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Abstract. Block pseudospectral (BPS) methods are examined for Maxwell’s equations in two-
dimensional inhomogeneous media. For the case of a rectangular strip with a straight-line interface,
blocks may be coupled via fictitious points or a generalization of characteristic outflow conditions.
The BPS methods generalize to curvilinear strips described by a change of variables. Such strips
can conform to interfaces while overlapping with a high-order free-space grid to form a composite
grid method. Numerical experiments on strips with dielectrics, lossy materials, perfect conductors,
and absorbing layers indicate that the two coupling methods are comparable and accurate with just
3–4 points per wavelength. Full composite examples are included to demonstrate high accuracy and
geometric flexibility.
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1. Introduction. In [9] we compared block pseudospectral (BPS) methods for
the numerical solution of Maxwell’s equations in one dimension, in particular the case
where coefficients are discontinuous (i.e., a change of medium). We introduced a new
method, based on fictitious points, in which blocks are coupled via certain continuity
conditions at the block interfaces. In Table 1.1 we compare various methods for the
one-dimensional (1D) test problem

ε(x)
∂E

∂t
= −∂H

∂x
,

∂H

∂t
= −∂E

∂x

(1.1)

for x ∈ [−1, 1], where

ε(x) =

{
1 if x < 0,

4 if x > 0.
(1.2)

Periodic boundary conditions are imposed to allow the study of long-term behavior.
The table shows a snapshot of a propagated pulse and the accuracy of the nonzero
eigenvalues of the discrete time differentiation operator. Low-order methods, such as
Yee’s [24, 26] and finite elements (FE) [3, 4], suffer from strong numerical dispersion
unless (typically) at least 10 points per shortest wavelength are used, with 20 or
30 not uncommon [3, 4, 24]. Simply using standard pseudospectral (PS) methods
as though the discontinuity did not exist works surprisingly well [12], but the loss
of smoothness in the fields destroys the spectral accuracy [20]. A standard spectral
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Table 1.1
Summary of methods for 1D test problem (1.1) with discontinuous coefficient (1.2). Each snap-

shot compares the numerical to the analytical solution for E at some time. The measured eigenvalues
are those of the time-differentiation operator which are in the upper half-plane. All numerical solu-
tions are based on 34 grid points in [−1, 1].

Method Solution snapshot Eigenvalue accuracy Comment

Low-order
(Yee, FE)

Yee, t=4 0 20
10

-16

10
-8

10
0

Dispersion errors
quickly dominate

Fourier PS

t=60 0 20
10

-16

10
-8

10
0

Discontinuity
degrades spectral
accuracy

Characteristic
upwinding

t=1000 0 20
10

-16

10
-8

10
0

Slightly unstable in
time

FP(1,0.5)

t=1000 0 20
10

-16

10
-8

10
0

Comparable to
characteristics

FP(4,0.4)

t=10000 0 20
10

-16

10
-8

10
0

Highest accuracy

element approach, in which Chebyshev grids are coupled via characteristic upwind
conditions, is more accurate but slightly unstable in time; the method-of-lines operator
has a spectrum extending about 10−4 into the right half-plane. The instability occurs
at modest wavenumbers and thus would be difficult to filter or dissipate out. (The
characteristic coupling here is different and better than that used in [9].) The fictitious
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point (FP) method, as introduced in [9], is parameterized by the number of fictitious
points used and by the grid clustering (defined as γ in (2.2) below). At the lowest-order
coupling, FP(1,0.5), the FP method is slightly more accurate than characteristics and
much more stable. With more coupling, FP(4,0.4), the method is even more accurate,
as can be seen from the eigenvalues.

In this paper we consider the two-dimensional (2D) linear equations for transverse
electric (TE) waves:

ε(y)
∂Ex
∂t

=
∂Hz

∂y
− σ(y)Ex,(1.3a)

ε(y)
∂Ey
∂t

= −∂Hz

∂x
− σ(y)Ey,(1.3b)

µ
∂Hz

∂t
=
∂Ex
∂y
− ∂Ey

∂x
− σ∗(y)Hz.(1.3c)

We first present BPS methods for the strip S = {−2 ≤ x ≤ 2, −1 ≤ y ≤ 1} with
periodic boundary conditions. We choose units so that µ = 1. The other material
properties are piecewise constant in the regions S− = {−1 < y < 0} and S+ = {0 <
y < 1} but may be discontinuous at the interfaces y = 0 and y = ±1.

In the x-direction everything is homogeneous and there are no difficult issues.
Computation of the y-derivatives of Ex and Hz across the interface is more trouble-
some, as these fields can lose smoothness. It is natural to decompose the computa-
tional domain into S− and S+ and employ high-order or spectral methods within each
subdomain, but then one is faced with the problem of coupling the subdomains.

We shall extend the FP approach to this 2D situation. We will also describe the
application of characteristic (upwind) coupling conditions in some detail, as there do
not appear to be any references on implementing this for the variety of discontin-
uous interface situations considered here. In experiments with dielectrics, imperfect
conductors, and absorbing layers, the two coupling methods appear to be roughly
comparable. Both are acceptably accurate at 3–4 points per wavelength (PPW).

With the rectilinear strip S described, we will then generalize to curvilinear re-
gions described by a change of variables from S. Nothing essential changes for either
type of BPS coupling. Such a change of variables allows us to simulate a small re-
gion about an interface. These interface treatments are part of a larger composite grid
scheme [8] illustrated in Figure 1. In the free-space “background” of the domain, we
use an equispaced, high-order finite difference (FD) method. This offers a good trade-
off between high accuracy and geometric versatility. For this purpose the staggered,
spatially implicit schemes presented in [13] are especially well suited. Some of the grid
points of the background method overlap with thin strips near interfaces, in which a
BPS method is used. In the overlapping regions, we use a simple interpolation scheme
that connects the different methods. This composite scheme is tested in experiments
that demonstrate the method’s high accuracy and geometric flexibility.

2. FP method.

2.1. Interface conditions. The rectilinear strip is divided into S+ above the
interface and S− below it (see Figure 2). To differentiate in y for S+, we use the field
values for Ex and Hz there plus an extension of those values a small way into S−.
(Notice that we never need ∂yEy.) A similar extension also occurs for the values in
S− into S+. These extensions occur across both interfaces, at y = 0 and y = ±1.
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BPS

Finite
differences

Fig. 1. Composite grid scheme combining a high-order “background” with BPS methods around
interfaces.

S
-

fictitious values
of E

x
 and H

z

S
+

fictitious values
of E

x
 and H

z

y = 0

Fig. 2. Schematic representation of FP method. Each subdomain has one layer of fictitious
points across the interface. The fictitious values of tangential fields are determined by the physical
continuity of those fields at the interface. These fictitiously extended fields have smoothness that is
not present in the true fields.

We determine the values of the extensions by enforcing conditions at the interfaces
derived from the governing equations.

It is well known [23] that across an interface between transparent media the
tangential fields Ex and Hz are continuous. Because an interface point has unique
values for these fields for all time, we can also conclude the continuity of their time
derivatives. Using (1.3a) and (1.3c) we conclude the continuity of

Ex,
1

ε

(
∂Hz

∂y
− σEx

)
,

Hz,
∂Ex
∂y
− ∂Ey

∂x
− σ∗Hz

(2.1)

at the interfaces.
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The FP approach rests on the observation that the continuity of the quantities
in (2.1) is sufficient to couple the domains. No reference whatsoever need be made
to the characteristic form of the governing equations, which is the traditional vehicle
for domain coupling. A similar condition for the 1D dielectric case has been proposed
before [10], but our generality and implementation appear to be unique.

In principle, we could obtain more accuracy by imposing higher-order conditions
derived by taking more time derivatives of Ex and Hz, as was done in the 1D case [9].
However, such conditions involve x-derivatives of these two field components, causing a
lateral coupling of all fictitious points and increasing the numerical work substantially.
We have observed good results by using only first-order conditions (i.e., those in (2.1)).
In doing so, we sacrifice the more uniform grid spacing and consequent larger stable
time step as seen in [9]. Because the tangential coupling is relatively weak, it may
be possible to fashion efficient iterative methods for higher-order coupling, if deemed
important.

In the special case where the material properties are continuous at the interface,
the higher-order continuities are equivalent to the continuity of Ex, Hz, and their
normal derivatives. These could be quite easily implemented. In light of the 1D case
(see Table 1.1), this should improve accuracy substantially. We do not pursue this
here, because our main interest is in the discontinuous case.

2.2. Numerical method. The field values are stored on a Cartesian-product
grid. The grid points are spaced evenly in the x-direction. In the y-direction, each
domain S+ and S− has a nonuniform, open-ended grid, determined by the number
of grid points N and parameter γα according to

j − 1
2

N
=

∫ yj

−1

cγ(1− y2)−γ dy, cγ =
Γ(3/2− γ)√
π Γ(1− γ)

,(2.2)

for j = 1, . . . , N . These points, which lie in (−1, 1) by the choice of cγ , are scaled to
the interval (−1, 0) or (0, 1) as appropriate. The parameter γ controls the amount of
grid clustering near the ends of the interval. As discussed in [9], one must classically
choose γ = 0.5 as N →∞. However, for modest N, one may choose γ < 0.5, leading
to more uniform grids.

We use Fourier PS differentiation in x and the FP technique for differentiation in
y. Consider first the interface y = 0. Along each vertical grid line we place on each
side of the interface one fictitious point for each of Ex and Hz. (The exact locations of
the fictitious points are unimportant.) The four unknown field values are determined
by discretization of the four conditions in (2.1).

The mechanics are represented schematically in Figure 2. Over the physical grid
points in S+ and the fictitious point with y < 0, we construct FD weights of maximum
(PS) order, as described in [12], to find interpolated function and y-derivative values
at y = 0. These weights apply to both the known and unknown values of Ex and Hz

to produce Ex, Hz, ∂yEx, and ∂yHz at y = 0. In addition, we use the known values
of ∂xEy in S+ to extrapolate to y = 0. (We choose γ = 0.5 to avoid instabilities in
the extrapolation.)

Thus we have values “from above” at y = 0 for all the quantities appearing
in (2.1). We set these equal to values determined similarly “from below.” The result,
after rearrangement, is a 4 × 4 linear system for the fictitious field values at each
x-grid location. The right-hand side of the system depends linearly on the physical
field values in S+ and S−. The algebraic details are similar to those spelled out for
the 1D case in [9]. Both the system and the right-hand matrices are identical for every
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vertical grid line and invariant in time, so they need be computed just once. The work
involved in constructing and solving these systems is insignificant compared to the
work needed to compute derivatives in the interior of the domains.

Because of the periodicity in y, the process must be repeated for the interface
at y = ±1. One then has physical values for Ex and Hz in S+ and one fictitious
value apiece above and below the interfaces. We use all the values to compute the
y-derivatives in S+. The situation in S− is identical.

3. Characteristic coupling. The dominant method of coupling spectrally dis-
cretized domains in hyperbolic problems is to use characteristics. Following [6], we
group characteristic methods into two categories: correctional and differential. In the
correctional method one collocates the differential equation independently in each
domain during a time step, including at the interface. Characteristics are used after
each time step to reconcile the interface quantities to ensure upwinding [15, 25]. In the
differential method, derivatives are first computed independently, but characteristics
are used to reconcile values of time derivatives at the interface [6, 14, 19, 22].

There does not seem to be a clear winner between these alternatives. The correc-
tional method retains the order of accuracy of Runge–Kutta time integrators, but the
stability restriction on the time step may become much more restrictive [7, 21]. The
differential technique, on the other hand, may reduce the order of accuracy of Runge–
Kutta methods if time and space are simultaneously resolved, but there appear to be
no serious stability consequences [21].

For the current problem, either method can be used. In this paper we consider
only the differential method. Because the coupling takes place for the time derivatives,
a standard ODE package can be used for the time integration; this is not possible with
the correctional approach. We will set the tolerance of the ODE solver to make time
errors negligible, so order of accuracy in time is not an issue.

We now describe some details of the characteristic upwinding (CU) method we
use for the TE waves described by (1.3). We write the equations in vector form:

∂tw +A(∂xw) +B(∂yw) = Fw,(3.1)

where

w =

ExEy
Hz

 , A =

0 0 0
0 0 1/ε
0 1 0

 , B =

 0 0 −1/ε
0 0 0
−1 0 0

 , F =

−σ 0 0
0 −σ 0
0 0 −σ∗

 .
Our interface is normal to y, so we diagonalize B:

B = V −1ΛV, V =

−√ε 0 1
0 1 0√
ε 0 1

 , Λ =

1/
√
ε 0 0

0 0 0
0 0 −1/

√
ε

 .(3.2)

First, suppose that ε is the same in both domains. Away from the interface, we
can write (3.1) as

∂tw = V −1[−ΛV (∂yw)− V A(∂xw) + V Fw].(3.3)

At an interface point, we will use the upward-going characteristic quantity from below
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and the downward-going quantity from above. Thus we define

Vu =
[−√ε 0 1

]
, Λu =

1√
ε
,(3.4)

Vd =
[√
ε 0 1

]
, Λd = − 1√

ε
.(3.5)

Because Ey does not propagate in the y-direction, it has a different role from the
other variables. In what follows we will need

w̃ =

[
Ex
Hz

]
, Ṽ =

[−√ε 1√
ε 1

]
, Ṽu =

[−√ε 1
]
, Ṽd =

[√
ε 1

]
,(3.6)

obtained by deleting Ey from consideration.
Using superscripts + and − to denote quantities computed from S+ and S−, we

generalize (3.3) to

(∂tw̃)0 =

[
Ṽu
Ṽd

]−1 [−ΛuVu(∂yw)− − VuA(∂xw)− + VuFw
−

−ΛdVd(∂yw)+ − VdA(∂xw)+ + VdFw
+

]
,(3.7)

where the zero superscript means the reconciled value at y = 0. We have yet to
specify how to compute (∂tEy)0. Because Hz has a single, well-defined value along
the interface, we use the unique value of 1

ε (∂xHz)
0.

Suppose now that ε jumps from ε− in S− to ε+ in S+. The characteristic variables
and speeds are now also discontinuous. However, they continue to have the same
form, and there is still one in each direction, with Ey being neutral. We propose to
generalize (3.7) to

(∂tw̃)0 =

[
Ṽ −u
Ṽ +
d

]−1 [−ΛuV
−
u (∂yw)− − V −u A−(∂xw)− + V −u F

−w−

−ΛdV
+
d (∂yw)+ − V +

d A
+(∂xw)+ + V +

d F
+w+

]
,(3.8)

where the superscripts have been applied to the matrices to indicate their values in
S+ or S−. Retracing through the definitions, this becomes

(3.9)

(
∂t

[
Ex
Hz

])0

=
1√

ε+ +
√
ε−

[ −1 1√
ε+

√
ε−

]

×
[

(∂yEx)− − 1√
ε−

(∂yHz)
− − (∂xEy)− +

√
ε−σ−E0

x − (σ∗)−H0
z

(∂yEx)+ + 1√
ε+

(∂yHz)
+ − (∂xEy)+ −√ε+σ+E0

x − (σ∗)+H0
z

]
.

We have used superscript zero for undifferentiated fields, as they have unique values
at the interface.

Computing (∂tEy)0 is less clear now, because whereas (∂xHz)
0 is again unique,

the value of ε is not. We instead maintain two values of Ey at an interface point, in
accordance with

∂t(E
±
y ) =

1

ε±
(∂xHz)

0.(3.10)

Since these fields are in general related by a frequency-dependent ratio [23], computing
both seems reasonable.
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The numerical procedure is to first compute spatial derivatives of the fields inde-
pendently within S+ and S− to get the one-sided values appearing in (3.9). One then
finds the reconciled values of the time derivatives of Ex and Hz, keeping two values
for Ey at the interface. Thus the time derivatives of each field are known at every grid
point, and the field values can be advanced by an ODE integrator as in the method
of lines.

Note that (3.8) and (3.10) is not the only generalization of (3.7); indeed, a different
one was used in [9]. It can be shown, however, that (3.8) and (3.10) hold exactly for an
arbitrary reflected and transmitted plane wave solution. Equation (3.9) agrees with
the description of characteristic “ghosts” in [18]. Furthermore, the numerical evidence
in section 7 also supports the use of our generalization.

In the CU method, we are applying first-order continuity equations on the fields
after computing their derivatives. By contrast, in the FP approach the conditions are
applied to the fields simultaneously with computing their derivatives.

4. Extensions. We make a few remarks on how to apply both coupling pro-
cedures to two other important situations: perfect conductors and reflectionless ab-
sorbers.

Suppose we solve in the domain S+ and wish to simulate a perfect electrical
conductor at y = 0. In the characteristic method, we simply impose Ex = 0 at a
boundary point and simulate Maxwell’s equations for Ey and Hz. In the FP method,
we use a single fictitious point with y < 0 at which we need values of Ex and Hz.
At the interface, Ex and ∂tEx are zero, so the conditions Ex = 0 and ∂yHz = 0 are
sufficient to determine fictitious values.

There is great interest in absorbing perfectly matched layers (PML) for simulation
of radiation out of a domain. The most widely known PML, due to Berenger [5],
requires a nonphysical splitting of the magnetic field that enlarges the system from
three to four partial differential equations. It has been shown [1] that the Berenger
PML is only weakly well posed and may in fact be prone to instability in practice.

An alternative model, called TD-LM and based on Lorentz materials [27], is
strongly well posed. Furthermore, it can be written using a supplemental ODE rather
than a new PDE [2]. Assuming S− is the absorbing layer and S+ is free space with
ε = µ = 1, the TD-LM equations are

∂Ex
∂t

=
∂Hz

∂y
− ρ(y)Ex,(4.1a)

∂Ey
∂t

= −∂Hz

∂x
+ ρ(y)Ey − P,(4.1b)

∂Hz

∂t
=
∂Ex
∂y
− ∂Ey

∂x
− ρ(y)Hz,(4.1c)

∂P

∂t
= −ρ(y)P + ρ(y)2Ey,(4.1d)

where ρ(y) is a loss parameter that is zero outside S−. Thus in S+, P ≡ 0 and the
system reduces directly to the standard Maxwell (1.3). Continuity of Ex and Hz is still
assured for all frequencies and incidence angles, so the FP method still imposes the
continuity of the quantities in (2.1) at the interface, with ρ replacing σ. Likewise, the
new variable P does not propagate, so there is no need to involve it in characteristic
quantities. As with Ey, P may be discontinuous, so we maintain dual values P± at
the interface.
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x

y

τ

ν

Fig. 3. Change of variables from normal coordinates (τ, ν) to physical coordinates (x, y).

It is pointed out in [2] that a jump in ρ at the interface causes discontinuities in
Ey and P, and the authors recommend avoiding this situation. On the other hand,
activating ρ continuously or smoothly leaves the fields with more smoothness, but
certain waves in the absorber may actually grow. We have found (see section 7) that
the reflection coefficients are acceptably small even in the discontinuous case, when the
interface is implemented as described above. In particular, maintaining the one-sided
values of Ey and P appears to be successful.

5. Variable coefficients. The solution of problems on rectilinear strips is of
little intrinsic interest. To begin building toward a practically useful method, we
introduce a change of variables into the formulation.

Let (τ, ν) be the variables of the strip S, and let (x(τ, ν), y(τ, ν)) be a smooth
change of variables to physical coordinates. We shall continue to assume that S is
periodic in the τ -direction, but not in the ν-direction. The strip variables are intended
to represent “tangential” and “normal” directions in physical space, and the line ν = 0
should map to an interface in physical space. See Figure 3.

Define the metrics

h2
τ =

(
∂x

∂τ

)2

+

(
∂y

∂τ

)2

,

h2
ν =

(
∂x

∂ν

)2

+

(
∂y

∂ν

)2

.

(5.1)

Define also the fields

Eτ =
1

hτ

[
∂x

∂τ
Ex +

∂y

∂τ
Ey

]
,

Eν =
1

hν

[
∂x

∂ν
Ex +

∂y

∂ν
Ey

]
.

(5.2)

Then it is a simple matter to show that the TE Maxwell’s equations in physical space
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(x, y) transform in S to

ε
∂Eτ
∂t

=
1

hν

∂Hz

∂ν
− σEτ ,

ε
∂Eν
∂t

= − 1

hτ

∂Hz

∂τ
− σEν ,

∂Hz

∂t
=

1

hνhτ

[
∂

∂ν
(hτEτ )− ∂

∂τ
(hνEν)

]
− σ∗Hz.

(5.3)

These equations change the coupling conditions of the BPS methods only a little.
In the FP method, we have continuity of the tangential fields Eτ and Hz and their
time derivatives at ν = 0. The only substantial change in the method is introduced
by the variation of the metrics (5.1) along the interface. The 4× 4 linear system that
needs to be solved will have different entries at each point along ν = 0.

To extend characteristic coupling to the variable-coefficient case, it is best to use
the primitive variables

w =

hτEτhνEν
Hz

 .
With this, the matrices analogous to (3.2) that describe the characteristic variables
and speeds in the ν-direction are

V =

−hτ√ε 0 1
0 1 0

hτ
√
ε 0 1

 , Λ =

(hν
√
ε)−1 0 0

0 0 0
0 0 −(hν

√
ε)−1

 .
With these it is a straightforward matter to generalize (3.7) to variable coefficients.
As in the FP case, the only serious new element is the variation of the particular
linear combination that must be used at each interface point.

6. Interpolation for composite grids. At this point, certain geometries (say,
thin-layered media) could be immediately fit into the BPS framework. The final step
toward a more general utilization of BPS methods is to incorporate them into a
broader domain-decomposition framework, such as the overlapping, composite grid
approach illustrated in Figure 1. We envision the BPS method being used in thin
layers about material interfaces.

The background grid overlaps all the BPS grids. To complete the method, we need
to specify how information is transferred between them. To make the description as
clear as possible, we reduce to a 1D situation, which captures all the essential features.
Let the finite-difference grid range over [−1, δ], overlapping with a PS grid in [0, 1].
We define a blending function b(x) that smoothly rises from 0 at x = 0 to 1 at x = δ.
For example, b(x) = (1− cos(πx/δ))/2.

The idea behind our method is that each grid should independently advance one
time step. The values then need to be reconciled in such a way that values near the
edge of a grid are replaced by interpolation from the other grid. The “trust” from one
grid to the other is transferred gradually in a way described by the blending function,
in order to avoid artificial Gibbs-type discontinuities.

To be more explicit about the 1D case, let f1 and f2 be vectors of function values
in the FD and PS grids, respectively. By the “overlap points” of a grid we mean
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the points of that grid that are in the overlap region [0, δ]. We define two restriction
matrices, R1 and R2, such that Rifi is the vector of values at the overlap points
of grid i. We also have interpolation matrices P12 and P21, such that Pijfj is the
interpolation of values from grid j to the overlap points of grid i. Finally, we have
diagonal matrices B1 and B2 whose diagonals are the evaluation of b(x) at the overlap
points in each grid.

We update the overlap values according to

R1f
(new)
1 = B1(P12f

(old)
2 ) + (I −B1)R1f

(old)
1 ,

R2f
(new)
2 = (I −B2)(P21f

(old)
1 ) +B2R2f

(old)
2 .

(6.1)

We have left the order of accuracy of interpolation unspecified. The precise value is
unimportant, so long as it is consistent with the order of the differentiation calcula-
tions.

Returning to the context of a 2D composite-grid method, one must map the FD
points that lie inside a BPS region to the (τ, ν)-coordinates of the strip. Likewise, one
must determine the coordinates of BPS grid points in physical space. Interpolation
from a grid is done in that grid’s native coordinate system. Blending is based on the
value of (τ, ν) at an overlap point.

Because we interpolate to an interval (in two dimensions, a region) rather than a
boundary point (edge), we do not need to be overly concerned about the “boundary
closure” chosen for the implicit FD grid. Nor do we need to find characteristic variables
to ensure outflow. All the coordinate mapping, interpolation, and blending needs to
be done just once before time stepping, and each interpolatory correction consumes
a small amount of time compared to spatial derivative evaluations.

7. Numerical experiments.

7.1. The BPS method on strips. The FP, CU, and Yee methods were imple-
mented and tested in MATLAB. Each of the test problems below was given the same
initial condition. With r as the distance from a point to (0, 0.5), the initial fields are
given by

Hz(x, y) =

{
1
32 (10 + 15 cos

(
πr
0.3

)
+ 6 cos

(
2πr
0.3

)
+ 3 cos

(
3πr
0.3

)
if r ≤ 0.3,

0 otherwise,

Ex(x, y) = (y − 0.5)Hz(x, y),

Ey(x, y) = −xHz.

This arrangement creates a radially symmetric pulse with leading peak and trailing
trough. In a medium with unit wave speed, the amplitude of the Fourier component
with wavelength about 0.17 has fallen to 1% of the maximum over the whole spectrum.
We use this wavelength (when adjusted to the slowest medium in an experiment) as
the basis for determining points per wavelength (PPW).

Time integration for the BPS methods is done with MATLAB’s built-in ode113
using an error tolerance of 10−8. Hence all the errors seen should be due to spatial
discretization. The Yee method uses second-order leapfrog time stepping, with a very
small Courant number to minimize time error.

Test 1: Two dielectric materials. In this test the material parameters are

ε+ = 1, σ+ = 0, (σ∗)+ = 0,

ε− = 4, σ− = 0, (σ∗)− = 0.
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t = 0.00 t = 0.40

t = 0.80 t = 1.20

t = 1.60 t = 2.00

Fig. 4. Snapshots of the solution to the two-dielectric problem for the FP method with 3 PPW.

To achieve 3 PPW, we use a 144 × 36 grid in S− and a 144 × 27 grid in S+ for the
BPS methods. These numbers give 3 PPW in the slow medium; the extra resolution
in the fast medium was found to be necessary for stability of the FP method. The
Yee method has a fixed global resolution of 144 × 72. To get grids for other PPW
requirements, we round off multiples of these values.

In Figure 4 we show snapshots of the time history of the magnetic field Hz up
to t = 2 for the FP method with 3 PPW. The reflected and transmitted wavefronts
are clearly seen and no errors are visible. In Figure 5 we compare the BPS solutions
at t = 2 to Yee solutions at various PPW. More revealing are the errors, which are
presented in Figure 6. The FP and CU methods at 6 PPW agree with each other to
an order of magnitude better than with any of the other solutions, so we use CU-6
as the exact solution. Here we can clearly see that even at 32 PPW, Yee’s method is
less accurate than the BPS methods. The overall accuracy of Yee here is limited by
the interior discretization rather than the interface. The maximum error in Yee-32 is
about three times that of FP-4 and CU-4, so equivalent accuracy should be reached
at about

√
3 · 32 ≈ 56 PPW. Based on our fairly naive implementations, the CPU
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PPW Fictitious point (FP) Characteristic upwind (CU) Yee

3

4

8

Fig. 5. Solutions at t = 2 for the dielectric problem. Errors are seen more clearly in Figure 6.

PPW Fictitious point (FP) Characteristic upwind (CU) Yee

3

4

8

16

32

Fig. 6. Errors at t = 2 for the dielectric problem. As an indication of the scale, the maximum
error in the case of CU-4 is about 0.001; the maximum of the solution is about 0.23.



BLOCK PSEUDOSPECTRAL METHODS 1159

t = 0.00 t = 0.40

t = 0.80 t = 1.20

t = 1.60 t = 2.00

Fig. 7. Snapshots of the solution to the lossy-medium problem using the FP method with 3 PPW.

cost of Yee-56 would be more than 50 times that of FP-4 or CU-4, and the storage
requirements would be almost 200 times greater. This experiment was for a relatively
short time interval; the dispersive disadvantages of Yee’s method can be expected to
grow with time.

Test 2: Lossy material. Here we test a material with finite conductivity, as
well as nonperiodic boundaries in the y-direction. The material properties are

ε+ = 1, σ+ = 0, (σ∗)+ = 0,

ε− = 1, σ− = 2, (σ∗)− = 0.

At y = ±1 we place a perfect electrical conductor.

Figure 7 shows the results for the FP method with 3 PPW (a 72 × 18 grid in
each domain). Reflection from the perfect conductors is clearly evident, as is damping
of the wave in the lossy medium. There are also small reflections into S+ from the
interface, but the amplitudes are too small to be seen here. Results for the CU method
are visually indistinguishable from those in Figure 7.
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t = 0.00 t = 0.24

t = 0.48 t = 0.72

t = 0.96 t = 1.20

Fig. 8. Snapshots of the solution to the TD-LM absorber problem using the FP method with 3
PPW.

Test 3: TD-LM absorber. The material properties are

ε+ = 1, ρ+ = 0,

ε− = 1, ρ− = 10.

We use a 72× 18 grid in each subdomain to achieve 3 PPW in the BPS methods, and
72× 36 overall for the Yee method.

Snapshots of the solution using the FP method are displayed in Figure 8. The
absorption of the wave is clear, and no reflected wave is visible.

We can find the reflected wave by running an identical simulation in free space
(without the absorber) and subtracting off this solution in S+. The results of doing
this at t = 1.2 are shown in Figure 9. The amplitude of the reflected wave is taken as
the maximum in S+ of the difference of solutions. This number is normalized by 0.15,
which is the approximate amplitude of the wave when it encounters the boundary of
the absorber. Both BPS methods achieve good convergence as the resolution increases
(with CU being slightly better). By comparison, the Yee method yields rather large
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Fig. 9. Reflection amplitude and power for TD-LM absorbing layer. The results are relative to
the incident wave.

reflections; in [27] 50 PPW were required to achieve a reflection of −100 dB.

7.2. Composite grids. We now consider FP BPS methods as part of a larger
composite grid strategy. Our first test geometry is that shown in Figure 1. The back-
ground FD method is the sixth order, staggered, tridiagonally implicit scheme pre-
sented in [13]. A pulsed plane wave of amplitude 1 is propagated from the left. All
the time stepping is by a fourth-order Runge–Kutta method with a small, fixed step
size.

In the first case, the entire domain is free space. This is to test the fundamental
concepts of variable coefficients and interpolation. An additional ring is used inside
each of the circles of Figure 1 so that each BPS method consists of two layers. The
FD grid is also continued into the circles. The resolution of the FD grid is about
3.6 PPW, and the BPS grids are at about 2 PPW azimuthally and 3 PPW radially.
Blending depends on the depth of penetration into the annular layers. Figure 10
shows snapshots of the numerical solution. Accuracy at the final time shown is about
5.5% in the max norm, or 4.9% in the discrete 2-norm.

We now change the circular regions to perfect conductors. Figure 1 shows the
precise discretization used, including grid point locations; only one layer per BPS grid
is needed. Resolution is the same as in the previous case. We do not have an exact
solution for this situation, so we rely on the accuracy of the free-space problem and
the clear visual plausibility of Figure 11. (Note that the last frame has an artificial
reflection from the outer domain boundary.)

To further demonstrate the versatility of the method, we use a nonperiodic BPS
method in Figures 12 and 13. The FD grid is again at 3.6 PPW and the PS grids
are set at about 3 PPW. The interpolation is based on a 2D blending function in the
rectangle, which has an inclination of 70◦. In the first case of free-space propagation,
the final error is about 5.2% in 2-norm and 4.9% in max norm. The second case has a
perfectly conducting plate that extends across part of the BPS interface. We believe
these results can be extended to more general regions with corners.

We emphasize that no artificial damping has been added to any of the test cases.
The underlying numerical methods were found to be naturally stable.

8. Summary. We have presented two approaches to coupling BPS methods at
a discontinuous interface: one based on fictitious points, the other on characteristics.
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Fig. 10. Propagation of a plane wave in free space, using the composite grid method. Dashed
lines show the boundaries of BPS blocks.

The approaches are mutually exclusive. Their differences are summarized in Table 8.1.
For the test cases we have considered, the two techniques appear to have comparable
accuracy, far superior to that available from low-order methods. Either BPS method
should be easily adaptable to three dimensions, or other linear systems.

The FP method, which imposes the correct first-order continuity on the fields be-
fore numerical differentiation, is slightly more complex to implement. Because equa-
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Fig. 11. Scattering from two perfectly electrical conducting cylinders, using the composite grid
method. Shading indicates magnitude of the magnetic field (black is maximum). The dotted contours
show the zero level.

tions are not collocated at the interface, there is no ambiguity in time integration.
Moreover, one can stagger the grids as in Yee’s scheme to improve accuracy [11, 17].
In one dimension, this has led to eigenvalues that are an order of magnitude more ac-
curate, although the stable time step becomes smaller. At interfaces with continuous
coefficients, the method becomes much simpler, and additional fictitious points can
be added effortlessly to enhance accuracy significantly.
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Fig. 12. Free-space propagation with the composite method in another geometry.

The characteristic coupling method, which enforces first-order correctness after
differentiation, is somewhat easier and perhaps more familiar to implement. However,
the location of grid points at the interface requires a choice in time integration that
entails serious trade-offs. We do not see how such a method could exploit staggered
grids. An additional issue that our tests avoided arises at subdomain corners, where
the direction of “outward” flow is not clear.

A desirable improvement would be to allow the grids to change in the tangential
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Fig. 13. Scattering from a perfectly conducting plate (solid line), located along part of the BPS
interface.

direction across the interface [3, 4, 16] to allow more natural resolutions on each side.
It may be possible to use a projection-type method to do this, as in [16].

We see the BPS methods as accurate simulations of near-interface dynamics. For
problems in complex geometry, an equispaced high-order FD method operating in bulk
space can be overlapped with mapped BPS grids and linked by interpolation. We have
successfully demonstrated this concept in geometries that would prove challenging to
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Table 8.1
Comparison of BPS coupling methods.

PF CU
First-order continuity of fields Yes Yes
Higher-order continuity possible Yes No
Collocates equations at interface No Yes
Allows staggering of grid points Yes No
Special treatment required at corners No Yes

low-order finite differences or globally spectral methods.

Acknowledgment. We thank Morten Bjørhus for a valuable discussion on the
issues regarding time integrators for CU methods.
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