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Homogenization may be defined as an analysis in which we
construct equations describing coarse-scale behavior of the solu-
tion while ignoring fine-scale detail. This work concerns a mul-
tiresolution strategy for homogenization of differential equations.
As the first step towards a more general treatment of nonlinear
ODEs and PDEs, we consider the homogenization via multires-
olution analysis (MRA) of systems of linear ODEs with variable
coefficients and forcing terms. We develop an efficient numeri-
cal approach which generates the coefficients of the homogenized
equation. As one of the examples we treat wave propagation in a
stratified medium. © 1995 Academic Press. Inc.

1. INTRODUCTION

The term homogenization refers to a collection of meth-
ods for the description of the relations between the equa-
tions of "microstructure” and those of "macrostructure.” It
is a diverse field since there is usually more than one way
to formulate the problem. We refer to [3, 8] and references
therein for examples of various formulations and solutions
of problems of homogenization.

Ordinarily, one considers at most two "scales” of varia-
tion of the coefficients of the equations governing the mi-
croscopic behavior; the goal is to extract the quantities de-
scribing the behavior at a coarse scale (maybe as a limit).
Thus, the behaviour at possible intermediate scales has been
ignored basically due to the lack of tools for its description.

Recently the notion of Multiresolution Analysis (MRA)
was introduced by Meyer [9] and Mallat [6] as a general
framework for construction of the wavelet bases. Using
MRA, the notion of the non-standard representation of op-
erators was introduced in [1]. For a wide class of operators
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(e.g. Calderén-Zygmund or pseudo-differential operators),
the non-standard form is sparse and permits fast algorithms
for evaluation of these operators on functions. The non-
standard form also permits an explicit description of the
interaction between the scales and, thus, appear to be an
appropriate tool for the problems of homogenization.

This paper is the first of a series where we use MRA
to develop a multiresolution strategy for the numerical so-
lution and homogenization of equations. We consider lin-
ear systems of integral equations in one variable, includ-
ing those equivalent to ODEs and semi-discrete versions of
PDEs. In other papers of this series, we plan to consider
nonlinear integral equations and equations in more than one
variable.

The linear homogenization procedure is exact in that it
yields a linear system of equations whose solutions are pro-
jections on the coarse scale of the solutions of the origi-
nal system of ODEs. Moreover, the intermediate systems
may be used to describe the behavior of solutions on cor-
responding scales thus providing a complete description of
the transition from fine to coarse-scale representation.

Although our approach may be used with any MRA, we
consider separately the case of the Haar basis. To illustrate
our approach, let us consider a linear algebraic system

Kx=b» (1.1)

where matrix K is of the size 2" x 2". The discrete Haar

transform of the vector x is an orthogonal change of basis
given by

1 1
Sk = ﬁ(xzk—l +xu), di = ﬁ(xzkv] - X2,

(1.2)
where k = 1,...,2""!. Elements of s are scaled averages
of neighboring entries, while elements of d are differences.
The discrete Haar transform may be written as
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00 1 1 00
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M=l <10 0 - - (13
0 0 1 -1 00

where matrix M, is of size 2" X 2" and
MM, =MM! =1 (1.4)

Let us denote the top half of M, by L, and the bottom half
by H,. In this notation, we have by orthogonality

MIM, =HIH,+LiL, =1 (1.5)
and
H.H! =1, L,LI =1 (1.6)
We also note that
Lx=s and H,x=d. (1.7

Action of L, may be thought of as a low-pass filter and that
of H, as a high-pass filter since they tend to separate the
low and high frequency components.

Let us split (1.1) into a pair of equations in the unknowns
s and d as follows. Applying L to both sides of (1.1} gives

LKx = (LKL")Lx + (LKHT)Hx = Lb, (1.8)

where we drop subscripts on L, and H,. Similarly, we get

HKx = (HKLT)Lx + (HKHT)Hx = Hb. (1.9)

Denoting
ILKLT =T, LKH' =C (1.10)
HKLT =B, HKHT = A, (1.1
Lb=b,, Hb=b,, (1.12)
we have from (1.8), (1.9)
Ts+Cd = b, (1.13)
and
Bs + Ad = by. (1.14)

Let us assume that A is invertible. In this case we may
eliminate the unknown d from Eqgs. (1.13) and (1.14) to get
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a reduced system of equations for the unknown s. We have
from (1.14)

d=~-A""Bs+ A b, (1.15)
and, substituting (1.15) into (1.13), obtain
(T —CA 'B)s = b, - CA™'b,. (1.16)

This equation determines s exactly but the number of un-
knowns has been reduced by half. We will call this the
reduction step.

Introducing indices by letting Ky = K, by = b and
bi = Lby — CoAj ' Hbo,

K| =Ty — CoAp' By, (1.17)

we arrive at equation
K|S| =b| (118)

of form similar to (1.1) in the unknown s; = Lx. The pro-
cess can be repeated up to n times according to the recursion

Kjs1 =T, - C;A;'B,

) (1.19)
bjv1 = Lo_jb; — C;Aj'H,_ jb;,
where
Tj=L, ;KL\ ;, Cj=L, ;K;H]_, (1.20)
Bj=H, K,L' ;, Aj=H, ;KH]_; (1.21)

If (1.19) is applied a total of n times, then the resulting
equation has only a scalar unknown, and the equation is
easily solved. The solution of the original equation may
then be obtained by a sequence of steps, each step consisting
of explicit evaluation of (1.15) followed by reconstruction
according to

1

1
\/i(sk +dy), xy = "ﬁ(sk —dy). (1.22)

X2k =

Our approach is superficially similar to the elimination
of unknowns employed to reduce the size of the system
in methods like block Gaussian elimination and cyclic re-
duction [5]. The difference, however, is that our procedure
requires a change of basis that is performed before each re-
duction step. Thus, the unknowns in the reduced system are
not simply a subset of those in the original system. More-
over, we will show in this paper that the vanishing-moments
property of the Haar transform allows us to maintain the
compressibility of operators at all steps of the procedure.
Indeed, it is this property that is necessary for the fast
implementation of this procedure, following the methods
of [1].
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Given the fact that there are many different points of
view on homogenization, let us give a simple example to
illustrate a numerical approach to homogenization. Let us
consider two different equations

Kix' = b}, (1.23)

(1.24)

2.2 2
Kijx~ = by,

such that after one reduction step we obtain K LK 2 b}, b1,
where

Kl =K} and bl =b (1.25)
Then solutions s' and s? are identical, i.e.,
L.x' = L,x%. (1.26)

Therefore the solutions of (1.23), (1.24) are identical on the
coarse scale, and differ only on the fine scale. This leads
us to the basic notion of homogenization. Supposing that
one of the systems, say K (2, has a more desirable structure
than the other, we can then replace (1.23) with (1.24) and be
guaranteed that the coarse-scale component of the solution
will not change. We then say that (1.24) is the result of
homogenization of (1.23).

The outline of this paper is as follows. In Section II we
describe a solution strategy for linear equations in a general
multiresolution setting, and we state and prove a proposi-
tion on sufficient conditions for convergence of this strategy.
In Section 111, we apply the multiresolution strategy devel-
oped in Section Il to linear integral equations in one variable
using the MRA associated with the Haar basis. Inherent in
the multiresolution strategy is a homogenization procedure.
In Section IV we consider a homogenization problem as-
sociated with linear integral equations in one variable and
provide a scheme for its numerical implementation.

In Section V we present numerical examples. The first
example is a constant-coefficient scalar wave equation mod-
elling a right-travelling wave. Applying our multiresolu-
tion method, we verify the accuracy of the scheme and the
elimination of numerical dispersive effects. The second ex-
ample is a variable-coefficient scalar wave equation which
we analyze to show the development of the homogeniza-
tion procedure through the intermediate scales. Finally we
calculate dispersion relations for wave propagation in one-
dimensional inhomogeneous media and compare them to
the asymptotic result of effective medium theory.

2. MULTIRESOLUTION STRATEGY

In this section we describe the multiresolution strategy in
a general setting and defer a specific example where we use
the Haar basis to the next section. We would like to work
with systems of ordinary differential equations and for this
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reason we need matrix-valued functions in our considera-

tions. Thus, to formulate our results, we consider functions
with values in a Hilbert space.

Let us consider a Hilbert space # and the equation

Bx + g + A = K(Ax + p), 2.1)

where A,B, and K are operators on functions in L;(0, 1)

with values in #,\ is a parameter in #, and square-

integrable functions g, p, x are defined on [0, 1] with values
in #. A representative example is the integral equation

(I + B(t)x(t) + q(t) + \ = ,/0 (A(s)x(s) + p(s)) ds,

r€(0,1), (22)
where A, B are bounded matrix-valued functions, g, p are
vector-valued functions with elements in L,(0, 1) and \ is
a real or complex vector parameter. To put (2.2) into the
form (2.1), let A and B be the operators whose action is
pointwise (matrix) multiplication by A and B, and let K be
the integral operator whose kernel is

1
K(s,t) = {

0 otherwise.

ifo<s<u,
(2.3)

While the detailed nature of the operators will be impor-
tant in implementations, the multiresolution strategy can
be developed in a completely general context. We use
a MRA of L;(0, 1), i.e., the decomposition of the Hilbert
space L;(0, 1) into a chain of closed subspaces

VoCV_ ,C---CV,C---, 2.4)
such that
U V.. = L0, 1). (2.5)
n<0

By defining W, as an orthogonal complement of V,,in V,_y,

Vo1 =V, oW, (2.6)
the space L,(0, 1) is represented as a direct sum
L0, 1) =V, P W, (2.7)

n<0

Let P, and Q,, be the orthogonal projection operators onto
the spaces V, and W,,, respectively. We now discretize the
integral equation (2.1) by applying the projection operator
P, with n < 0 to all operators in the equation and look for
a solution x in V,. We find
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B.x" + g, + X = K (A x™ + p,), (2.8)
where
K. = P.KP,, (2.9
and
A, =P,AP,, B,=P,BP,p,=P,p.q, =P,q (2.10)

Let us find a recursion to generate finite sequences Ag-"),

) 0 such that x&") =Px"

Bj ,q, ,pj forj=n,.. ., satisfies

(n) _(n)

BV 4+ g%+ n = KAV + p). (.11

Let us use the nonstandard form [1] to represent the op-
erators. We introduce the following notation:

PGP, =T¢, (2.12)
w._P G(n) N %(n)
1Q; =%q.) (2.13)
:QjGﬁ'"—’nPj = B, (2.14)
QJG(" 1Q; = g)j’ (2.15)

where G is either A or B and ¢; is a scaling factor that we
will choose appropriately for a given MRA. In general, ¢;
will represent a typical order of magnitude of Q;x". Also
let

PKP; = Tk (2.16)
1

~PKQ, = x (2.17)
€j

1

~QKP; = Bx s (2.18)
J

1

ngKQ, = K ;. (2.19)
J

ProrosiTION II.1  The recursion relations for A(j"),

B("),qy'),p, in terms of A(J")I,B(l")l,qj 1 pﬁ")l are
A(jn) _ *0/-51) (n) (n) (%(n) _ ‘%Kj 0-(!!) 15271( j.%.(n))
Bﬁ.n) g—(n) Z(gK 1-@(") ((g(n) —%x j&[(n) )F(n)
X (B — B ; T, — b ;BYY),  (2.20)
and
q" = & — gy D — ey - %K,Jzz LE
X(D — By ;S ,,, ek ;D ("))
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p( Sn) %(n) n) !
I 2V}
X (DY — By ;8% — S ; DI, (221)
(n) (n) (n)
S""‘ijj -1y S Jpj 1
( ) (n) (n) (L )
. _QJ }n I D:J QJ -
where we assume that the operator
ﬂ(") ER (g(") (n)
B CA; — dKJJZf (2.22)

is invertible.

Some important special cases where Fg-") is not invertible
will be discussed in the examples. Proof of Proposition II.1
may be found in Appendix A, and we will refer to some
notation introduced in this Appendix.

Recursion relations (2.20) and (2.21) allow us to make a
transition from equation

(n) _(n) (n) (n) _(n) (n)
Bilixioi +qi + =K (AL x)") + pity)

(2.23)
in the subspace V;_| to equation (2.11) in V;. Because we
have reduced the problem (2.23) to solving (2.11) in V;, a
subspace of V;_|, we call this a reduction step.

The initialization steps for the recursion relations (2.20),
(2.21) are

AP = A, BM =8,

(n) (n)

pn = Pn, gn (2.24)

= qn.
The relations (2.20), (2.21) may then be applied sequentially
n times to yield

B(On) (n) n qz)n) +A= K()(Ag') (m + Pgl)) (2.25)
an equation in Vg that reproduces the coarse-scale behavior
of the solution x) of the discretized system (2.8) for all
values of the parameter \.

Let us now formulate a multiresolution strategy for ob-
taining the solution x. The following are the steps of the
procedure:

1. Construct the sequences of operators {A(j")}, {B(j")},

and forcing terms {q i A p(")} for n = j < 0 using (2.20)

and (2.21) (see Figs. 1 and 2);
2. Solve Eq. (2.25) for x(()") in the subspace V) (see Fig. 3);
3. Obtain the projections of the solutions onto the sub-
spaces W;, j = 0,...,n — | by applying (6.16), i.e.,

Q x(n) = —¢; C(n) (n) —r 5!1)

(2.26)
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v A(,':) B(r"i)

¢\>

Yot A‘,?), BS?-)I C$:)1 Wn-q
vo |AD e | w,

FIG. 1. Schematic diagram of a sequence of reduction steps.

followed by the reconstruction algorithm

xﬂ-@l = x;") +Qx™" (227
for each j (see Fig. 4).

The first step sweeps through the resolution levels from
finest to coarsest, and involves calculations with the opera-
tors and forcing terms of the equations. The second step is
the solution of a linear system in the coarsest level, Vy. The
third step sweeps through the resolution levels from coars-
est to finest, determining components of the solution explic-
itly. Note that the relations (6.17), (2.20) are independent
of the forcing terms g, p (see Fig. 1); i.e., it is not neces-
sary to recalculate the sequences (6.17), (2.20) if we change
the forcing terms. The relations (6.18), (2.21), which do
not involve the forcing terms (see Fig. 2), represent a lin-
ear transformation that, when used with the reconstruction
steps (2.26), (2.27), effectively produces a multiresolution
Green’s function.

A\ P(r?) qg‘)

o

Vot | By dy o
AL B > ¢\)

Wne1

—

V4 P(.'1|) q‘.';) | W.q
¢

Vo P(S) ﬂg')

0" | W,

FIG. 2. Schematic diagram of a sequence of reduction steps for forc-
ing terms.
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G

Vo [“3‘ 5%') 553) 'Ig‘)

FIG. 3. Schematic diagram of the solution step on the coarsest scale.

Remark. We recall that the parameter A may be viewed as
representing the initial conditions of the differential equa-
tion which corresponds to the integral equation (2.2). The
results of the first step are independent of the value of the
parameter A. The second and third steps may be carried
out for a particular value of parameter \ or, introducing a
fundamental solution of the Cauchy problem, in general.

Linear Functionals of the Solution. We may also accumu-
late other relevant information about the solution during the
multiresolution procedure. For example, we may wish to
know the value of the solution at the endpoint, or a specific
moment of the solution. Since these are linear function-
als of the solution, let us outline a multiresolution strategy
for evaluating a linear or affine functional of the solution
to (2.1).

Let an affine functional L be defined by

Lx = {a,x) + 8. (2.28)
Discretization of (2.28) gives
L"x" = (Pya,x0") + B. (2.29)

We will repeatedly replace P;_x'™ with the sum of the pro-

jections at the next coarser level of resolution, P;x™, Q;x.
Furthermore, (2.26) gives us a formula for Q jx(") in terms
of Pjx™. Thus we find

Lx) = (o' ¥y 4 g (2.30)

na| €Y r

/ .
wy [ o 0
)
Xy v,
— /
wo [’ " ?

Vo

FIG. 4. Schematic diagram of a sequence of reconstruction steps.
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where
al =P, B =4 (2.31)
o = Pl — €,C"Qal”, (2.32)
and
B = B — Qe M, (2.33)

for n =< j < 0. At the coarsest level we have an explicit
formula that provides the value of the functional L in terms

of xf)") . We may also solve (2.25) to get an explicit formula
for the value of the functional in terms of A

LX) = KoAg") !

< (n) (B(n)
g =N+ 85, (2.34)

A Limit of the Multiresolution Strategy. Now consider
the problem (2.11) in the limit as n — —oo. We wish to
identify sufficient conditions such that in the limit n — —o0
the solutions {x;")} of the equations (2.11) converge to the
projections x; = P;x of the solution of the original system.

Let us assume that for fixed j there is a subsequence {n;}
such that the limits

AT = fim A, pT = fim p*),
k——oc k——o (2 35)
By ™ = lim_ B™, ¢ = 1im ¢/
—0C

exist. In our examples we will verify this hypothesis sep-
arately. An important example where this condition is not
met will be presented in Section V.

We now prove the following:

PropoSITION I1.2 Let # be a Hilbert space and LY
denote the space of square-integrable functions with val-
ues in #. Suppose that A,B,K are bounded operators
mapping LZ( - Lg( and B — KA has a bounded inverse.
Then Eq. (2.1) has a unique solution x € LY for each
q.p € LY. Also, there is some ny < O such that for all
integers n < ng,B, — K,A, has a bounded inverse and,
therefore, (2.8) has a unique solution x™ € V,. Further-
more, the sequence x™ converges 1o x.

ProPOSITION I1.3  Let us assume that in addition to the
conditions in Proposition 11.2 the recurrence relations (2.20)
and (2.21) give rise to sequences {A(")} {B(")} {q(")} { p(")}
that are well-defined for n < ng < 0 and n < j < 0. Also,
let us assume that the limits (2.35) exist.

Then each x;_oo) = Pjx satisfies

B, x;+45 ) = KA+ p), (2.36)
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and B(j_oc) -K jA(j_OO) has a bounded inverse,

1B — KA 'l < |(B- KA. (2.37)
Proof of Propositions I11.2 and 11.3 may be found in Ap-
pendix B.
We will verify the hypotheses of Propositions 1 and 2 in

some particular cases in the following sections.

3. THE HAAR BASIS

We now consider an example where the recurrence rela-
tions (2.20) can be developed explicitly. The problem to be
solved is the system of integral equations (2.2), which we
restate here

(I + B()x(r) + gt) + \ = /0 (A(s)x(s) + p(s)) ds,

te(, 1, G
where A, B are bounded matrix-valued functions, g, p are
vector-valued functions with elements in L,(0, 1) and A is
a real or complex vector parameter. Such problems arise
from the consideration of linear systems of ODEs or from
the discretization of PDEs by the method of lines.

Representing the unknown vector x(t) of size N, in the
Haar basis, we obtain

x(t) = s00¢00 + Z Z djxjns (3.2
where
Sul) = = [ L~k (3.3)
j,k - \/s;(b 6] .-
and
Yixt) = \/6 (“—k) (3.4)

are dilations and translations of the characteristic function

1 ifrefol)
boolr) = (1) = _ (3.5)
0 otherwise
and the Haar function
1 ifrefo})
ool =) =4 1 ifre [% 1), (3.6)

0 otherwise

respectively and 6, = 2/,N; = 27/,
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Since the Haar basis is orthonormal, the coefficients are
obtained by forming the appropriate inner products, namely,
averages

~ | ks
Sk =/ ¢ x(t)x(t)dt = —ﬁ/ké x(dt, (3.7
- J J

and differences

djk =/ Wi(t)x(t) dt

1 (k+1/2)8, k+ 100,
= — tdt—/ x(t)dr ). (3.8)
NT (/ké, *0 (k+1/2)8,; 2 )

Truncations of the series over scales in (3.2) give projec-
tions of x into the subspaces of the multiresolution analysis.
Thus, for n < 0,

0o Nl
P.x(1) = so0dbo0 + Z Z digWjx € Vu, (3.9)
j=n+1 k=0
and
Na—1
Qux(t) = D dusthni € Wi (3.10)
k=0
Note that
No—1
Pox(t) = D Sukbns (3.11)
k=0

is an alternate representation of the projection of x into V,,,
as is

Np—1 m N;-1
Pox(t) = D Smabma + 2 D djsthj (3.12)
k=0 j=n+1 k=0

where m = n + 1.

To solve the integral equation (2.2), we first find the ma-
trix representations for the discretization in (2.8). The ma-
trix representation for the integral operator K acting from
V, into itself is

1
1 o 0
K.=s |1 "~ - (3.13)
T
R A |

where [ is the identity matrix of size N,. We denote by
M(A) the operator whose action is pointwise (matrix) mul-
tiplication by A. Thus
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An = M(An) = diag{Anﬂ; An,lv S An,N,.fl} (3 14)
where the matrix-valued function A, is given by
Np=1
An =Y VonAnkbns- (3.15)
k=0

The matrix representation B, is obtained similarly to that
of A,. Thus, we rewrite (2.8) in the Haar basis,

1
U+ Bup)xng + gnx + N = E‘Sn(An,kxn.k + Pni)

k=1

+8, Y _(AniXnk + puk). (3.16)
k=0

In order to analyse the convergence and accuracy of our
method, let us consider a finite difference version of the
discretization (3.16). By subtracting successive evaluations
of (3.16) for k and k + 1, we find

(1 + Bn,k+l)xn,k+l - (1 + Bn.k)xn.k + Gnk+1 — Gnk

1
= —bnlAnke1Xnks1 + AngXnk + Prkst + pui). (3.17)

2
Thus, the Haar discretization is similar to the trapezoidal
rule applied to the corresponding ordinary differential equa-
tion

(+Bx+q) =Ax+p (3.18)
with initial condition
(I + B(0))x(0) + ¢(0) + x = 0. (3.19)

Unlike the traditional implementation of the trapezoidal
rule, the grid points associated with the above finite-differ-
ence interpretation are %6,,, %6,,, ... and instead of evaluat-
ing matrices A, B, ... at these points, A, B, ... are computed
from the projections P,A,P,B,.... Also, the initial step

1
7+ Bn,O)xn,O + gno t+ A= ién(An.Oxn,O + pn,O) (3.20)

corresponds to a backward Euler step with half the step-
size.

Let us assume that A and (/ + B)~' are bounded on {0, 1].
We will show that the hypotheses of Propositions II.1 and
I1.2 are satisfied. Hence the scheme is convergent; that is,

lim x = x 3.21)

n——x

in L0, 1). If the coefficients are smooth, then it may be
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shown that the scheme is of second-order accuracy (e.g.,
because of its similarity to the trapezoidal rule).

Applying the multiresolution strategy of Section II re-
quires evaluation of the expressions in (2.20). In the Haar
basis these expressions may be evaluated explicitly. Let us
define

(n) 1
Sajk = Z(A( )1 %+ A, 12k+1) (3.22)
and
() n n
Dyjx = (A(j PR A(j—)l,zkﬂ), (3.23)
and similarly Sgl,)j,k and Dﬁ;‘,},,‘. Further, let us define
(n) 1 n (n
Sqjk = _\/—E(q(j—)l,Zk + qj—)1,2k+l), (3.24)
and
(n) 2\/_ n (n)
Dgjx = (qﬂ )I,Zk = qj-12k+1h (3.25)

and similarly S(") and D(")

Next we evaluate (2. 12)—(2 19) in the Haar basis. We
note that the operators of the systems (2.11) are

A = M(a), (3.26)

BY = M@8™), (327)

where M(-) is defined in (3.14) and denotes a block-diagonal

matrix. The blocks of this matrix, A(") and B(") are gener-
ated via a recursion which we derive below The following
table may be verified using the matrix representations, of
K, A and B. We find

Tk =K, 9‘((’;’,)1 = diag {880, 5511+ .
SCw,-1h

Cxj=1, %(G")] = dlag{D(C',')jo, (G")Jl
D&, 1}

Bx; = -1, and .%’(") = dlag{D((';")j_o,Dg‘)j',,...,
D1},

k=0, d(&)j dlag{S((';')j o,S(Gn), Ireens

G, (3.28)

where G is either A or B. Substitution of (3.28) into (2.20)
yields the matrix recurrence relations
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52
~LDAF~1(Dg + S4),

A=Sa— 14
2 62
B=Ss— 1_6D" - -i(DB — SAOF Y (Dg + Sa), (3.29)
and
62
F=1+Sg+ LDy, (3.30)

16

where all elements in the above expression have the same
indices: j, k and (n). The matrix F is assumed to be invert-
ible. Also, we have

2

65
p=5p,— 16DAF YD, +S,),
2 2

& &5
q=38,- 161) J6(DB—SA)F"(D‘,+S,,). (3.31)

Thus, we have relations to compute A("},Bgn,z, pﬂ and q(")

recursively. We now may form equations for projections of

x™ (the solution at the scale of the original discretization)

on all multiresolution levels j < 0,

(n) (n)

I+ B+ g+ X = tr)
jk 4,

6 AT + P

+ 6, Z(A(j',l X+ P, (3.32)
k'=0

These equations have the same structure as those of the
original discretization (3.16) at level n. In particular, the

operators A" and BY” are block diagonal with blocks of
sizes N, (we recall that N, is simply the number of equa-
tions in the original system of integral equations).

A multiresolution strategy in the Haar representation for
obtaining the solution x™ is a special case of the multires-
olution strategy discussed in Section II and is as follows:

1. Construct the sequences {A(")} {B(")} {Pj"z} {q(")} for
n < j =< 0 using (3.29)}—(3.31) (see Flgs 1 and 2);

2. Solve for xg') in the subspace Vj to satisfy the coarse-
scale equation (2.25) (see Fig. 3); The elements of V, are
determined by just one (vector) coefficient. For each n, we
obtain

n 1 n
(I +BME™ + g8+ = E(Af, T4 p), (3.33)

where ¥ is the average of the approximate solution x*) on
the interval of definition ¢t € [0, 1].

3. Obtain the solution components in the subspaces W,
by applying (2.26)—that is,
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(n)
Wi = —C - (3.34)
where
Cll = F7H(S5x + D), (3.35)
r (1"12 Fiy (Dg,';,k + S(;Z},k), (3.36)
and the reconstruction algorithm
) 1 (m, Sk
Xt = Wz (xj’,lk + {T"fk) s
() 1L fm b o
xjn—l.2k+l = ﬁ (Xj,k 4 }k) 3.37)

(See Fig. 4.)
The first step sweeps through the resolution levels from
finest to coarsest, and involves calculations on the coefh-

cients and forcing terms of the equations. The intermedi-

ate calculations, that is AS”,i,B(j"z, pﬁ"z,qﬂ, j < 0 need not

be saved except as they contribute to the terms in (3.34).
The second step is the solution of a single linear system
of size N,, the number of integral equations in the system
(2.2), to determine the solution component at the coarsest
level. The third step sweeps through the resolution levels
from coarsest to finest, determining solution components
explicitly.

The strategy as described above carries the analysis up
to Vg, the coarsest level possible. We may also stop the
analysis at any specified level, say V;. In this case to obtain
the solution we have Eq. (3.32). We note that the system of
equations (3.32) is a set of N; implicit systems of equations.

Linear Functionals of the Solution. In the Haar case the
computation of linear functionals of the solution (see Sec-
tion I1) may be made explicit. Let us consider the calcu-
lation of the endpoint value x(1). From (3.4), (3.11) and
(3.37) we have

(1) = Jé—x‘:}«,._l
1 () n+1 (n
=73 ] (Xnﬂ,;v,,,,—l - —'aT—IVLlI,N,,H—l)- (3.38)
n+

Using (3.34) we obtain

(n) _(n)

1 n
X(1) = T+ B, (3.39)
n+
where
n 671 n
W =14 2l (3.40)

4 Crst,Noyi—1
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(n bne1 (m
Buiy = Trn+l,N,,Hfl'

(3.41)

Repeating this process for each reduction step, we arrive at

1
(n) D= — (fl) ((l) + (n)
™ ) \/67(01 XiN, -1 ﬁ (3.42)
where
(n) _ (n) _
a&n = 1, ﬁn =Y (343)
and
W _ J 8j ot 344
aj aj- 1+ 4 JN-10 (3.44)
n n 6 n
=g+ = 7 LA (3.45)

Other linear functionals may be treated in a similar manner.

Remark. By subtracting successive steps in time of (3.32)
we get the compact scheme (which is similar to a finite-
difference scheme)

(1+B + laA‘"’) n)

() | ) )
(1 + By — 25 Ajnk+l)xjk+l = 3

(n) (n) n
+ Gk~ Gina + 3 5 (pjk+| + PE'J:H)- (3.46)

This scheme has a step size é; and global accuracy of 0(82)
where &, is the step size of the initial discretization. Since
we can make &, arbitrarily small while keeping 6; fixed, we
can view the resulting scheme as having arbitrary (finite)
order.

We will now analyze the recurrence relations (3.29)-
(3.30). The following lemma will be used to verify that
Propositions 1 and 2 apply to the Haar multiresolution strat-
egy. For simplicity we consider the case of (2.2) where
B = 0. A similar result may be obtained if B is a Lipschitz
function.

LEMMA 1. Consider the recurrence relations (3.29)-
(3.30) where Bf,”,)( = 0 and assume

[FSATRS (3.47)
for all k, where || - || denotes a matrix norm. Then
(n) a
A = -———-—.—————-——— .
1A% < =527 (3.48)
1B < 278, (3.49)
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where O < 3 < 1 satisfies

_ 2802 -pX1-P)

2436 (3.50)

The maximum value of a is =~ 0.2564 and is attained for
B =~ 0.3473.
Proof. Let

g =2 (,6+%), (3.51)

a

= 7_ 0}‘_’ (3.52)

B, = 2P, (3.53)

@ =3, i1 4

(ﬂ+2(1_0)) Bi+27 (3.54)

We proceed by induction. Note that the inequalities (3.48)
and (3.49) are automatically satisfied for j = n by hypothe-
sis. Now suppose that (3.48) and (3.49) are satisfied at level
j—1<0. That is,

IAY 4l < @, (3.55)
1B ill < B (3.56)
We observe from (3.22) that
(n)
“SAjk” < aj-|, (3.57)
127 DSl < i, (3.58)
and, similarly,
"Sg)j,k" < B, (3.59)
sz_ngl,)j,k” = f_1. (3.60)
Using the inequality
W+ M = (3.61)
1 - M|
for ||M]| < 1, we find from (3.30)
NFjuell < ] ! (3.62)
L R R I N .
provided
vi-1 < L (3.63)
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Therefore, we obtain from (3.29)

aj_1Yj-1 -y

AT < @jo1 + = , (3.64)
=y 1=y
2
IBY < vy + e = 2 (3.65)
I—vji1 1=y
Now using the definition of a;_;, we find
Q| a
= . (3.66)
L=y 1= +v;o(1=8;_)

From (3.51) and (3.54) we also have

— ;) =207 (,B+ %)

2 (5(1 —0, )+ 9'2-)

Bj-1 + vl

. 03
<21(6+—2‘)=0j.

Combining (3.64), (3.66) and (3.67), we obtain

1A% < a (3.67)
as required.
We now turn to (3.65). To show that
IS < 8 (3.68)
we will demonstrate that
Yiel o Yl (3.69)
l—yj1 1=y
and
Y- _s (3.70)
|l
From (3.51) we obtain
8 o
0];] =04 = E + Z <1, (3.71)
the last estimate being easily verified for 0 < § < 1. Hence
we have
1 1
< , 3.72
-6, 1-6_, (3.72)
and
yjo1 =27 ( 6 )
27 (g4 75=) =2y BT
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and, therefore, (3.69) follows. Using (3.54) and (3.50) one
may verify (3.70). It follows from

B

Yi-1 S Y1 =

that the condition (3.63) is met.

To demonstrate the convergence of our scheme, we will
show now that Propositions II.1 and I1.2 apply to the Haar
multiresolution strategy for the integral equation (2.2) un-
der mild restrictions on the coefficients. Let us take B =0
for simplicity. All multiplication and integral operators in
(2.2) are bounded. By the standard theory of linear dif-
ferential equations, the initial-value problem has a unique
solution. Thus hypotheses of Proposition II.1 are satisfied.
Then provided

(A7) < a, (3.75)

where « is given in (3.50), Lemma 1 implies that the se-

quences A", Bg"), pﬁ"), qﬁ") are well-defined and bounded.
For a fixed j, there is a convergent subsequence for which

the limits

lim A(") = A( =) lim BE") = B(j_m),

n——ox

(n) o) {n) (—0oc)
hm q]" ~qj s hm p," = p;

(3.76)
exist (double-indices have been dropped for convenience).
Consequently, the hypotheses of Proposition I1.2 are satis-
fied and, thus the conclusions of Proposition I1.2 are appli-
cable to subsequences in (3.76). For example, we have for
i=0

(I +BS "Nz + g5 (3.77)

where ¥ is the average of the exact solution x(r) on the
interval of definition t € [0,1]. An illustration of what
may go wrong if hypothesis (3.75) fails will be given in
Section V.

To summarize: we have

1. developed a multiresolution strategy for solving linear
systems, as outlined in (3.29)(3.37);

2. constructed a compact scheme (3.46) of arbitrary
order.

4. HOMOGENIZATION

The multiresolution strategy described in the previous
section was motivated as a technique to obtain solutions
or a Green’s function for the given equation. Another per-
spective which appears to follow naturally from our mul-
tiresolution analysis is that of homogenization.

The homogenization problem associated with (2.2) is the
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task of finding an integral equation with "slowly-varying"
coeflicients whose solutions have the same coarse-scale be-
havior as those of the original equation. Within the mul-
tiresolution strategy developed for the Haar case, this means
finding an integral equation of the form (2.2) with piece-
wise-constant coefficients which are elements of a coarse
subspace of the MRA. We already have derived in (3.32) a
discrete system of equations which describe the behavior on
coarse subspaces V;. Convergence shown in the previous
section implies that

(1+B(j‘7kﬁc))x‘,’.k+q1k +)\—_é (A]k xjk+p1k ))

+%§]&?%w+ﬁﬁm @.1)
k'=0

where x;; are the coefficients of the projection of the exact
solution on the subspace V;.

Let us now consider a problem of finding an integral
equation of the form (2.2) with coefficients in V,; whose
discretization yields (4.1). Let us consider j = 0 in which
case (4.1) becomes (3.77), namely,

(—0c)

(I +B5 )z + g5 + (A‘ i+ p5 ), 42)

where the constant vector X is the average of the exact so-
lution x(¢) on the interval of definition r € [0, 1].

We wish to determine "homogenized" coefficients A", B
and forcing terms ¢”, p" in the integral equation

(I +Bx(t) +g" + \ = /Ol(A"x(s) + ph(s) ds, (4.3)

such that applying exactly the same procedure to (4.3) as
was applied to (2.2) in order to obtain (4.2) yields the same
result for all A.

The recurrence relations (3.29), (3.31) applied to (4.3)
simplify to

A A
2

&}
Bj’ JI+E

iU+ B8] )AL
h 62 h
4 =41~ l—éA I+ By P

P =Pl (4.4)

Clearly, the matrix coefficient A? and the forcing term p?
remain unchanged so we will delete the subscript from
now on Thus the homogenized coefficient A" is given by

AO ) and the homogenized forcing is p” = po R
remains to determine the homogenized coefficient B” and
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the inhomogeneity ¢ which are not in general the same as
Bz)_oo) and qf)_m). This can be carried out analytically using
the exact solution of (4.3).

First we take the case where p" = pf)'oo) = 0. Then it
follows from (4.4) that ¢" = g4 ™. The solution of (4.3) is

x(t) = - exp(ﬁt)q (4.5)
where
A=(I+B"Y'A" §=(+B"Y)Y"g"+)). (4.6)
The average of the solution of (4.3) is thus
1
i= (—/0 exp(Ar) dt) Gg=-expANA'g. (4.7

(If A is singular, then one needs to use an expansion to
avoid A~!.) But we can also solve (4.2) for x. We find

ey 1 oY N e
x=~(1+33 ’—EAE, ’) (qi,"m). (4.8)

The equivalence of (4.7) and (4.8) must hold for all A. Thus
we have the relation

-1
(1 + B, - %A") = (exp(A) — DA™'( + B")™!, (4.9)

where we have replaced A5 ™ by A". Solving for B" in
terms of By ™ and A"
B" = AMAT -1 (4.10)

where
x S DA
A=log|I+ (1+BO _EAh) A"). 4.11)

It is also useful to have an expression for BE,A *) in terms of
B"* and A" yields

By ™ = AMexp(( + B") 1AM — 1) + %A" -1 @12

)

Secondly, we consider the case when qf)_OC = 0 and
(—00)

po . # 0 to determine the contribution to ¢" from p”.
The solution in this case is
x(t) = (exp(Ar) — (A"~ p"" — exp(A1)g, (4.13)

and the average is
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% = ((exp(A) — DA™ — I}(A")~ ! pt

—(exp(A) — DA™, (4.14)
Also solving (4.2) for x we find
-1 (-0) 1 ;)' "
== |7+By ™ - A" : :

Comparing (4.14) and (4.15) and solving for ¢" gives

q" = (A"A"'(A")“ - %1 — A(exp(A) — 1)—‘(A")-‘) P
(4.16)

Finally, combining the contributions from qf,_m) and p”
we obtain the formula for the general case, qé_oo) # 0 and
po ) #0,

(=oc)

h
9 =49
+ (A"A"—‘(Ah)—‘ = %1 — Al(exp(A) - I)"(A")") P
(4.17)

Remark 1. There is no loss of generality by consider-
ing the case j = 0. To see this, let us first note that the
above analysis may be carried out for intervals other than
of unit length. If the interval has a length L # 1, then Egs.
(4.10), (4.11) should be modified by replacing A" with LA".
Secondly, we may perform the homogenization procedure
up to any level j (not necessarily j = 0), say V;. We note
that since functions of the Haar basis on a given subspace
V; have non-overlapping supports, we simply perform our
analysis on subintervals of length 6;.

Remark 2. The homogenization procedure above pre-
serves the average of the solution on specified intervals.
Alternatively, we may preserve a linear functional of the
solution, for example higher moments, e.g.,

1
/ tx() dt,
0

or the endpoint value x(1) by generalizing the procedure
above. The resulting homogenized equation depends on
the choice of the linear functional.

In summary, in addition to the multiresolution solution
strategy outlined in Section III, we now have a method
for generating homogenized equations of the form (2.2)
that preserve specified linear functionals of the solution for
arbitrary initial conditions. We consider examples in Sec-
tion V.

(4.18)

5. EXAMPLES

ExaMPLE 1. In the first examples we will evaluate the
accuracy of our numerical method using a simple constant-
coefficient equation



MULTIRESOLUTION STRATEGY FOR HOMOGENIZATION

!
x()+1= ia/ x(s)ds fort=0 5.1
0

whose solution is known analytically. For our calculations
we choose o = 1.5. Discretization is applied on the space
V,,n < 0 in which the mesh has a step-size 6, = 2". We
will investigate the error in the resulting scheme as a func-
tion of ¢ for a fixed value of n, and further as a function
of n.

The computation is performed as follows: the initializa-
tion step (2.24) becomes

(n)

An,k = iav (n) =

nk —

B 0. (5.2)
We notice that there is no dependence on k and, thus, av-
erages and differences defined in (3.22) and (3.23) sim-

plify to

Sﬁ(’,),- =Aj1, SZ’} =B;1,
DY =0, D=0 (5.3)

Therefore, the recurrence relations (3.29)+3.30) yield

63(441'—1)2

16(1 +Bj~1). (54)

Aj=Aj_|=ia, B_,'=Bj-|+

These recurrence relations are applied —n times (n < 0),
yielding the coefficients of the reduced scheme (3.46)

o= 1o 3

(n}

1+ B {n)

_ (n)
Xok+1 =

|
1+B5 + ia o

X0,k

(5.5
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with step size 6o = 1. This step size is approximately one-
quarter of a period of the oscillator (5.1).

Then we solve the implicit reduced scheme to obtain the
projection of the solution on Vg with corresponding step-
size 9 = 1. The error is obtained by comparing the results
of the computation with the exact solution of (5.1) on the
interval 0 < ¢ < 64. The numerical results are shown in
Figs. 5 and 6. The real and imaginary parts of the error
are plotted in Figs. 5 and 6 for n = —11,-12, respec-
tively. Note that the amplitude of the dispersive (phase)
error grows linearly. The magnitude of the error for fixed
t goes down by a factor of 4 as n decreases by one show-
ing the quadratic dependence of the error on the fine-scale
mesh-size, 6, = 2". We emphasize however that in all cases
the computation is done via the reduced scheme (3.46) with
step size 6y = 1.

The reduced scheme (3.46) has a form similar to a finite
difference scheme. Finite difference schemes, even those of
high order, applied to problems whose solutions have oscil-
lating behavior are known to exhibit dispersive errors (that
is, errors in the phase of the oscillation) on large time inter-
vals. For this reason, spectral methods are often preferred
for such problems. We now demonstrate that it is possi-
ble to achieve a discretization error in the reduced scheme
(3.46) limited by machine precision by letting —n be suf-
ficiently large. By letting n —1,...,—26 we observe
numerically the convergence of the coefficients of the re-
duced scheme for the equation (5.1). From (4.12) we find
the limiting values as n tends to —oc of the coefficients of
the reduced scheme

_ o ia
By — By =

“epi-n T2 "

(5.6)

e —

-~

40-06
20-06
T
’\ ]
A N \" ,Il II
n \ \,' W I'\
g o {~ /AN
® B g l‘l,u;:';.‘:.‘
v ‘/’ ‘, :
1]
] 1
-2¢-06 -
Real part
----- Imag part
-40-06 ¥
0 20

FIG. 5. Behavior of error for one-way wave equation.
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18-06

5e-07
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01

-50-07 -

-1e-06

-

time

FIG. 6. Same as in Fig. 5 but with one extra level.

Thus, we obtain

. I1+BY
,,!.“_noo (ny 1.
1 + BO - ila

1.
+ 2l i
b

(5.7

which explains the improved accuracy of the scheme. We
note that in practice n is large but finite.

For n = —26 the error of the coeflicients when compared
with the exact value is on the order of 107!7. We then used
the reduced scheme with n = —26 to compute the solution
(5.1) over very large time intervals. The error in the nu-
merical solution on the interval O < ¢ < 20, approximately
250,000 periods of the oscillator, when compared with the
exact solution of (5.1) was less than 107%. Thus the disper-
sive error of the reduced scheme (3.46) can be essentially
eliminated by letting —n be sufficiently large while keeping
the step size fixed.

ExaMPLE 2. In our second example, we study a scalar
variable-coefficient equation with complex coeflicients

(1 + b)) + 1 = i / ls)ls) ds, (5.8)
0

where « and b are real-valued. The solution has the form
of a right-travelling wave with variable frequency and am-
plitude. The function a is chosen to model a two-phase
material. On each dyadic interval at the finest level of dis-
cretization we let a(s) assume one of two values, a; or ay,
chosen at random with probabilities p and 1 — p, respec-
tively. Thus « is an element of V, by construction. We
choose b(t) = —pBt{l — t) to be a continuous function in
order to have a continuous solution.

Discretization is applied on the space V,,n < 0 in which
the mesh has step-size §, = 2". The computation is per-
formed as follows: the recurrence relations (3.29)—(3.30)
are applied —n + j times, yielding the coeflicients of the
reduced scheme (3.46) with step size §; = 2/. Then the ho-
mogenization procedure (4.10) is applied to give an equation
of the form (5.8) with coefficients A*, B* in V. A solution
of an equation of the form (5.8) with homogenized coeffi-
cients A*, B" has an identical projection into the subspace
V; as the solution of the original problem (5.8). For this cal-
culation we set ay = 0.1,a2 = 0.333...,p =025, =04
and n = —6. In Fig. 7 we have the original coefficient
a = ia(t), which is an element of V,, and the projection
of b into the space V,. In Figs. 8-11 the coefficients are
shown for j = —4, —2 which corresponds to 2 and 4 levels
of homogenization. After 6 levels of homogenization, the
coefficients are constants and are given by

a" = 0.0000271967760 + i0.05215346709809,
b" = —0.06759470188503 — i0.0004862688849. (5.9)

EXAMPLE 3. In our third example we consider the prop-
agation of planar waves in a stratified medium, a classical
problem (see e.g. [2]) that was recently studied in [7]. The
governing system of equations is

W+2uw,+p, =0, p.+pw; =0. (5.10)
Assuming solutions of the form
w=e Uy (), p=e Uy, (5.11)
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FIG. 7. Original coefficients projected on the level —6.

we obtain the system

yi =i+ 207y, ¥y = iQpy. (5.12)

Here (1 represents the frequency of the propagating wave.
In integral form the equations (5.12) become

¥(z) — yo = i2 /0 ) A(s)y(s) ds, (5.13)

where

Periodic Medium. Now consider the homogenization
problem associated with (5.13) where the coefficient matrix
A(z) is periodic. Without loss of generality we assume the
period is 1. We wish to find a constant coefficient equation

¥(2) = §o = iK(Q) A Cy(9)ds (5.15)

whose solution has the same projection on the subspace V
as a solution of (5.13). Thus the solution of (5.13) and
(5.15) have the same average on [0, 1]. This problem is
slightly different than the homogenization problem treated

A= (O (N +2p)7! ) . (5.14) ?n{he previ'o.us s~ecti0n since we all(.)w for a change in the
P 0 initial condition ¥, but fix the coefficient on the y(z) term as
0.20
0.15 4
0.10 4
0 -
-0.05 4
-0.10 w
o154 e Imas mf%mmaA
023 0.25 0.50 075 1.00
time

FIG. 8. Coeflicients of the reduced equation at level —4. This corresponds to 2 levels of reduction.
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FIG. 9. Coefficients of the reduced equation at level —4. This corresponds to 2 levels of reduction.

the identity. The methods of the Section IV yield a reduced
scheme

—00)y = 1 —0C) =
(I +B5 5 —yo = =AY, (5.16)

2
where § is the average of y(z) on [0, 1]. The values A", By
are obtained from the recursion relations (3.29)—3.30), and
passage to the limit as n tends to —oo yields the limiting

values A(O_w),BEfOO). The methods of Section IV yield a

homogenized equation of the form

(I + BMy(z) — yo = A* /: y(s)ds, (5.17)
0

whose solution has the same projection on the subspace
Vy as the solution of (5.13). The homogenized coefficients
Al = Aﬁ,“"’),B" are obtained from the coefficients of (5.16)
via (4.10). Thus we may obtain the 2 X 2 matrix coefficient
K() of equation (5.15) for a fixed value of 2 by obtaining
AMQ), B*(Q2), and then applying the formula

K = —i(I + By AR, (5.18)

0.20

0.15 4

0.10 -

0.05 -

_______________

-0.05 4

<0.10

<0.15 1

Ima?inary part of homogenized A
Real part of homogenized B

020 -
0.25

FIG. 10. Coefficients of the reduced equation at

0.75 1.00

level —2. This corresponds to 4 levels of reduction.



MULTIRESOLUTION STRATEGY FOR HOMOGENIZATION

343

0.0010
0.0005 -
P R T P (mmmmm e

-0.0005 4

----- Real part of homogenized A

——— Imaginary part of homogenized B
-0.0010 T T v

0 025 0.50 0.75 1.00
time

FIG. 11.

provided the inverse exists. Similarly, we find

Fo = (I + B 'y,. (5.19)

The matrix K given by formula (5.18) is not a unique
solution to the homogenization problem. Figure 12 shows
how two sinusoidal oscillations whose circular frequencies
differ by 27/L give identical averages on intervals of length
L (see Fig. 13), an effect sometimes referred to as aliasing.
Thus adding to K any matrix whose eigenvalues are mul-
tiples of 27/ yields another solution to the homogenization
problem (L = 1 in this example). This multiplicity can
also be linked to the multiplicity of the logarithm in (4.10).

Coefficients of the reduced equation at level —2. This corresponds to 4 levels of reduction.

To avoid aliasing, we choose wave numbers in the interval
[0, 7/L]), a convention introduced in [2]. It is sufficient in
our problems to choose the frequency of a sinusoidal solu-
tion in a range of length «/L rather than 27/L because of
the existence of right- and left-travelling waves having the
same speed of propagation.

In [7], two asymptotic theories are compared. One of the
asymptotic theories is based on the limit of small Q, the
other on the limit of small amplitude variation of the coef-
ficients. Our numerical calculations require neither assump-
tion, although the theory, discussed in the previous section,
requires €2 to be sufficiently small in order to guarantee that
the homogenization coefficients A*, B” are bounded. In the

T
A

10.0

FIG. 12. Two sinusoidal functions which have the same projection on the coarsest scale V.
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FIG. 13. Projection on the coarsest scale Vg of the two functions in Fig. 12.

appropriate parameter regimes, we may compare our results
to the asymptotic results for validation purposes.

According to the asymptotic theory, for sufficiently small
values of Q2 the eigenvalues of K are real and are of equal
magnitude with opposite sign, *«(?) and represent the wave
number of a travelling-wave solution. The dependence of
the wave number, «(€2), of a travelling wave solution on
frequency is known as the dispersion relation. A nonlin-
ear dependence of « on €2 produces a wave velocity that
depends on frequency; thus, a signal made up of multiple
frequencies gradually spreads as it passes through a ma-
terial with a nonlinear dispersion relation. For two-phase
materials, this effect is attributed to multiple reflections [3].
The effect may also be observed in materials with continu-
ously varying properties.

It has also been observed (see [2], and references therein),
that there may be frequency intervals in which the wave
number becomes complex. That is, the wave amplitude
grows or decays exponentially with respect to the spatial
variable. Such frequency intervals are often called stopping
bands. Physically, an incoming wave is totally reflected
from the material if the frequency is in the stopping band.
Intervals of frequency in which the wave number is real are
called passing bands.

Two-Phase Material. For this calculation, we choose a
two-phase material with phases having material parameters
p1 =2, =107% and (\ + 27" = 1074, (A + 2p);' =
2. The variation in material parameters is exaggerated to
emphasize the nonlinearity of the dispersion relation. The
material is assumed to be periodic with period 1 and to
have alternating layers of width % We now calculate the
dispersion relation for this medium. In Fig. 14, we show the

dependence of the coefficients AS ™ BS ™ of the reduced

scheme (5.17) on frequency Q. In Fig. 15, we show the
dispersion relation ().

Comparison with Asymptotic Theory. We now compare
our numerical results with the asymptotic approximation
valid for small 2. Effective medium theory predicts the
leading behavior as ) tends to zero to be

(5.20)

where

(5.21)

and f is the average of the function f on the interval
[0, 1]. With the profiles described above, (5.21) gives
cef = 1.00005. In the limit Q@ — O, the slope of the dis-
persion relation calculated by our numerical scheme ap-
proaches the value predicted by effective medium theory.
The nonlinearity of the dispersion relation can be approxi-
mated by using terms of higher order in Q2

A ~ RL3 + ds.
Ceff

(5.22)

From our numerical scheme, we estimate d3 ~ 0.4166. The
cubic correction provides an approximation to the disper-
sion relation that is valid over a larger region of {2 than the
linear approximation, but from Fig. 15 it is clear that for
larger values of {2, more terms in the expansion are needed.
Further, an expansion based on the small-§2 limit can never
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FIG. 14. Coefficients of the reduced equations as functions of frequency. The coefficients are smooth at the edge of the stopping band at = 2. The

coefficients have a pole at ~ 4.

adequately describe the dispersion relation in and beyond
the first stopping band.

Interpolation. Our numerical scheme is based on a cal-
culation for a fixed value of Q2. Since for most frequencies
the dispersion relation varies smoothly, we may wish to in-
terpolate in frequency to obtain intermediate values rather
than repeat the calculation for a new value of §2. Those fre-
quencies at the edges of stopping/passing bands are often of
special interest because of their physical significance. No-
tice in Fig. 14 that the coefficients of the reduced scheme are
smooth at the edges of the stopping/passing bands while the

dispersion relation is not. We note from (5.18) and (4.10)
that

-1
exp(iK) = (1 + B - %Aé’“’) AT (5.23)

Thus we may locate the edges of the stopping/passing bands
by calculating the values of €2 at which either

) 1o e
dl=det((1+3.‘) ’~5A{) )) A{)"):o (5.24)

6 .
/
Legend 7
————— Imagina; it of dispersion relation K¢
5 Roa?par'cyo‘:‘ rela ’
---------- Linear asymptotic approximation /
————— Cubic asymplotic approximation 7
.
L
c a
g )
; 3 ‘/'/ ‘/‘/‘,,,
e /—/'/
/‘/ /-"/‘
2 1 GO e
SRt ’/'/
/’/,
1 4 vl
l/l
‘/
0 . . . .
0 1 2 3 4 5
frequency

FIG. 15, Dispersion relation for 2-phase material.
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or

¢b=dm(ﬂ+(1+3k”

| TR Nl
—5%‘v AL’)=0 (5.25)

These determinants are plotted in Fig. 16 as a function of
Q2 for the two-phase material described above. Note that
these functions are smooth with respect to €2 and therefore
it is easy to interpolate and to estimate the location of the
zeros. For instance, the edge of the stopping band for the
two-phase material may be calculated analytically as
2 =~ 1.99990001, (5.26)
A numerical calculation based on spline interpolation from
a set of calculations with spacing in frequency of appox.
0.08 gives the result
Q =~ 1.99996. (5.27)
The coefficients of the reduced scheme have singularities
of their own, typically simple poles located in the interior
of stopping bands. In a small interval far from the poles
we may obtain a good approximation of the coefficients of
the reduced scheme with a spline fit and then calculate the
dispersion relation from the interpolated values if desired.
Rational interpolation provides a better approximation to
the coefficients of the reduced scheme on intervals near or
including the poles.
We have seen that the reduced scheme provides an ef-
fective means to interpolate the dispersion relation and lo-

BREWSTER AND BEYLKIN

cate stopping/passing band edges from a few calculations
spread out over a large interval. The usual approach is to
expand the dispersion relation in a Taylor series about the
origin but this asymptotic approximation is valid only for
low frequencies.

Continuous Profile. We now consider an example of a
continuous but variable periodic profile. In particular we
take B = 0 and

A =1, Ay =c| + cys8in2wx. (5.28)
In mechanical applications, this system is referred to as the
parametric oscillator (if stable) or the parametric amplifier
(if unstable). Then Eq. (5.28) reduces to Mathieu’s equation
[4, 2]. It is well known that for ¢; > —c; there exist an in-
finite number of stopping bands, which in this context are
called bands of instability. In the numerical calculations,
the continuous profile is first approximated by its projec-
tion onto the subspace V,. At each level of resolution n
we have a piecewise constant profile with discontinuities
at intervals of 2". The homogenization procedure is then
applied as above. In our example we set ¢y = 2 and ¢; = 1.
The dispersion relation is shown in Fig. 17 for level of res-
olution n = —4. No change is observed in the graph as n
is decreased beyond —4. As n tends to —oo, the numer-
ical calculations suggest the pointwise convergence of the
dispersion relation to a limit.

Extensions. We have observed that the discrete formu-
lation has coefficients which are smooth as a function of
{2 near the edges of stopping/passing bands where the dis-
persion relation has a square-root singularity, which is an
advantage for interpolation near this physically-significant

10

—— Determinant #2 as a function of frequency

Determinant #1 as a function of frequency

wave humber

-2 <

-4 4

0
-
o

-

3 4 5
frequency

FIG. 16. Determinants for 2-phase material. Determinant d vanishes at zero. Determinant d> vanishes at ~ 2, the beginning of the stopping band.
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FIG. 17. Dispersion relation for Mathieu's equation.

frequency value. Another advantage of the discrete struc-
ture over a dispersion relation is the ability to easily handle
aperiodic, and finite or semi-infinite media. For a given
medium there is an equivalent reduced scheme (5.16) with

frequency-dependent coeflicients A( OC)(Q) B( oo)(Q) such
that the solution of (3.32) gives the pro;ectlon on V; of
the solution of the original equation (5.13). If the medium
is aperiodic it may not be possible to describe this propaga-
tion in terms of a dispersion relation however. The reduced
scheme provides a coarse-scale formulation that does not
assume periodicity. Also boundary conditions for a finite
or semi-infinite medium are easily incorporated into the re-
duced scheme.

6. APPENDIX A

Proof of Proposition 11.1. We proceed by induction. As-
sume that Eq. (2.11) has been obtained for multiresolution
level j — 1,

(n)

(n) (n)
B;111+411+>\‘ 1)-

j_](A()lxj 1 +pj (61)

Let us modify (6.1) using projections onto the spaces V; and

W; to derive the recursion relations for A(") Bﬁ"), qy'), pﬁ-") in

(n) B(n) (n) (n)

terms of A;, B 1,91, pj-. '

Let us rewrite Eq. (6.1) in terms of unknowns in the
subspaces V; and W;. We start by noting that since x(J ), €
V,_1, it may be represented as

(n) (n) (n)
Xjn_] = ijjril + ij_,n 1> (6.2)

so that we write
1
u=Pu" = xg-") and —v=Qu™ (6.3)
€j

where ¢; is a scaling factor that we will choose appropri-
ately for a given MRA. In general, ¢; will represent a typical
order of magnitude of Q jx(") so that v will be O(1). Using
(6.2) and (6.3), we have

A= ut ey, (6.4)
and substituting (6.4) into (6.1), we obtain

B+ em)+q ) = Kim (A (w+ )+ p7)). (6.5)
Further, we split (6.5) into two equations by applying P;

and Q; so that

(") 1+ ev) + ijﬁ«"), Y

= PK;_ 1(AJ |(u+e,v)+p("),) (6.6)
QjB;"_)l(u+ejv)+qu-
= QK. A w+ vy + p). (6.7)

Since # € V; and v € W}, applying the corresponding
projection operators P; and Q; will leave these elements
unchanged. Thus we have
(6.8)

u=Pu andv=Qv.
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Therefore, we have

PBY u=PB" \Piu=9Fu

P,B" v = P,B" Qv = ¢,45 v
) B ()
Q;B;"1u = QBT Pju = ¢ Bp u

QB \v= QB Qv =g v 6.9)

and, similarly,

PK; IA, u=PK;_ IPPAJ lPJ"
+ PK;_ 1 QQAY Pu
=9k 1(7(") U+ e %K j.%(")
P/K, A1y = P K, PPAT Qy
+ PK;1QQA, Qv
= EJ'YKJg(A".)jV + eﬁfx,jﬂgl.]j"
QK A" u = QK P,P, A Pu
+ QK 1QQAY Pu
= e,-%’x,fﬁf)ju + ezﬂle%
QK, P;P,A” Qv
+ QK 1Q;QAY Qv
= EBk v+ sty A,

(6.10)

QK; A" v =

We also expand the forcing terms into their projections onto
V;and W;. Let

n) n n (n)
Sey =Pig, Sy =Pp, 6.11)
and
(") (n) (n) )
‘_QJ dj-1 ““QJ Pj-1. (6.:3)
Then we obtain
PKJ ]pj—_PKJ l(Sp"i_I_ D(n))
PRSP Q)
— (n)
- 9’1(1 pJ +61%K1 P
Q/K;-1p; = PK; (S, + ;D))
(n) n
= QK \P;Sp; +¢;PK;.1Q;D, ()
= EJ‘%KJS:; +EJMKJ (n) (6.13)
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Substituting (6.9)—(6.14) into Egs. (6.6), (6.7), we arrive at

{n)
(T8 — 6k, Ca i+ (B —

() _ 2 P
+84; — €€k, iDp; +\

%K ]ﬂ(") )V

T AT wu + EG0 v + s
(An; — EBy BN — ﬂ,{,y«"” W
= DI+ (B, T + sty ;B — By

+ By S+ ety ;DY (6.14)

Equations (6.15) are equivalent to the original equation in
V,_; (6.1). If the operator F(j"),

(Il) JyBI _ GJ%K j%(") d[{ jﬂ(") (615)

is invertible, then we solve the second equation of system
(6.14) for v,

()

v = —Ci-")u —r (6.16)

where
" =¥ By - By, TV - Sk B, (6.17)
A= FO D — By S — Ety D). (6.18)

7. APPENDIX B

Proof of Proposition 11.2. From the properties of the
MRA we have that the sequences A, B,, and K, converge
to A,B, and K as n tends to —oo. Also because P, is an
orthogonal projection, we have

1Pl <1 .1

which, in turn, implies

ALl < Al (7.2)

The same holds for sequences of operators B, and K,.
Therefore there is some ny < 0 such that for all n < ny
we have

”(Bn - KnAn) - (B - KA)“ =

+AIK - Kqll <

B — Bl + IIK||[|A — Ayl

1
. N——
2B -~ KA) || 7.3

We now use the following inequality which follows from

the Cauchy-Schwartz inequality: if K is an invertible op-
erator and

|

IM - K| <
K=

(7.4)
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then M is also invertible and

[Lan]

. 7.5
T M = KK 7.5

M~ <

Then from (7.3) we have that B, — K,A,, is invertible for
n < ng < 0. Further, the inverses of these operators are
uniformly bounded. In particular,

(B, — KA M| < 2|I(B—KA) ™. (7.6)
Next we establish the convergence of the sequence x™
to the solutions x. From (2.1) and (2.8) we have
”x _x(")” = ”(Bn - KnAn)il(Knpn - qn)
- (B-KA) '(Kp - gl
= “B ~-KA™! ||(||KP - Knpn“
+ llg = gull) + [IKnpn — gl l(B — KA)
— (B, - K.A)'[l. (7.7)
Now let
Ci = ||((B—KA)™ (7.8)
and
C = ||IK—gql. (7.9)
Then
llx — x| < (1K, = Kapall + llg = gall)
+ C2[|(B — KA)'I(|IB - B, ||
+ ”KA - KnAn”)“(Bn - I(nAn)_l ”
= Ci(IIKllllp = pall + 1K = K, [l pll
+ llg — gull) + 2C>CF
X (IIB = By|| + |K[/[|A — Ayl
+ IK = Ky l[JAl) s Gl = Poll,  (7.10)

where

Cy = CCIK|pll + liglD
+2CiCo([IB)] + 2IK[[|A]]). (7.11)

Now since || — P, || vanishes as n tends to —oo, we have
established that x™ tends to x as n tends to —oc.

Proof of Proposition 11.3. To establish (2.36), we find an
upper bound on the residual and show that it vanishes. Let
Jj be fixed, and let n be an element of the subsequence for
which the limits (2.35) exist. From (2.25) we have
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(—o0)

(—oc) (- ) (~00)
IB;™ ™ x; +q; " — KjA; ™x; = py "I
= 1B 4 KA =
- B]x]" + ¢j" — KT - pI. (7.12)

Using Cauchy-Schwarz and triangle inequalities we find

el

(—o0) (—o0) (=oc)
IB; 'x;+gq -Ki(A; “x; - p;

j
(—oc) (n) (n) (—oc) (n)
< 1B = BV + 1Bk — X))
(—o0) (n) (—00) (n) (
+g5> = g+ 1K IUIAT — A% i)
(—oc) (n) (—2<) )
+ 1A My — 2+ g = P, (7.13)

As n — —oo within the convergent subsequence, all terms
on the right-hand side of (7.13) vanish. Hence (2.36) is
established.

Note that in (2.1) we may choose p = 0 and ¢ to be an
arbitrary element of V;. Thus the range of Bﬂ-_m)—l( jAYM
is V;, since p;_oo) =0 and q(j_oc) = g. We now employ the
fact the P; is an orthogonal projection. For an arbitrary
q € V;, we have

1B — KAL) g
= |Ix;ll < lixll < [[B - KA) '[lligll. (7.14)

Hence, (2.37) is established.
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