a manifestation of the underlying Eu-
clidean shift-twist symmetry of the full model �see Sec. IV�.

It is important to note that, as in other pattern forming
systems �2,5�, the nonlocal GL amplitude equations �3.17�
and �3.22� are only approximations of the full network mod-
els �2.6� and �2.16� even when they operate sufficiently close
to an instability. This then raises the issue of how well solu-
tions to the GL equations approximate solutions of the origi-
nal Wilson-Cowan equations. Unfortunately, even in the case
of local GL equations there are relatively few results regard-
ing the accuracy of solutions. In spite of these limitations,
amplitude equations are still useful because they provide in-
sights into the universal behavior of systems close to points
of instability, independently of the detailed structure of spe-
cific models.

IV. STABILITY ANALYSIS

The delayed nonlocal GL Eq. �3.22� has the trivial solu-
tion z=0, which corresponds to the uniform stationary solu-
tion of Eq. �3.1�, a= ā. Linearizing about this solution gives

the following linear equation for �z , z̄� �together with the
complex conjugate equation�

�z�r,��
��

= ��z�r,�� + �0� �J+�r − r��z�r�,� − �r − r��/v0�

+ J−�r − r��z̄�r�,� − �r − r��/v0��dr�. �4.1�

where we have absorbed a factor of �c into �0. Assuming a

solution of the form z�r ,��=u�r�e��+v�r�e�̄�, we obtain the
pair of equations

�u�r� = ��u�r� + �0� �J+�r − r��e−��r−r��/v0u�r��

+ J−�r − r��e−��r−r��/v0v̄�r���dr�, �4.2�

�̄v�r� = ��v�r� + �0� �J+�r − r��e−�̄�r−r��/v0v�r��

+ J−�r − r��e−�̄�r−r��/v0ū�r���dr� �4.3�

and their complex conjugates. Fourier transforming Eqs.
�4.2� and �4.3� yields

�û�k� = ��û�k� + �0�Ĵ+�k,��û�k� + Ĵ−�k,��v̂�− k�� ,

�4.4�

�̄v̂�k� = ��v̂�k� + �0�Ĵ+�k,�̄�v̂�k� + Ĵ−�k,�̄�û�− k��dr�,

�4.5�

where

Ĵ��k,�� = �
R2

e−ik·rJ��r�e−��r�dr . �4.6�

Substituting for J� using Eq. �3.18�, performing the change
of variables ��= ������ /2 and writing k=k�cos � , sin ��,
r=r�cos � , sin �� gives

Ĵ��k,�� = �
0

	�
0

2�

d�rdrG�r�e−�re−ikr cos��−��


��
0

��
0

�

e−4i��w��2�−�P�� − �+�
d�+d�−

2�2 � .

�4.7�

Using the Bessel function expansion

e−ix cos � = �
n=−	

	

�i�nJn�x�ein�, �4.8�

it follows that
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Ĵ��k,�� = �
n=−	

	

Gn�k,���
0

2�

d�e2in��−��


��
0

��
0

�

e−4i��w��2�−�P�� − �+�
d�+d�−

2�2 � ,

�4.9�

where

Gn�k,�� = �− 1�n�
0

	

rG�r�J2n�kr�e−�rdr . �4.10�

We can now integrate over the angles � ,�� so that

Ĵ+�k,�� = W1
�G0�k,�� �4.11�

and

Ĵ−�k,�� = e−4i�W0
�P2G2�k,�� , �4.12�

with

P2 = �
0

�

e−4i�P���
d�

�
=

sin�4��
4�

, �4.13�

for P given by Eq. �2.11�. For notational convenience we set
Wn
�=1.
Setting U�k�=e2i�û�k� and V�k�=e2i�v̂�k� in Eqs. �4.4�

and �4.5� leads to the pair of equations

�U�k� = ��U�k� + �0�G0�k,��U�k� + P2G2�k,��V�− k�� ,

�4.14�

�̄V�k� = ��V�k� + �0�G0�k,�̄�V�k� + P2G2�k,�̄�U�− k�� .

�4.15�

Using the identity Gn�k ,��=Gn�k , �̄�, we obtain the pair of
solutions V�−k�=�U�k� with associated eigenvalues �
=���k� obtained by solving the implicit equations

�� = �� + �0�G0�k,���� P2G2�k,���� . �4.16�

The corresponding eigensolutions of the linear GL Eq. �4.1�
are then of the form

z�,k�r,�� = e−2i��ceik·re���k�� � c̄e−ik·re�̄��k��� , �4.17�

where c is a constant complex amplitude.
Substituting Eq. �4.17� into Eq. �3.15� and introducing the

decomposition ��=��+ i�� with �� ,�� real shows that the
linear eigenmodes of the full system described by Eq. �2.16�
are given by �after rescaling c→c /2�

a+�r,�,t� = e��+t�cei�k·r+��+t� + c̄e−i�k·r+��+t��cos�2�� − ���
�4.18�

and

a−�r,�,t� = e��−t�cei�k·r+��−t� + c̄e−i�k·r+��−t��sin�2�� − ��� .

�4.19�

The even eigenmode a+ represent a traveling ����0� or
stationary ���=0� plane wave f�r , t�=cei�k·r+��+t�+c.c.

modulated by the factor cos�2��−��� with �=arg�k� �78�. It
follows that the location of the peak response with respect to
orientation preference � alternates between �=� when
f�r , t��0 and �=�+� /2 when f�r , t��0. Thus, we can rep-
resent the activity as a stripe pattern in which the peak of the
orientation tuning curve alternates between these two direc-
tions. Similarly, in the case of the odd eigenmode a−, the
peak response with respect to � alternates between �=�
+� /4 and �=�−� /4. The existence of distinct even and odd
eigenmodes �4.18� and �4.19� is a reflection of the underlying
shift-twist symmetry of the full system given by Eq. �2.16�
�10,11�. In the purely isotropic case �P2=0�, there is a single
dispersion branch satisfying ��k�=��+�0G0�k ,��k�� and
there is no longer any specific relationship between the di-
rection of the wave vector k and the peaks of the orientation
tuning curves, reflecting the fact that Eq. �2.16� now has
E�2�
O�2� symmetry.

Since Gn�k ,��, n=0,2 are bounded functions �see Eq.
�4.10��, it follows from Eq. �4.16� that if ��0 then
Re ���k��0 for all k and the uniform state z=0 is linearly
stable. However, as �� is increased we expect a critical
point to be reached where eigenmodes having a critical wave
number kc and frequency �c become marginally stable. Be-
yond this critical point these eigenmodes will start to grow
leading to the formation of stationary periodic patterns �kc
�0, �c=0�, bulk oscillations �kc=0, �c�0� or spatiotempo-
ral patterns �kc�0, �c�0�. In the following we investigate
which of these bifurcation scenarios occur both for zero de-
lays and nonzero delays and show that a Turing-Hopf bifur-
cation does not occur.

A. Infinite propagation speeds (v0\�)

In the absence of axonal propagation delays, Eq. �4.16�
reduces to the simpler form

�� = �� + �0�G0�k,0�� P2G2�k,0�� . �4.20�

In this limiting case ���k� are real for all k thus precluding
the possibility of a Hopf bifurcation. Setting

 ��k� = − �G0�k,0�� P2G2�k,0�� , �4.21�

we see from Eq. �4.20� that the condition for linear stability
of the uniform state in the presence of horizontal connections
reduces to

��� �0 ��k�

for all k. Let

 M = max
k�0


 +�k�, −�k�� at k = kM �4.22�

and

 m = min
k�0


 +�k�, −�k�� at k = km. �4.23�

Denoting the critical point by ��c, it follows that for exci-
tatory horizontal connections ��0�0� we have ��c
=��0 m, whereas for inhibitory horizontal connections
��c=−���0� M. It turns out that only the inhibitory case
yields a pattern forming instability, that is, km=0, kM�0. If
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 +�kM�� −�kM� then the first eigenmodes to become ex-
cited are the even eigenmodes with wave number kM. The
infinite degeneracy arising from rotation invariance means
that all modes lying on the circle �k�=kM become marginally
stable at the critical point �79�. Similarly, if  +�kM�
� −�kM� then the first eigenmodes to become excited are
the odd eigenmodes. Equation �4.12� implies that if the de-
gree of anisotropy �=� /4, then J−�k�=0 and there is an
even/odd mode degeneracy, that is,  +�k�= −�k� for all k.
This suggests that there is a switch from excitation of even
modes to odd eigenmodes as � crosses � /4. This is illus-
trated in Fig. 2 where we plot  ��k� as a function of k for
inhibitory horizontal connections ��0�0�.

B. Finite propagation speeds

For finite propagation speeds v0, the eigenvalues ���k�
are typically complex valued and Eq. �4.16� has to be solved
numerically. It is now possible for a Hopf bifurcation to oc-
cur instead of a stationary bifurcation. A necessary condition

for the occurrence of a Hopf bifurcation is that ���k�= i��
solves Eq. �4.16� for some k in either the even or odd case:

i�� = �� + �0��
0

	

rG�r��J0�kr�� P2J4�kr��e−i��r/v0dr� .

�4.24�

Using Euler’s formula and separating real and imaginary
parts of Eq. �4.24� gives a system of two equations each for
��:

�� = − �0�
0

	

rG�r��J0�kr�� P2J4�kr��cos���r/v0�dr

 C��k,��� , �4.25�

0 = − �0�
0

	

rG�r��J0�kr�� P2J4�kr��sin���r/v0�dr − ��,

S��k,��� . �4.26�

In order to determine ��, we generate contour plots of the
functions C��k ,�� and S��k ,�� in the �k ,�� plane. We then
find the minimum value ��� of �� for which the contour or
isocline C��k ,��=�� intersects the curve S��k ,��=0. First
suppose that ��−���+ and set ��c=��−. The critical
point �kc ,�c� satisfying the marginal stability condition
C−�kc ,�c�=��c then determines the critical frequency �c
and the critical wave number kc for excitation of the odd
eigenmodes following destabilization of the uniform state.
Similarly, if ��c=��+���− then C+�kc ,�c�=�c is the
marginal stability condition for excitation of the even eigen-
modes.

The above construction is illustrated in Figs. 3–5 for in-
hibitory horizontal connections ��0�0� and both fast and
slow axonal delays. For sufficiently large axonal speeds v0
and strong �weak� anisotropy, the critical contour C−�k ,��

kc
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FIG. 2. �a� Plot of functions  +�k� �solid line� and  −�k�
�dashed line� for �=� /6 �strong anisotropy�. The critical wave
number for spontaneous pattern formation is kc. The marginally
stable eigenmodes are odd functions of �. Parameter values are d1

=0.2, �0=−0.9, W0
�=W1

�=1. �b� Corresponding plots for �=� /3
�weak anisotropy�. The marginally stable eigenmodes are now even
functions of �.
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FIG. 3. Turing instability in the case of fast axonal propagation and strong anisotropy. Contour plots of �a� C−�k ,�� and �b� S−�k ,�� in
the �k ,�� plane are generated from Eqs. �4.25� and �4.26�. The critical contour C−�k ,��=��c with ��c�−0.07 is highlighted in �a� and
consists of the union of a continuous �thick white� curve and an isolated point on the k axis, where C−�kc ,0�=��c. This contour is also
shown in �b� along with the two branches of the contour S−�k ,��=0 �thick black curves�. The point of intersection �k ,��= �kc ,0� gives the
selected wave number of the Turing instability. Here �0=−0.9, d1=0.2, �=� /6, v0=0.5. �In all figures the units of time and space are fixed
by setting the synaptic time constant �m=1 and the range of horizontal connections �=1, respectively.�
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=��c �C+�k ,��=��c� intersects the trivial branch of the
contour S−�k ,��=0 �S+�k ,��=0� at the isolated point �kc ,0�.
This establishes that destabilization of the uniform state z
=0 still occurs via a Turing bifurcation, resulting in the
growth of odd �even� eigenmodes, see Figs. 3 and 4. On the
other hand, for sufficiently small v0, the critical contour
C��k ,��=��� intersects the nontrivial branch of the curve
S��k ,��=0 at k=0 with �+=�−=�c and ��+=��−=��c
�0, see Fig. 5. Hence, the bifurcation point is independent
of the degree of anisotropy and corresponds to a bulk Hopf
instability rather than a stationary Turing instability. In Fig.
6�a� we plot the stability boundaries in �� vs v0 parameter
space for bulk oscillations, stationary patterns, and the uni-
form state in the case of strong anisotropy. �Similar results
are obtained in the case of weak anisotropy.� All of these
curves can be determined numerically from the implicit dis-
persion relation �4.16�. In Fig. 6�b� we plot the dependence
of the Hopf frequency � on the axonal propagation speed v0.

In our analysis we have nondimensionalized time and
space by setting �m=�=1, introduced a slow time scale �
=�t and rescaled the conduction velocity according to v
=�v0. Figure 6�a� implies that there is a switch between bulk
oscillations and stationary patterns when v0�0.4. In terms of
physiological quantities, this corresponds to a conduction ve-
locity v=�v0� /�m=0.4� ms−1 �assuming that �m=5 ms and
�=5 mm�. Since �1, we see that the crossover point is
smaller than the typical conduction velocity of horizontal
connections, which lies in the range 0.2–0.4 ms−1 �67�. This
suggests that under normal physiological conditions, axonal
delays are not sufficient to disrupt the spatial patterns found
in our previous work �10–12�. However, our analysis pre-
dicts that bulk oscillations might arise if the horizontal con-
nections are diseased so that their conduction velocities are
significantly reduced. Figure 6�b� suggests that the resulting
oscillations will be slow since the frequency is ��c with
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�c�0.4. In physiological units this corresponds to a fre-
quency f =�0.4 / �2��m��13� Hz.

C. Linear stability of roll patterns

One of the interesting features of the standard GL equa-
tion is that one can find exact spatially periodic solutions and
use this to identify additional instabilities �1,2�. This is more
difficult in the case of the nonlocal GL Eq. �3.22� due to the
presence of the linear term z̄ in the convolution. However, in
the special case of isotropic weights �for which J−�r�0�,
the z̄ term disappears so that the eigenmode z�r�Aeik·r be-
comes an exact solution of the isotropic GL Eq. �3.21� for
appropriate choices of the complex amplitude A. That is, by
direct substitution

0 = �� − �A�2 + �0G0�k� , �4.27�

where we have rescaled z so that �=1, absorbed a factor �c
into �0 and set W1

�=1, Gn�k ,0�=Gn�k�. Thus, the amplitude
A is related to the wave number k according to �A�=A�k� with

A�k� = ��� − ��0�G0�k� , �4.28�

Positivity of A�k� implies that an eigenmode of wave number
k only exists if

G0�k�!
��

��0�
. �4.29�

In order to determine the linear stability of these solutions,
we set z�r ,��=Aeik·r+v�r�e"� with A= �A�k�� and Taylor ex-
pand Eq. �3.21� to first order in v:

"v�r� = ��� − 2�A�2�v�r� − A2v̄�r�

+ �0� G��r − r���v�r��dr�. �4.30�

Under the ansatz

v�r� = eik·r�aeiq·r + be−iq·r� , �4.31�

where a ,b are complex amplitudes, we find

"�aeiq·r + beiq·r� = F�k + q�aeiq·r + F�k − q�be−iq·r

− A2�āe−iq·r + b̄eiq·r� , �4.32�

where

F�k� = �� − 2�A�2 + �0G0�k� = − �� − 2�0G0�k� .

�4.33�

Since eiq·r and e−iq·r are orthogonal basis functions with re-
spect to the L2 inner product, we can generate an eigenvalue

equation for #= �a ,b , ā , b̄�T from Eq. �4.32� and its complex
conjugate, which is given by M�k�#="# and

M�k� =�
F�k + q� 0 0 − A2

0 F�k − q� − A2 0

0 − Ā2 F�k + q� 0

− Ā2 0 0 F�k − q�
� .

�4.34�

The resulting eigenvalues take the form

"��q,k�

= − �� − 2�0G0�k� +
�0

2
�G0�k + q� + G0�k − q���

1

2


��0
2�G0�k + q� − G0�k − q��2 + 4��� + �0G0�k��2.

�4.35�

A periodic solution to the nonlocal Ginzburg-Landau equa-
tion with isotropic weights �3.21� will be stable for a given
wave number k if Re�"+�k ,q��!0 for all q.

In Fig. 7�a� we plot the marginal stability and Eckhaus
stability curves for G�s� given by the Gaussian �2.10�. For a
given ��, all eigenmodes with wave numbers lying within
the interior of the marginal stability curve exist according to
the inequality �4.29�, but only those lying within the interior
of the Eckhaus stability curve are linearly stable. The corre-
sponding dispersion curves "+�q ,k� for ��=−0.3 and vari-
ous wave numbers k are plotted as a function of q in Fig.
7�b�. It can be seen that as k decreases in the direction of the
arrow shown in �a�, the dispersion curve crosses zero such
that a band of q modes are excited, signaling an Eckhaus
instability of the corresponding roll pattern. A numerical
simulation illustrating the dynamics of the Eckhaus instabil-
ity is shown in Fig. 8.

V. DISCUSSION

In this paper we have shown how a two-dimensional con-
tinuum model of V1, in which cells signal both the position
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and orientation of a local visual stimulus, can be reduced to
a nonlocal GL equation that describes spatial correlations in
the complex amplitude of orientation tuning curves across
cortex. For sufficiently fast horizontal connections, the non-
local GL equation exhibits a Turing-like instability leading to
the formation of stationary, spatially periodic patterns. In
contrast to previous work �10,77�, the pattern forming insta-
bility is generated by inhibitory long-range connections with
a gap at the origin rather than by local connections described
by a Mexican hat function. For sufficiently slow horizontal
connections, however, the dominant instability involves a
Hopf bifurcation leading to the formation of bulk oscillations
rather than stationary patterns. Our analysis suggests that un-
der normal physiological conditions, axonal propagation de-
lays are not sufficient to disrupt the formation of spatial pat-
terns. However, bulk oscillations could arise if the
conduction velocities of the horizontal connections were sig-
nificantly reduced due to some pathology.

Note that axonal delays are not the only mechanism for
generating oscillations in large-scale continuum models of
cortex. For example, symmetric bifurcation theory has been
used to show that in the isotropic case ��=� /2� without
delays the full system �2.6� belongs to a class of models that

generically exhibit rotating wave solutions �80�. These solu-
tions arise from a codimension-1 steady-state bifurcation and
persist under conditions of weak anisotropy. It is particularly
unusual for a codimension-1 steady-state bifurcation to gen-
erate time-periodic states, and is a consequence of the addi-
tional continuous O�2� symmetry that is present in the iso-
tropic case. Oscillations in the absence of delays can also
occur via a Hopf bifurcation in a two-population model for
which excitatory and inhibitory neurons form distinct pools
�81�. In the case of a two-population version of Eqs. �2.6�
and �2.7�, the oscillations are generated by the local circuitry
and lead to local standing or traveling waves with respect to
the � coordinate. These are then modulated by the long-range
horizontal connections �14�.

One interesting extension of our work would be to use
weakly nonlinear analysis and perturbation theory to analyze
the selection and stability of patterns generated by the non-
local GL equation. For example, beyond the bifurcation point
for Turing pattern formation, all eigenmodes having wave
vectors lying in a continuous band around the critical circle
�k�=kc are excited. In classical theories of pattern formation
in reaction-diffusion systems, this band of eigenmodes can
be taken into account by carrying out a multiple-scale expan-
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sion in space as well as time �1–4�. The resulting amplitude
equation incorporates the diffusive effects of long-
wavelength phase modulations of the primary pattern, in-
cluding secondary instabilities away from the bifurcation
point and the formation of pattern defects. In previous work,
we have carried out such an analysis for a simpler one-
dimensional neural model �50�.

Another important extension of our work would be to
include the effects of noise. This is particularly relevant due
to the fact that our derivation of the nonlocal GL equation is
based on the assumption that the local network is in a bal-
anced state such that it operates close to a point of instability.
A balanced state can be particularly sensitive to noise-
induced fluctuations. There are two basic approaches to in-
troducing noise into our model. One is to phenomenologi-
cally add a space-dependent additive noise term to the right-
hand side of Eq. �2.6�, and then to carry out a stochastic
center manifold reduction along the lines of Hutt et al. �82�.
The other is to start off with a more spatially fine-grained
network model involving conductance-based integrate-and-
fire point neurons, and then to derive a kinetic theory that
captures the statistical dynamics of neuronal populations
within coarse-grained patches �64,83�. We hope to explore
both approaches in future work.

Finally, in addition to giving a universal description of
spontaneous cortical dynamics sufficiently close to the point
of instability, the nonlocal GL Eqs. �3.17� and �3.22� provide
a framework for studying how long-range connections
modulate the effects of external stimuli, under the additional
assumption that the external stimuli are sufficiently weak.
More specifically, suppose a compact cortical domain U�R2

is driven by an external visual stimulus and that only driven
cells are sitting close to bifurcation, whereas nondriven cells
are quiescent. �In fact, nondriven cells could still be sponta-
neously active and thus provide a source of external noise.�
We can then incorporate the effect of such a drive by adding
an external input to the right-hand side of Eq. �2.6� of the
form h�r ,��=A�r�e2i��−��r��+c.c., and restricting spatial inte-
gration from R2 to U. Here the real amplitude A�r� repre-
sents the contrast of a local stimulus and ��r� is its orienta-
tion. Note that the filtered input to a cortical cell of
orientation preference � �see Eq. �2.5�� is taken to depend on
the difference in orientations �−��r�. Assuming that the am-
plitude of the stimulus scales as A=�3/2A0 with A0=O�1�, we
can carry out the perturbation analysis of Sec. IIIA to derive
a modified GL equation of the form �for zero axonal delays�

�z�r,��
��

= z�r,������r� − ��z�r,���2�

+ �0�c�
U

�J+�r − r��z�r�,��

+ J−�r − r��z̄�r�,���dr� + A0�r�e−2i��r�,

where variations in the contrast of the stimulus could also
lead to a space-dependent bifurcation parameter ���r�. The
above equation is a continuum version of an amplitude equa-
tion previously derived for a spatially discrete model of
coupled V1 hypercolumns �13�. The continuum model is par-
ticularly useful for studying the role of long-range connec-
tions in the processing of smooth contours �84�.
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