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To effectively forage in natural environments, organisms must
adapt to changes in the quality and yield of food sources
across multiple timescales. Individuals foraging in groups
act based on both their private observations and the
opinions of their neighbours. How do these information
sources interact in changing environments? We address this
problem in the context of honeybee colonies whose
inhibitory social interactions promote adaptivity and
consensus needed for effective foraging. Individual and
social interactions within a mathematical model of collective
decisions shape the nutrition yield of a group foraging
from feeders with temporally switching quality. Social
interactions improve foraging from a single feeder if
temporal switching is fast or feeder quality is low. When
the colony chooses from multiple feeders, the most
beneficial form of social interaction is direct switching,
whereby bees flip the opinion of nest-mates foraging at
lower-yielding feeders. Model linearization shows that
effective social interactions increase the fraction of the
colony at the correct feeder (consensus) and the rate at
which bees reach that feeder (adaptivity). Our mathematical
framework allows us to compare a suite of social inhibition
mechanisms, suggesting experimental protocols for
revealing effective colony foraging strategies in dynamic
environments.
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1. Introduction

Social insects forage in groups, scouting food sources and sharing information with their neighbours
[1–3]. The emergent global perspective of animal collectives helps them adapt to dynamic and
competitive environments in which food sources’ quality and location can vary [4]. Importantly,
decisions made by groups involve nonlinear interactions between individuals, temporally integrating
information received from neighbours [5]. For example, honeybees waggle dance1 to inform nest-mates
of profitable nectar sources [6,7], and use stop signalling2 to dissuade them from perilous food sources
[8] or curb recruitment to overexploited sources [9]. While waggle dancing rouses bees from
indecision, stop signalling prevents decision deadlock and builds consensus when two choices are of
similar quality [10]. Thus, both positive and negative feedback interactions within the group are
important for regulating collective decisions and foraging [11,12].

Honeybee colonies live in dynamic environments, in which the best adjacent nest or foraging sites can
vary across time [13,14]. Bees adapt to change by abandoning less-profitable nectar sources for those with
higher yields [15,16], and by modifying the number of foragers [17,18]. Prior studies focused on how
waggle dance recruitment or the division of individual bee roles shape colony adaptivity [19,20].
Inhibitory social interactions, whereby bees stop each other from foraging, have been mostly
overlooked as a communication mechanism for facilitating collective adaptation to change [21,22]. We
propose that inhibitory social interactions are important for foraging groups to adapt to change in a
fluid world.

To study how social inhibition shapes foraging yields, we focus on a task in which the nectar quality
of feeders is switched periodically. Related situations probably occur in nature due to the dynamics of
competitor and predator prevalence, crowding by nest-mates, and weather fluctuations [23–25].
Precisely periodic dynamics do not occur naturally but can be generated in controlled experiments
[16,20]. There are important distinctions between the goals of colonies in foraging as opposed to those
searching for a new home site. Once a colony establishes a permanent nest site, this is the starting and
ending point for each food foraging excursion. The colony does not need to reach consensus to obtain
nutrition from foraging, since food is brought to the nest regardless of how many foraging sites the
group is split between [25]. By contrast, when a honeybee swarm looks for a nest, it must reach
consensus for all bees and the queen to fly to the selected site. If not, their transition to a permanent
nest site will be delayed, or the swarm might split. Bees use stop signals to obtain this needed
consensus when house-hunting, especially when two potential sites are of similar quality [26].
Consensus is not essential when foraging for food, but, as we will show, increasing the fraction of the
colony at the best foraging site increases foraging yields.

Foraging colonies appear to be able to adapt to change. In prior studies [15,16,20], colony foraging
targets shifted in response to food quality switches, suggesting bee collectives can detect such
changes. Uncommitted inspector bees can lead bees away from feeders whose nectar quality has
dropped [20], and recruitment via waggle dancing appears to be unimportant for effective foraging in
changing environments (see also [27]). Here, we also find recruitment can be detrimental, but social
inhibition can rapidly pull bees from low- to high-yielding feeders. This, paired with ‘abandonment’
whereby bees spontaneously stop foraging, facilitates temporal discounting of prior evidence. By
contrast, strong positive feedback via recruitment causes bees to congregate at feeders even after food
quality has dropped, biasing a colony’s behaviour based on past states of the world.

We quantify the contribution of these positive and negative feedback interactions within a
mathematical model of a foraging colony. Our study focuses on four potential inhibitory social
interactions—discriminate and indiscriminate stop signalling [8,26], direct switching [28,29] and self-
inhibition—by which foraging bees alter the behaviour of other foraging bees. Self-inhibition has not
been reported in honeybee foraging experiments, but we consider its effects as a potential social
inhibitory mechanism, claiming it could be observable in behavioural assays for which it is
advantageous (e.g. single switching feeder). Strategies are compared by measuring the rate of foraging
yield over the timescale of feeder quality switches. When bees have a single feeder, social interactions
are less important unless temporal switching is fast and food quality is low, but in the case of two
feeders the performance of different forms of social interactions is clearly delineated. Direct switching,
1Worker bees perform this figure-eight dance after returning to the hive from foraging, indicating the direction and distance to water,
high-quality flowers or potential nest sites [6].
2Bees direct a high-frequency body vibration at waggle dancers to try and make them stop when problems with nest or feeding sites are
detected [8].
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Figure 1. (a) Schematic of colony foraging model with two feeders (e.g. flowers or feeder boxes), equation (2.1). Bees move along
arrows between different opinions (uncommitted or committed); arrow labels indicate interactions that provoke those opinion
switches. (b) Example feeder quality time series αA,B(t), which switch with period T min.
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by which a bee converts another forager to their own preference, is the most effective means for a colony
to adapt to feeder quality changes. Also, foraging yields are most sensitive to changes in group-wide
interactions in rapidly changing environments with lower food quality. Model linearizations allow us
to calculate a correspondence between social interaction parameters and the consensus (steady-state
fraction of bees at the high-yielding feeder) and adaptivity (the rate of switching from low- to high-
yielding feeders). This provides a clear means of determining the impact of social interactions on a
colony’s foraging efficacy.
2. Results
The mathematical model of bee colony foraging decisions assumes potential foragers may be
uncommitted or committed to one of the possible feeders [29]. Uncommitted bees spontaneously
commit by observing a feeder or by being recruited by another currently foraging bee. Committed
bees may spontaneously abandon their chosen feeder, or may be influenced to stop foraging or switch
their foraging target based on inhibitory social interactions [26,29]. A population-level model emerges
in the limit of large groups. Stochastic effects of the finite system do not qualitatively change our
results in most cases (see appendix C(f)).

We mostly focus on two-feeder (A and B) systems, in which the fraction of the foragers committed to
either feeder is described by a pair of nonlinear differential equations in the limit of large groups (see
figure 1a for a schematic)

_uA ¼ (1� uA � uB)(aA(t)þ buA)� guA � S(uA, uB) (2:1a)

and
_uB ¼ (1� uA � uB)(aB(t)þ buB)� guB � S(uB, uA), (2:1b)

where αA,B(t) are time-dependent food qualities at feeders A, B (see figure 1b for examples); βmin−1 is the
rate bees recruit nest-mates to their feeder via waggle dancing; γ min−1 is the rate bees spontaneously
abandon a feeder3; and S(x, y) is a nonlinear function describing inhibitory social interactions (e.g.
stop signalling or direct switching as described in appendix B(a)). Since commitment fractions are
3We have associated units of min−1 with interaction rates. Though αA,B(t) are in fact food qualities (see table 1 in appendix), we assume
the commitment term also carries units of min−1 via a unit rescaling, which we do not include in equation (2.1) to keep it from
becoming too cumbersome. We make a similar assumption for the single-feeder model.
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Figure 2. Colony dynamics in the single-feeder model. (a) Schematic of group foraging single feeder, equation (2.3). (b) Food
availability α(t) switches on �a and off 0 at time intervals T (min). (c) Phase line plots: equilibria of equation (2.3) within
each food quality epoch are marked as dots. Dynamic increases/decreases of the foraging fraction are indicated by right/left
arrows. Bees forage when food becomes available (a ! �a . 0 for t∈ [0, T )) and �u . 0 is stable and abandon the feeder
once food is removed (α→ 0 for t ∈ [T, 2T )) if recruitment is weaker than abandonment (β < γ). (d ) The fraction of bees
foraging u(t) tracks environmental changes. Higher/lower consensus �u is obtained by changing the balance of recruitment β
and abandonment γ. (e) Reward rate maximizing strategies vary with feeder quality (�a) and switching interval (T). Each
coloured region denotes a different optimal strategy given the environment (�a, T). The best strategies exclude recruitment
(β = 0). Boldness of letters γ and ρ denote the strength of colony behaviours that best adapt to the given environment. In
rapid (short T) or low-quality (low �a) environments (white region), strong inhibition ρ and weak abandonment γ is best,
whereas in slow or high-quality environments, inhibition ρ can be weak. We take τ = T/10 min throughout. See appendix A(c)
for optimization methods.
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bounded within the simplex 0≤ uA,B≤ 1 and 0≤ uA + uB≤ 1, the commitment (αA,B) and recruitment (β)
provide positive feedback and the abandonment (γ) and inhibition (S) provide negative feedback.

We assume feeders are large enough to accommodate all the bees in the colony and hence we neglect
the effects of crowding. Foraging efficacy is thus quantified by the group reward rate (RR), assuming net
nutrition is proportional to the fraction of the colony at a feeder uX times the current quality of that feeder
minus the foraging cost c (e.g. energy required to forage), αX(t)− c. Integrating this product and scaling
by time yields the effective RR.

J(aA,B(t), b, g, S) ¼ 1
T f

ðTf

0
[uA(t) � (aA(t)� c)þ uB(t) � (aB(t)� c)]dt: (2:2)

Given a food quality switching schedule αA,B(t) and total foraging time Tf, colonies with more efficient
foraging strategies (b, g, S) have higher RRs J.

Before studying how social inhibition shapes a bee colony foraging in two-feeder environments, we
analyse the single-feeder model, finding that commitment and negative feedback from either
abandonment or inhibition are usually sufficient for the group to rapidly adapt to feeder quality switches.
2.1. Shaping colony adaptivity and consensus for single feeders
Inhibitory social interactions in a single-feeder model can only take the form of self-inhibition, by which a
foraging bee stops another based on a detected change in food quality (figure 2a). Since transit from the
hive to the feeder takes time, we incorporate a delay of τ min, so the fraction of foraging bees u evolves as

_u ¼ (1� u)(a(t)þ bu)� gu� r(�a� a(t� t))u2, (2:3)
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where α(t) is the food quality schedule of the feeder that switches at time intervals T (min) between α(t) =

0 and a(t) ¼ �a [16,20] (figure 2b), b min�1 and g min�1 are the recruitment and abandonment rates, and
r min�1 is the rate of self-inhibition.

Colony’s adaptivity and consensus is shaped by both individual behaviour changes (commitment
α(t) and abandonment γ) and interactions (recruitment β and inhibition ρ) [26]. Periodic solutions to
equation (2.3) can be found explicitly, allowing us to compute a colony’s RR (see appendix A(b)).
Adaptive colonies rapidly return to the hive when no food is available and quickly populate the
feeder when there is food (figure 2c,d ). Equation (2.3) admits one stable equilibrium in each time
interval: when no food is available (α(t) = 0) the non-foraging (�u ¼ 0) equilibrium is stable as long as
recruitment is not stronger than abandonment (β < γ). When food becomes available (a(t) ¼ �a . 0) the
stable fraction of foragers �u increases with food quality (see figure 2c and appendix A(a)). This
fraction �u corresponds to the consensus of the group [30], and the rate the group responds to change
we deem its adaptivity.

2.1.1. Robust foraging should adapt to the environmental conditions

The performance of a colony’s interaction strategies strongly depends on the feeder quality �a and
switching time T. Colonies with stronger rates of abandonment γ and self-inhibition ρ more quickly
leave the feeder once there is no food (a(t): �a 7! 0), but have limited consensus �u when food becomes
available (a(t): 0 7! �a). Increasing the recruitment rate β, on the other hand, boosts consensus but can
slow the rate at which the group abandons an empty feeder (figure 2d ).

To quantify the effect of abandonment γ, recruitment β and self-inhibition ρ, we compute the long-
term RR of the colony, measuring the foraging yield over a single period (2T min) once the group
equilibrates to its periodic switching behaviour (see appendix A(b))

J(g, b, r) ¼ 1
2T

ð2T
0

(a(t)� c)u(t)dt, (2:4)

where 0 , c , �a is the cost of foraging and a(t) [ {0, �a} is the quality of the feeder.
For each feeder quality level, �a, there is an optimal foraging strategy (abandonment γ, recruitment β

and stop signalling ρ) within our set of possible strategies (see appendix A(c)) that maximizes the RR
J(γ, β, ρ) (figure 2e). Here, private information is sufficient for individual bees to commit to foraging
(quality sensing α(t)), and recruitment does not benefit the colony (β = 0). Reinforcing the majority
opinion via recruitment is detrimental once the environment changes, as opposed to static
environments [26,31,32]. In rapid (small T) or low food quality (�a low) environments, stronger
inhibition (large ρ) is needed to swap group commitment when the environment changes (white
region, figure 2e). This nonlinear mechanism increases the adaptivity of the group, but tempers the
initial stage of consensus after the feeder is switched on (see appendix A(a) for details). On the other
hand, when food is plentiful (high �a) (brown regions, figure 2e), inhibition should be weak (small ρ).
In intermediate environments, the best strategies interpolate these extremes.

Linearizing solutions to the model equation (2.3) provides us with a closer look at how group
dynamics impact foraging yields. In sufficiently slow environments (large T) with small delays (τ→ 0),
we can linearly approximate the evolving foraging fraction (see appendix A(d))

u(t) � �u(1� e�lont), t [ [0, T),
�ue�lofft, t [ [T, 2T),

�
(2:5)

where �u is the foraging fraction (consensus) and λon/off are the rates the group arrives/departs the feeder
once food is switched on/off. Plugging equation (2.5) into equation (2.4), we estimate the RR

J � �u
2

(�a� c) 1� 1� e�lonT

lonT

� �
� c

1� e�loffT

loffT

� �
: (2:6)

It can be shown that ∂λ J > 0 for λ = λon/off, so the RR increases with the rates at which the group switches
behaviours. These rates increase as abandonment γ and social inhibition ρ are strengthened (appendix
A(a)). Clearly, J increases with �u since more bees forage when food is available. Increasing
abandonment γ tends to decrease consensus, so the most robust foraging strategies cannot use
abandonment that is too rapid (appendix A(a)).

We conclude that the volatility (1/T) and profitability (�a) of the environment dictate the colony
interactions that yield efficient foraging strategies. One important caveat is that we bounded the
interaction parameters, so group communication cannot be arbitrarily fast. This biological bound may be
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lower in practice, explaining slow adaptation of colonies to feeder changes in experiments [15,16,20]. Our
qualitative finding, that social inhibition is more effective in slow and high-quality environments, should
be robust to even tighter bounds. We have also shown that when social inhibition is not present,
abandonment must be increased as the speed and quality of the environment is increased (appendix C(a)
and figure 7). In the next section, we extend these principles to two-feeder environments, particularly
showing how specific forms of social inhibition shape foraging yields.
2.2. Foraging decisions between two dynamic feeders
For a bee colony to effectively decide between two feeders, it must collectively inhibit foraging at the
lower quality feeder. Our mean-field model, equation (2.1), generalizes house-hunting swarm
models with stop signalling [10,26,32] to a foraging colony in a dynamic environment with different
forms of social inhibition (figure 1). How do these inhibitory interactions contribute to foraging
efficacy? Honeybees can inhibit nest-mates foraging at potentially perilous or crowded feeders
[8,24,25,33], but group-level effects of these mechanisms are not well studied in dynamic
environments [34]. As we will show, the specific form of social inhibition can strongly determine how
a colony adapts to change.
2.2.1. Forms of social inhibition

Generalizing previous models [26,28], we consider four forms of social inhibition (all parametrized by ρ
as before): (a) direct switching: bees foraging at the superior feeder directly switch the preference of
opposing foragers to the better feeder; (b) indiscriminate stop signalling: when two foraging bees
meet, one will stop foraging; (c) self-inhibition: when two bees foraging at the same feeder meet, one
will stop foraging; and (d) discriminate stop signalling: when bees foraging at different feeders meet,
one stops foraging. These interactions are visualized in figure 3a–d and their evolution equations are
given in appendix B(a) (see also electronic supplementary material of [26]).
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We can divide these forms of social inhibition into two classes, based on the group foraging dynamics
they produce: monostable or bistable consensus behaviours. The first three forms of social inhibition
yield groups with monostable consensus behaviours (see appendix B(b) and electronic supplementary
material of [26]), tending to a single stable foraging fraction when the feeder qualities are fixed (figure
3e). The colony will thus mostly forage at the higher-yielding feeder. On the other hand, strong
discriminant stop signalling can produce colonies with bistable consensus behaviours (figure 3f ). Such
hysteresis in stop-signalling populations was also identified in [10]. As a result, the group can remain
stuck at an unfavourable feeder, after the feeder qualities are switched. This is similar to ‘winner-take-
all’ regimes in mutually inhibitory neural networks [29,35]. Inhibition from bees holding the colony’s
dominant preference is too strong for bees with the opposing preference to overcome, even with new
evidence from the changed environment.
2.2.2. Direct switching leads to most robust foraging

To determine the most robust forms of social inhibition for foraging in dynamic environments, we
studied how the rate of reward, equation (2.2), depended on the foraging strategy used. Environments
are parametrized by the time between switches T (min) and the better feeder quality �a and the lower
feeder quality �a=2, which periodically switch between feeders A and B. As in the single-feeder case,
we tune interactions of each strategy (figure 3a–d ) to maximize RR over a discrete set of strategies (see
appendix B(c) for details). Comparing each social inhibition strategy type’s RR in different
environments (figure 4a), we find direct switching generally yields higher RRs than other strategies.
Differences in the effectiveness of distinct strategies are most pronounced at intermediate
environmental timescales T. As expected, RRs increase with the maximal feeder quality �a (figure 4b,c).

Direct switching is probably a superior strategy because it allows for continual foraging (figure 3a), as
opposed to other strategies which interrupt foraging with an uncommitted stage (figure 3b–d ) and rely
on recruitment β to restart foraging. To study how interactions should be balanced to yield effective
foraging, we examined how to optimally tune (β, γ, ρ) across environments in the direct switching
model (figure 5). Analyses of other models are shown in figures 8 and 9 of appendix C(b).

As in the single-feeder environments, we see a delineation between strategies optimized to slow/
high-quality environments as opposed to rapid/low-quality environments. Weak recruitment β
(figure 5a) and abandonment γ (figure 5b), and strong direct switching (figure 5c) yield the highest
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RRs in slow (large T) and high-quality (large �a) environments. Recruitment β may be inessential since the
food quality signals �a and �a=2 are significantly different. Also, direct switching ρ provides strong
adaptation to change. In fact, for virtually all environments, we found it was best for ρ to be as strong
as possible. The strategy changes significantly when the environment is fast (small T) and low quality
(small �a), in which case abandonment γ should be strong, and in extreme cases direct switching ρ should
be made weak (figure 5b,c). Changes in the optimal recruitment strength are less systematic, and there are
stratified regions in which the best β can change significantly for small shifts in environmental parameters.
Overall, a mixture of abandonment and direct switching is more effective in more difficult environments
(lower T and �a).

Direct switching does underperform self-inhibition in rapid environments (figure 4a), since the
colony can forage more efficiently by keeping some bees uncommitted, and not risking the cost of
foraging at the lower-yielding feeder. Strong self-inhibition ρ keeps more bees from foraging. Overall,
both direct switching and self-inhibition can perform similarly, as recruitment interactions can be
strengthened in self-inhibiting colonies, so more bees return to foraging after such inhibitory
encounters (figure 4). This balances adaptivity, so the colony’s preferences change with the
environment, and consensus, so the colony mostly builds up to forage at the better feeder given
sufficient time. We now study this balance in each model using linearization techniques. Overall,
these measures can account for discrepancies between the RR yields of colonies using different social
inhibition strategies.

2.2.3. Linearization reveals strategy adaptivity and consensus

Each interaction mechanism differentially shapes both the fraction of bees that forage at the better feeder
in the long-time limit (consensus �u) and the rate at which this bound is approached (adaptivity λ).
Focusing specifically on these measures, we demonstrate both how they shape foraging efficiency and
how they distinguish each social inhibition strategy.

We leverage our approach developed for the single-feeder model, and consider linear approximations
of equation (2.1) in the limit of long switching times T (see appendix B(d) and figure 10 in appendix C(c)).
In the specific case c :¼ �a=2, we can approximate the RR solely in terms of the consensus �u (long-term
fraction of bees at the better feeder) and adaptivity λ (rate this fraction is approached):

J � �a

2
�uþ (1� 2�u)

1� e�lT

lT

� �
: (2:7)

The RR J increases with consensus �u and adaptivity λ (figure 6a). Efficient colonies rapidly recruit a
high fraction of the colony to the better feeder. Consensus and adaptivity are approximated in each
model using linear stability (appendix B(b)). The impact of varying abandonment γ and social
inhibition ρ on �u and λ is consistent with our optimality analysis of the full nonlinear model
(figure 6b,c): social inhibition generates more robust switching between feeders than abandonment.
While strengthening abandonment adaptivity γ can increase λ, it decreases consensus �u since it causes
bees to become uncommitted (figure 6b). Such consensus–adaptivity trade-offs do not occur in most
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models, as social inhibition ρ is strengthened (see also figures 11 and 12 in appendix C(d)). Only
indiscriminate stop signalling exhibits this behaviour (figure 6c), but the other three models (direct
switching, discriminate stop signalling and self-inhibition) do not. Rather, consensus �u increases with
social inhibition, while adaptivity can vary nonmonotonically (direct switching) or even decrease (self-
inhibition). Overall, direct switching colonies attain the highest levels of consensus and adaptivity,
consistent with our finding that it is the most robust model (figure 4).

Direct switching sustains both high levels of consensus �u and adaptivity λ (figure 6c; see also figures 11
and 12 in appendix C(d)). The resulting colonies quickly discard their prior beliefs about the highest-yielding
feeder, exhibiting leaky evidence accumulation [36]. On the other hand, strong abandonment γ (figure 6b) or
indiscriminate stop signalling (figure 6c) increase adaptivity but limit consensus �u at the better feeder.
Strengthening recruitment β leads to stronger consensus �u at the expense of adaptivity λ to environmental
changes. Bee colonies probably use a combination of social inhibition and abandonment mechanisms [37],
which would allow flexibility in managing consensus–adaptivity trade-offs in dynamic environments.
3. Discussion
Foraging animals constantly encounter temporal and spatial changes in their food supply [38]. The
success of foraging animal groups thus depends on how efficiently they communicate and act upon
environmental changes [39]. Our bee colony model analysis pinpoints specific social inhibition
mechanisms that facilitate adaptation to changes in food availability and consolidate consensus at
better feeders. If bees interact by direct switching, they can immediately update their foraging
preference without requiring recruitment, keeping foragers active following environmental changes.
Recruitment is less important to the foraging success of a colony in dynamic conditions; bees can
initiate commitment via their own scouting behaviour. Individuals should balance their social and
private information in an environment-dependent way to decide and forage most efficiently [40,41].

Efficient group decision-making combines individual private evidence accumulation and information
sharing across the cohort [42]. However, in groups where social influence is strong, opinions generated
from weak and potentially misleading private evidence can cascade through the collective, resulting in
rapid but lower value decisions [10,43,44]. Our analysis makes these notions quantitatively concrete by
associating the accuracy of the colony’s foraging decisions with the consensus fraction at the better feeder
and the speed of decisions with the adaptivity or rate the colony approaches steady-state consensus
(figure 6). The best foraging strategies balance these colony-level measures of decision efficiency.
Social insects do appear to balance the speed and accuracy of decision to increase their rate of food
intake [45,46], and collective tuning is probably influenced by individuals varying their response to
social information.

We find that social recruitment can speed along initial foraging decisions, but it can limit adaptation to
change. This is consistent with experimental studies that show a reduction in positive feedback can help
collectives steer away from lower value decisions. For example, challenging environmental conditions
(e.g. volatile and low food quality) are best managed by honeybee colonies whose individuals do not
wait for recruitment but rely on their own individual scouting [27]. Ants encountering crowded
environments tend to deposit less pheromone to keep their nest-mates from less-efficient foraging paths
[47]. These experimental findings suggest social insects adapt to changing environmental conditions by
limiting communication that promotes positive feedback [48]. Foragers must then be proactive in



royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:191681
10
dynamic environments, since they cannot afford to wait for new social information [49]. Thus, the

advantages of social learning depend strongly on environmental conditions [50].
In concert with a reduction in recruitment, we predict that honeybee colonies foraging in volatile

environments will benefit from strengthening inhibitory mechanisms at the individual and group
level. Bees enacting social inhibition dissuade their nest-mates from foraging at opposing feeders.
We found the most efficient form of social inhibition is direct switching whereby bees flip the opinion
of committed bees to their own opinion. So do honeybees use this mechanism in dynamic
environments? Observations of bee colonies making nest site decisions show scouts directly switching
their dance allegiance [28,51], but these events seem to be relatively rare in the static environments of
typical nest site selection experiments [31]. Other forms of social inhibitory signals, especially stop
signalling, appear to be used to promote consensus in nest decisions [10,26] and escaping predators
while foraging [8,24]. Thus, the role and prevalence of social inhibition as a means for foraging
adaptively in dynamic environments warrants further investigation.

Most work studying the effects of social inhibition on honeybee colony decisions has focused on
swarms choosing a place to build a nest from sites whose qualities are fixed in time [26,28]. Social
inhibition is needed in this context to promote consensus, generating a consistent opinion across the
swarm and preventing the deadlock and group splitting. On the other hand, it is not immediately
obvious that social inhibition would improve foraging if it primarily increases consensus, since
colonies can obtain and store food even when foragers are split between multiple feeders, though stop
signals can reduce crowding [25]. Nonetheless, we found that when the colony can rapidly switch
opinion so nearly all bees agree to forage from the most profitable feeder, this does increase the
nutrition yield of the colony overall. However, consensus is only advantageous in dynamic
environments if it does not come at a cost to adaptivity: the opinion around which consensus is built
should change with the environment.

Our simple parametrized model, developed from previously validated house-hunting models
[26,28,29,32], is amenable to analysis and could be validated with time-series measurements from
dynamic foraging experiments. Past experimental work focused on shorter time windows in which
only a few switches in feeder quality occurred [16,20], which may account for the relatively slow
adaptation of the colonies to environmental changes. We predict bees will slowly tune their social
learning strategies to suit the volatility of the environment, but this could require several switch
observations. Foraging tasks conducted within a laboratory could be controlled to track bee
interactions over long time periods using newly developed automated monitoring techniques [52].
Our study also identifies key regions in parameter space in which different foraging strategies diverge
in their performance, suggesting that placing colonies in rapid environments with relatively low food
supplies will help distinguish which social communication mechanisms are being used.

Previous computationalmodelling studies of honeybee collective decisions primarily focused on groups
solving house-hunting problems in static environments [26,29], emphasizing how social interactions shape
the speed at which consensus is obtained within a collective. However, less attention has been paid to how
such collectives must adapt to change, and how social communication determines group adaptivity. Some
previous work has discussed the importance of uncommitted inspector bees in affording group adaptivity
[20], but our work is the first to systematically compare how different forms of social communication
[8,26,28,29] shape group adaptivity. Social communication by which one bee can switch the foraging
preference of another appear to be most effective in providing groups with the ability to both build
consensus and adaptive to change. Our findings are fairly robust to considerations of interaction
heterogeneity within the colony (see appendix C(e) and figure 13). A colony whose bees have
individualized rates of recruitment and abandonment exhibits slight decreases in consensus and
adaptivity, but qualitatively the group still remained responsive to change.

There are a number of possible extensions of our work here. For instance, one could consider separate
populations of scouts and foraging recruits as in some previous modelling studies [1,53]. Our analysis
assumes bees can fluidly transition between scouting and foraging behaviour, as documented in
several previous studies [54,55]. Overall, a strict and unchanging division of labour within the hive
provides an incomplete description of colony organization. For instance, bees may switch to foraging
when the environment demands it [56] or when socially signalled to do so [57], and thus a strict caste
divide between scouts and recruits may be unrealistic [55]. Honeybees’ roles appear to be strongly
determined by the changing requirements of the colony, such as the influx or availability of nectar,
rather than strictly due to some genetic predisposition [54,58]. Bees that scout and forage tend to be in
the same life cycle phase, and as such are more amenable to temporal caste switching [59]. Such
flexibility may even be a rule rather than exception to colony labour organization [60]. We could also
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have considered the effects of crowding at feeders [25], so nutrition yields would scale sublinearly with

the fraction of bees at the feeder, possibly reordering the efficacy of social inhibition strategies.
Collective decision strategies and outcomes can depend on group size [61,62], though decision

accuracy does not necessarily increase with group size [63]. We approximated bee colony dynamics
using a population level model, which is the deterministic mean-field limit of a stochastic agent-based
model [26]. Finite group size considerations would result in stochastic models, in which the same
conditions can generate different colony dynamics [10]. The qualitative predictions of our mean-field
model did not change dramatically when considering stochastic finite-size effects (see appendix C(f)
and figure 14). However discriminate stop-signalling colonies exhibit bistable decision dynamics
(figure 3d,f ), so the stochasticity in the finite-sized model could allow colonies to break free from less-
profitable feeders, similar to noise-driven escapes of particles in double potential well models [64].
Fluctuation-induced switching may thus provide an additional mechanism for flexible foraging
[65,66], and would be an interesting extension of our present modelling work. Moreover, besides their
importance to understanding decisions of biological collectives, our mathematical modelling results
could inform efficient strategies for organizing distributed decision-making in inanimate groups, like
swarm robotics and artificial communication networks [67,68].
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Appendix A. Colony foraging dynamics for a single switching feeder
Consider model equation (2.3) for which the food quality α(t) switches between two values a(t) ¼ �a

and 0 at length T min, similar to previous experiments [16,20]. Before analysing the temporal
dynamics u(t) of the colony in response to food quality switches, we study equilibria and their
stability to determine how different interactions within the colony impact foraging consensus and
the rate at which it is approached.
(a) Equilibrium and linear stability analysis
At any given time t, the dynamics of equation (2.3) are determined by the food quality function α(t)
values at t and t− τ. In the time interval, t∈ [0, τ], a(t) ¼ �a and α(t− τ) = 0 equilibria of equation (2.3)
are solutions to

0 ¼ (1� u)(�aþ bu)� gu� r�au2,

which can be solved using the quadratic formula

�u1+ :¼ 1
2

B+
ffiffiffiffi
D

ph i
, B ¼ b� g� �a

bþ r�a
and D ¼ B2 þ 4�a

bþ r�a
, (A 1)

with linear stability given by the eigenvalues

l1+ ¼ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(b� �a� g)2 þ 4(bþ r�a)�a

q
,

so the positive equilibrium �u1þ is stable and the negative (extraneous) equilibrium �u1� is unstable. On
t∈ [τ, T ], a(t) ¼ a(t� t) ¼ �a the equilibrium equation

0 ¼ (1� u)(�aþ bu)� gu:

has solutions and eigenvalues

�u2+ ¼
b� �a� g+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(b� �a� g)2 þ 4b�a

q
2b

and l2+ ¼ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(b� �a� g)2 þ 4b�a

q
:

https://github.com/sbidari/dynamicbees
https://github.com/sbidari/dynamicbees
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Again, the positive equilibrium �u2þ is stable and the negative equilibrium �u2� is unstable. On t∈ [T, T + τ),

α(t) = 0 and a(t� t) ¼ �a, equilibria satisfy 0 = (1− u)βu− γu, so

�u30 ¼ 0 and �u31 ¼
b� g

b
,

and on t∈ [T + τ, 2T ), α(t) = α(t− τ) = 0, so 0 ¼ (1� u)bu� gu� r�au2 and

�u40 ¼ 0 and �u41 ¼
b� g

bþ r�a
:

Both pairs of equilibria have associated eigenvalues

l0 ¼ b� g and l1 ¼ g� b,

so the zero equilibria �u30 ¼ �u40 ¼ 0 are stable when γ > β and the non-zero equilibria �u31 and �u41 are positive
and stable when β > γ. Thus, to ensure no bees continue foraging when there is no food, abandonment γ
should be stronger than recruitment β.

We deem �u :¼ �u2þ the consensus level, as it is the upper limit on the fraction of the bees
foraging at the feeder, when it supplies food. The eigenvalues lon :¼ l2þ and loff :¼ l40 define the
adaptivity of the colony, or the rates of arrival to/departure from the feeder when it does/does not
supply food.

(b) Periodically forced colony foraging
Long-term periodic solutions to equation (2.3) result from switching the food quality α(t) between �a

and 0 every T min. These are obtained by solving equation (2.3) iteratively using separation of
variables. For example, when a(t) ; �a and α(t− τ)≡ 0 we can separate variables and factor the
resulting fraction

du
u� �uþ

� du
u� �u�

¼ �(bþ r�a)
ffiffiffiffi
D

p
dt,

where D is defined in equation (A 1). Integrating, isolating u and applying u(0) = u0, we find

u(t) ¼ �uþ(u0 � �u�)� �u�(u0 � �uþ)e�(bþr�a)
ffiffiffiDp
t

u0 � �u� � (u0 � �uþ)e�(bþr�a)
ffiffiffiDp
t

, (A 2)

consistent with our equilibrium analysis showing limt!1 u(t) ¼ �u ¼ �u2þ. Now, taking a(t) ; �a on t∈ [2nT,
(2n + 1)T ) for n = 0, 1, 2, 3,… and �a ; 0 otherwise, we will have

_u ¼ (1� u)(a(t)þ bu)� gu� R(t)u2, (A 3)

whereR(t) ; r�a for t∈ [2nT+ τ, (2n + 1)T + τ) and R(t)≡ 0 otherwise. The periodic solution to equation (A 3)
can be derived self-consistently by starting with an unknown initial condition u(0) = u0, and then requiring
u(2T ) = u0. Thus, within t∈ [0, τ), we have the solution given by equation (A 2), and

u1 :¼ u(t) ¼ �uþ(u0 � �u�)� �u�(u0 � �uþ)e�(bþr�a)
ffiffiffiDp
t

u0 � �u� � (u0 � �uþ)e�(bþr�a)
ffiffiffiDp
t

: (A 4)

At t = τ, self-inhibition vanishes and the solution is a special case of equation (A 2) for which ρ = 0. Thus, we
can solve equation (2.3) with u(τ) = u1 as an initial condition and write for t∈ [τ, T )

u(t) ¼ �uþ(u1 � �u�)� �u�(u1 � �uþ)e�b
ffiffiffiDp
t

u1 � �u� � (u1 � �uþ)e�b
ffiffiffiDp
t

, (A 5)

so that at t = T, we have

u2 :¼ u(T) ¼ �uþ(u1 � �u�)� �u�(u1 � �uþ)e�b
ffiffiffiDp
(T�t)

u1 � �u� � (u1 � �uþ)e�b
ffiffiffiDp
(T�t)

: (A 6)

Beyond t = T, the dynamics is governed by a special case of equation (A 5) forwhich (�uþ, �u�) ¼ (1� (g=b), 0)
if β > γ and (�uþ, �u�) ¼ (0, 1� (g=b)) if β < γ, so on t∈ [T, T + τ):

u(t) ¼ u2(b� g)
bu2 � (bu2 þ g� b)e(g�b)t ,
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for β≠ γ, and the limit as γ→ β is u(t) = u2/(1 + u2βt), which can both be evaluated at t = T + τ to yield

u3 :¼ u(T þ t) ¼
u2(b�g)

bu2�(bu2þg�b)e(g�b)t : b = g
u2

1þu2bt
: b ¼ g:

(
(A 7)

At t = T + τ, self-inhibition returns since α(t− τ)≡ 0, increases the negative feedback acting on foragers.
The long-term steady state is determined by the balance of abandonment and recruitment:
(�uþ, �u�) ¼ (b� g=bþ r�a, 0) if β > γ and (�uþ, �u�) ¼ (0, b� g=bþ r�a) if β < γ. Thus,

u(t) ¼ u3(b� g)
(bþ r�a)u3 � ((bþ r�a)u3 þ g� b)e(g�b)t

for β≠ γ, and in the limit β→ γ, u(t) ¼ u3=(1þ u3(bþ r�a)t). Both expressions can be evaluated at t = 2T,
and self-consistency of the periodic solution requires u4≡ u0,

u0 ¼ u4 :¼ u(2T) ¼
u3(b�g)

(bþr�a)u3�((bþr�a)u3þg�b)e(g�b)(T�t) : b = g
u3

1þu3(bþr�a)(T�t) : b ¼ g

(
(A 8)

equations (A 4), (A 6), (A 7) and (A 8) can be solved explicitly for (u0, u1, u2, u3), although the expressions
are quite cumbersome, so we omit them here. These analytic solution techniques were used to generate
the foraging fraction trajectories plotted in figure 2d and to identify model parameter that optimize the
RR J in different environments (plotted in figure 2e) as we now describe.

(c) Optimizing reward rate over strategy sets
We optimized the RR of the colony foraging a single switching feeder by restricting the strategies to a
discrete set of interaction parameter values. The RR in large regions of parameter space was relatively
flat since it involves the sum of several exponentially small terms. To avoid spurious convergence, we
focused on each parameter’s relevant order of magnitude which led to the highest long-term RR. For
a given environment (α, T ), we identified the combination of interaction parameter values from the
set (β, γ, ρ)∈ {0.01, 0.1, 1, 10}3 (in min−1) yielding the highest RR J computed from equation (2.4).
Bounds on interaction parameters were imposed so that a colony could not completely dispense with
any interaction or feedback mechanism or strengthen any to be arbitrarily rapid. This was performed
over a mesh of environmental parameters �a [ [0:5, 20] (at D�a ¼ 0:1 steps) and T∈ [1, 200] (at ΔT =
1 min). We found that β = 0.01min−1 was optimal across all environment types, but that γ and ρ
varied in strength dependent on the environmental conditions (figure 2e).

(d) Linear approximation of the periodic solution and reward rate
The RR equation (2.4) for the single feeder can be estimated by linearly approximating the colony
dynamics using results from our equilibrium analysis. Assuming the interval T and between feeder
quality switches (a: �a 7! 0; a: 0 7! �a) and the delay τ are large, the colony will nearly equilibrate
before each switch, suggesting the following linear approximation of the foraging fraction:

u(t) ¼
�u1 þ e�l1t(�u4 � �u1), t [ [0, t]

�u2 þ e�l2(t�t)(�u1 � �u2), t [ [t, T]
�u3 þ e�l3(t�T)(�u2 � �u3), t [ [T, T þ t]
�u4 þ e�l4(t�T�t)(�u3 � �u4), t [ [T þ t, 2T],

8>><
>>:

where �ui are the stable equilibria and �u3 ¼ �u4 ¼ 0 when β < γ. Considering this case, we can compute the
RR using the single-feeder version of equation (2.2) in the long-time limit

J ¼ 1
2T

ð2T
0

u(t)(a(t)� c)dt

¼ �a� c
2T

ðt
0
�u1(1� e�l1t)dtþ �a� c

2T

ðT�t

0
(�u2 þ e�l2t(�u1 � �u2))dt� c

2T

ðt
0
�u2e�l3tdt

¼ �a� c
2T

�u1t� �u1
1� e�l1t

l1

 !
þ �a� c

2T
�u2(T � t)þ �u1 � �u2

l2
(1� e�l2(T�t))

� �

� c
2T

�u2

l3
(1� e�l3t)

� �
:
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In the long interval limT→∞ and short delay limτ→0 (omitting the intermediate delay equilibria) limits, we

can simplify the expression as

J ¼ �u
2

(�a� c) 1� 1� e�lonT

lonT

� �
� c

1� e�loffT

loffT

� �
,

where �u ¼ �u2, lon ¼ l2 ¼ l2þ and λoff = λ4 = λ0, as written in equation (2.6). For the specific case in which
�a ¼ 2 and c = 1, we can write this more cleanly as

J(a(t), b, g, r) ¼ �u
2

1� 1� e�lonT

lonT

� �
� 1� e�loffT

loffT

� �
:

Clearly, increasing consensus (�u) and adaptivity (λon/off ) increases the RR.
As β→ 0, λoff =−γ, �u ¼ 2=[2þ g], with λon =−(2 + γ). Increasing the rate of abandonment γ decreases

consensus �u but will increase the adaptivity of the colony as both λoff =−γ and λoff =−(γ + 2) increase in
amplitude. Optimizing the RR then requires balancing these two effects. Identifying the γ value that
maximizes the RR can then be done by finding the maximum of

J(a(t), 0, g, r) ¼ 1
2þ g

1� 1� e�(2þg)T

(2þ g)T

� �
� 1� e�gT

gT

� �
,

given by the γ solving ∂γ J(α(t), 0, γ, ρ) = 0. This analysis can be extended to consider the solutions to the
full nonlinear equations, but the general trends are the same. Increasing negative feedback will tend to
limit consensus while making the colony more adaptive to change.

Appendix B. Dynamics of colonies foraging at two switching feeders
Here, we provide more details and analysis on our colony model equation (2.1) foraging between two
feeders. As in the single-feeder model, we can leverage equilibria, stability and linearization to better
understand the impact of model tuning on the RRs of the foraging collective.

(a) Forms of social inhibitions
Here, we provide detailed descriptions of the dynamical models associated with each type of social
inhibition used in the model of a bee colony foraging two feeders, as generalized in equation (2.1). In
the main text, we simply indicate the general form of social inhibition with the function S(uA, uB), but
we provide the functional form for these interactions in the descriptions below.

Direct switching model. A bee committed to a feeder inhibits bees with opposing opinions by causing
them to switch the feeder to which they are committed

_uA ¼ (1� uA � uB)(aA(t)þ buA)� guA � r(aB(t� t)� aA(t� t))uAuB

and

_uB ¼ (1� uA � uB)(aB(t)þ buB)� guB � r(aA(t� t)� aB(t� t))uAuB,

where τ (in minutes) indicates the time delay required for the strength of the direct switching signal
(based on detected food quality) to update following a switch in the food quality. Note that the social
inhibition terms in either evolution equation (uA or uB) will necessarily be of opposite sign since each
is the negative of the other and αA(t)≠ αB(t) for all t > 0.

Indiscriminate stop-signal model. A bee committed to a feeder indiscriminately inhibits bees committed
to either feeder, affecting both bees committed to the same feeder and those committed to a different
feeder, and causes them become uncommitted

_uA ¼ (1� uA � uB)(aA(t)þ buA)� guA � 1
2
r(aA(t� t)u2A þ aB(t� t)uAuB)

and

_uB ¼ (1� uA � uB)(aB(t)þ buB)� guB � 1
2
r(aB(t� t)u2B þ aA(t� t)uAuB),

where τ (in minutes) is the time delay required for food quality switch detection as in the direct switching
model. This form of social inhibition will always lead to negative feedback to both populations as long as
ρ > 0.
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Self-inhibition model. A bee committed to one feeder inhibits bees committed to the same feeder,
causing them to become uncommitted

_uA ¼ (1� uA � uB)(aA(t)þ buA)� guA � r(�a� aA(t� t))u2A

and

_uB ¼ (1� uA � uB)(aB(t)þ buB)� guB � r(�a� aB(t� t))u2B,

where τ is the time delay. Self-inhibition is only active in the population of foragers for which the colony
detects there is less than the maximum supply of food available (aA,B(t� t) , �a).

Discriminate stop signal. A bee committed to a feeder inhibits bees committed to different feeders,
causing them to become uncommitted

_uA ¼ (1� uA � uB)(aA(t)þ buA)� guA � raB(t� t)uAuB

and

_uB ¼ (1� uA � uB)(aB(t)þ buB)� guB � raA(t� t)uAuB,

where τ is the time delay. The strength of the stop signal varies with the detected quality of each feeder.
sci.6:191681
(b) Equilibria and linear stability
We determined linear approximations of periodic solutions to the full nonlinear model
equation (2.1) by studying the equilibria and linear stability properties of the full system. For any t,
the dynamics of equation (2.1) is governed by the piecewise constant values of the food quality
functions denoted �at

A,B ¼ aA,B(t) and �at
A,B ¼ aA,B(t� t) as the actual current and delay-observed values

so that

0 ¼ (1� �uA � �uB)(�at
A þ b�uA)� g�uA � S(�uA, �uB; r, �at

A, �a
t
B) (C 1a)

and

0 ¼ (1� �uA � �uB)(�at
B þ b�uB)� g�uB � S(�uB, �uA; r, �at

B, �a
t
A), (C 1b)

where S(x, y; ax, ay) is the nonlinear function describing inhibitory social interactions, parametrized by
the strength ρ and delayed quality observations �at

A,B (see §3 for exact forms). Since equation (B 1) is
autonomous for piecewise time intervals, equilibria can be defined on each interval [69]. Equation
(B 1) can be explicitly solved using the quartic equation for all models and time intervals, but the
expressions for �uA,B are unwieldy, so we do not write them here.

Linear stability was classified using the eigenvalues l+ ¼ 1=2[Tr(D)+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr(D)2 � 4det(D)

p
] of the

Jacobian about fixed points (uA, uB) ¼ (�uA, �uB),

D ¼ ��aþ b(1� �uB � 2�uA)� g� @uAS(�uA, �uB) ��a� b�uA � @uBS(�uA, �uB)
� �a

2 � b�uB � @uAS(�uB, �uA) � �a
2 þ b(1� �uA � 2�uB)� g� @uBS(�uB, �uA)

� �
:

Specific cases are stable nodes (with two negative real eigenvalues, λ± < 0) and saddles (with
one negative/one positive real eigenvalue, l+ _ 0) as illustrated figure 3. Direct switching, self-
inhibition and indiscriminate stop signalling yield monostable behaviour—a phase space only
containing a single stable node (figure 3e)—and the majority of bees forage at the high-yielding feeder
(�uA . �uB).

Discriminate stop-signalling model can generate bistability for weak abandonment γ and strong
recruitment β and stop signalling ρ. In this case, the phase space is occupied by two stable nodes
separated by a saddle point (figure 3f ). In this case, consensus is lower in some phases of the foraging
cycle, since discriminate stop signalling prevents switching between feeders.
(c) Optimizing reward rate over strategy sets
As in the one-feeder case, we identified the set (β, γ, ρ)∈ {0.001, 0.1, 1, 10}3 (min−1) yielding the highest
RR from equation (2.2) in each environment (�a, T). For each parametrized form of social inhibition, we
numerically found periodic solutions to equation (2.1) taking aA ¼ �a and aB ¼ �a=2 initially and flipping
the feeder qualities every T min. This was performed over a mesh of environmental parameters
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�a [ [0:5, 20] (at D�a ¼ 0:1 steps) and T∈ [1, 200] (at ΔT = 1 min). See figure 5 for direct switching and

figures 8 and 9 for discriminate and indiscriminate stop-signalling model, respectively. For the self-
inhibition model, the optimal strategy is low abandonment (γ = 0.01min−1) with high recruitment and
social inhibition (β = ρ = 10min−1). The maximum RR is plotted for each of the four models in a given
environmental condition (food quality �a and switching period T) in figure 4.
publishing.org/journal/rsos
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(d) Linear approximation of the periodic solution
To compute consensus and adaptivity, we derived a linear approximation to the period solution in
the two-feeder case. Feeder qualities started with aA(t) ¼ �a and aB(t) ¼ �a=2 and switched every
T min. Assuming T large, the colony will equilibrate between condition switching, yielding the
following estimate of the uA(t) part of the periodic solution

uA(t) ¼

�u1 þ e�l1t(�u4 � �u1), t [ [0, t]
�u2 þ e�l2(t�t)(�u1 � �u2), t [ [t, T]
�u3 þ e�l3(t�T)(�u2 � �u3), t [ [T, T þ t]
�u4 þ e�l4(t�T�t)(�u3 � �u4), t [ [T þ t, 2T],

8>>><
>>>:

where �ui are stable equilibria in each time interval and λj are the least-negative associated eigenvalues
determining the decay rate to the fixed point. There is a similar expression for the opposing feeder
population, uB(t) = uA(t + T ). This implies λ1 = λ3 and λ2 = λ4. In the long-time limit, the RR equation
(2.2) can be computed

J ¼ 1
Tf

ðTf

0
[uA(t) � (aA(t)� c)þ uB(t) � (aB(t)� c)]dt

¼ �a� c
2T

ðt
0
(�u1 þ e�l1t(�u4 � �u1))dtþ �a=2� c

2T

ðt
0
(�u3 þ e�l1t(�u2 � �u3))dt

þ �a� c
2T

ðT�t

0
(�u2 þ e�l2t(�u1 � �u2))dtþ �a=2� c

2T

ðT�t

0
(�u4 þ e�l2t(�u3 � �u4))dt

þ �a=2� c
2T

ðt
0
(�u3 þ e�l1t(�u2 � �u3))dtþ �a� c

2T

ðt
0
(�u1 þ e�l1t(�u4 � �u1))dt

þ �a=2� c
2T

ðT�t

0
(�u4 þ e�l2t(�u3 � �u4))dtþ �a� c

2T

ðT�t

0
(�u2 þ e�l2t(�u1 � �u2))dt

¼ �a� c
T

�u1tþ �u4 � �u1

l1
(1� e�l1t)

� �
þ �u2(T � t)þ �u1 � �u2

l2
(1� e�l2(T�t))

� �� �

þ �a=2� c
T

�u3tþ �u2 � �u3

l3
(1� e�l3t)

� �
þ �u4(T � t)þ �u3 � �u4

l4
(1� e�l4(T�t))

� �� �
:

Considering the limit of long time intervals limT→∞ and short delays limτ→0 and the case in which
�u2 þ �u4 � 1 (no uncommitted bees in the long-time limit) we further simplify the expression

J ¼ (�a� c) �u2 þ (1� 2�u2)
1� e�l2T

l2T

" #
þ �a

2
� c

� 	
1� �u2 þ (2�u2 � 1)

1� e�l4T

l4T

" #
:

For the specific case in which c ¼ �a=2, we remove the superscripts so �u ¼ �u2 and λ = λ2

J ¼ �a

2
�uþ (1� 2�u)

1� e�lT

lT

� �
:

The gradient of the RR along �u and λ can then be computed as

@�uJ ¼ �a

2
1� 2

1� e�lT

lT

� �
and @lJ ¼ (2�u� 1)

�ae�lT

2l2T
(elT � lT � 1),

showing J is increasing in �u as long as λT > 1.594 and increasing in λ as long as �u . 0:5.



Table 1. Model parameters for single-feeder equation (2.3) and two-feeder equation (2.1) foraging models.

parameter description numerical range citation

�a quality of food source [0.5, 20] M(mol l−1) [7,20]

β recruitment rate O(10�1 � 101) min−1 [1,26] supplement

γ abandonment rate O(10�2 � 101) min−1 [26] supplement

ρ rate of social inhibition O(10�1 � 101) min−1 [26] supplement

T period of environment switch 1–200 min [20]

τ time delay for switch to be sensed 0:1� T min —

c cost of foraging �a
2 —
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Appendix C. Supplemental figures and table
(a) Matching abandonment rate to switching rate in a single dynamic feeder
Considering the single-feeder foraging colony model without nonlinear negative feedback (ρ = 0 so
delays τ are irrelevant), we can explicitly compute the RR J as a function of other parameters. We
found that the best strategies do not use recruitment (β = 0), so the abandonment rate γ is the only
parameter that needs to be tuned with the environmental switching time T and food quality �a.

Thus, equation (2.3) is linear and so the linear approximation of the periodic solution is exact,
described by

u(t) ¼ Aþ (u0 � A)e�(�aþg)t, t [ [0, T)
u1e�g(t�T), t [ [T, 2T),

(

where u0 ¼ A(1� e�(�aþg)T)=(egT � e�(�aþg)T) and u1 ¼ A(egT � e��aT)=(egT � e�(�aþg)T). As such, we can
explicitly compute the RR equation (2.4),

J ¼ �a� c
2T

AT þ u0 � A
�aþ g

(1� e�(�aþg)T)
� �

� c
2T

A
g
(1� e�gT)

� �
,

determining the maximum with respect to the abandonment rate γ by solving ∂γ J = 0 (figure 7).
The optimal abandonment rate γ increases with the feeder quality and decreases with the switching
time T of the environment. Thus, the negative feedback process should adapt to the dynamics of the
environment, and discounting can be more rapid when the evidence for feeder quality is stronger.

(b) Foraging strategies with discriminate and indiscriminate stop signalling
Similar to figure 5, we optimized interactions for the discriminate stop-signalling and indiscriminate
stop-signalling model to yield the highest RR equation (2.2).

In the discriminate stop-signalling model, weak recruitment β (figure 8a), weak abandonment γ (figure
8b), and strong stop signalling (figure 8c) yield the highest RRs for most environments (�a, T). In slow (large
T) and high-quality �a environments, abandonment γ should be strong, and discriminate stop signalling ρ
can be made weak (figure 8b,c). Recruitment should be weak in most environments (figure 8a).

There is no clear preferred interaction profile formaximizing RR across environments (�a,T) in the case of
indiscriminate stop signalling (figure 9). Interestingly, the strength of indiscriminate stop-signalling
parameter ρ should be made low for virtually all environments (figure 9c), and thus it does not seem to
improve foraging efficiency. Consensus is lower due to the non-selectivity of social inhibition to all
foraging bees.

For the self-inhibition model, to maximize foraging efficiency, abandonment should be made weak
(γ = 0.01min−1) while recruitment and social inhibition should be made strong (β = ρ = 10min−1).

(c) Accuracy of linear approximations of periodic solutions
Linear approximations of the periodic solutions to the single-feeder equation (2.3) and two-feeder
equation (2.1) match the evolution of the full models across a wide range of parameters and forms of
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social inhibition (for example, figure 10a,b). If the system is not poised close to a bifurcation, the dynamics
between switches roughly linearly decays to the stable equilibrium. However, in the discriminate stop-
signalling model, the system can lie close to the saddle-node bifurcation beyond which the model
exhibits bistability (figure 10c). In this case, the ghost of the saddle-node slows the solution trajectory,
a nonlinear effect which is not well characterized by a linear approximation [70].



(a) (b) (c)
0.6

in
di

vi
du

al
s 

co
m

m
itt

ed
1.0

uA approx

uA approx

uB approx

uA

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

00 200150100
time

50 400300200
time

100 400300200
time

100

0.2

0.4
uA

uB

Figure 10. Linear approximation of the switch induced periodic solutions is generally accurate in (a) the single-feeder choice model
(�a ¼ 2, T = 50 min, γ = 2.8 and β = 3) and (b) two-feeder choice model (direct switching here with model parameters �a ¼ 2,
T = 100 min, γ = 0.01, β = 0.1 and ρ = 10). (c) However, when studying the discriminate stop-signalling model close to the
saddle-node bifurcation, nonlinear effects shape the periodic solution of the full model equation (2.1) in ways that are not well
approximated by the linearizations. Model parameters are �a ¼ 2, T = 100 min, γ = 0.01, β = 3.6 and ρ = 1.

1.0

co
ns

en
su

s 
u–

0 2015105 2015105

201510

adaptivity l(min–1)

5 201510

adaptivity l(min–1)

5

0.5

1.0

0

0.5

1.0

T = 100 min
a– = 2

T = 25 min
a– = 2

discriminate
direct switch

indiscriminate
self-inhibition

T = 25 min
a– = 5

T = 100 min
a– = 5

co
ns

en
su

s 
u–

0

0.5

1.0

0

0.5

(a) (b)

(c) (d)

Figure 11. Consensus �u and adaptivity λ computed as described in §§B(b) and B(d), as abandonment rate γ is increased between
[0, 20] min�1 (along the direction of the arrows) for all models. Other parameters are fixed at their optimum level.

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:191681
19
(d) Computing adaptivity and consensus across models
Here, we calculate consensus �u and adaptivity λ across a wider range of environments as the
abandonment rate γ (figure 11) and social inhibition rate ρ (figure 12) are varied. The general trends
observed in figure 6b,c are preserved. For strong enough abandonment γ, adaptivity λ increases as �u
decreases, and direct switching tends to balance this trade-off best (figure 11). Indiscriminate stop-
signalling presents a similar trade-off as social inhibition strength ρ is increased (figure 12), while the
other social inhibition mechanisms eventually show increases in both consensus �u and adaptivity λ,
but again direct switching tends to provide higher levels of both overall.

(e) Effect of heterogeneity in recruitment and abandonment
Here, we introduce and simulate a model of a colony whose bees have recruitment and forgetting
rates drawn from a distribution p(β, γ). Here, each parameter β and γ is drawn independently
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from a gamma distribution Γ(a, b) with shape a and rate b whose mean a/b is set equal to the
recruitment and forgetting rates of the mean-field equation (2.1). In this framework, uA and uB
are probability density functions of β and γ evolving in t. Initially, all bees are in the
uncommitted state uU(β, γ, 0) = p(β, γ) and uA(β, γ, 0)≡ uB(β, γ, 0)≡ 0 and the population fractions
subsequently evolve

@uA(b, g, t)
@t

¼ aA þ
ð1
0

ð1
0
buA(b, g, t)

� �
[p(b, g)� uA(b, g, t)� uB(b, g, t)]� guA(b, g, t)

� ruA(b, g, t)uB(b, g, t)(aB � aA) (B 1a)

and

@uB(b, g, t)
@t

¼ aB þ
ð1
0

ð1
0
buB(b, g, t)

� �
[p(b, g)� uA(b, g, t)� uB(b, g, t)]� guB(b, g, t)

� ruA(b, g, t)uB(b, g, t)(aA � aB), (B 1b)

and note that the social inhibition term obeys direct switching. When setting the mean recruitment and
abandonment rates to be the optimal ones identified in figure 4, introducing some heterogeneity
decreases both consensus and adaptivity of the foraging colony slightly (figure 13a,c), and this effect
grows for high-variance distributions (figure 13b,d ).
(f ) Stochastic effects in a finite-sized system
Honeybee colonies tend to be of modest size (in the 1000s) [6], and so it is reasonable to expect some
impact of finite-size effect on the dynamics of foraging. In general, we found finite-size effects
induced fluctuations about the typical mean periodic switching solutions, but that it did not
qualitatively alter the general behaviour of the foraging colony (figure 14). The finite-size model is
governed by a master equation, determining the probability of all possible changes in committed and
uncommitted populations.
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In the case of the single-feeder model, the master equation for the probability p(n, t) of finding n bees
committed to foraging at time t is

_p(n, t) ¼ rþ(n� 1)p(n� 1, t)þ r�(nþ 1)p(nþ 1, t)� [rþ(n)þ r�(n)]p(n, t), (C 2)

for integer n = 0, 1, 2,…, N with boundary conditions p(−1, t) = p(N + 1, t) = 0 and forward and backward
transition rates

rþ(n) ¼ (N � n)(~a(t)þ ~bn) and r�(n) ¼ ~gnþ ~r(�~a� ~a(t� t))n2

for system size (total bee number) N. To obtain the mean-field equation (2.3) as N→∞ [26,71], one
must define ~a(t) ¼ a(t)=N, ~b ¼ b=N2, ~g ¼ g=N and ~r ¼ r=N2. Note, the scalings correspond to
the power of the population count appearing in the interaction term, ensuring the transition terms
remain bounded in the thermodynamic limit. We used the stochastic simulation algorithm by
Gillespie [72] to evolve the stochastic system for the statistic plotted in figure 14a,b. We make two
remarks about our findings. First, the colony generally increases the fraction of committed foragers
when food is present at the feeder and decreases when food is removed. Second, the amplitude of
fluctuations in individual simulations decreases with system size, as typically expected [71], as
evidenced by the narrower standard deviations in the solution trajectories in the N = 1000 versus the
N = 100 simulations.

In the case of the two-feeder model, the master equation is more complicated as it must track the
probability of transitions between uncommitted bees, bees committed to feeder A, and those
committed to feeder B. Indeed, we can write the model down for any of the four forms of social
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Figure 14. Mean and standard deviation of stochastic simulations of the single-feeder equation (B 2) and two-feeder equation (B 3)
in the case of temporal switching of feeder quality occurring at T = 50 min intervals. In the single-feeder model, for (a) N = 100
and (b) N = 1000, near periodic switching of the mean trajectory of simulations (lines) is not far from the behaviour of the mean-
field system equation (2.3). Other model parameters are ~a ¼ 0:2, ~b ¼ 0:2 and ~g ¼ 0:2. Standard deviations (shaded regions)
decrease as the system size is increased. Similar trends are apparent in the statistics of the two-feeder finite-sized models with
discriminate stop signalling (c) N = 100 and (d ) N = 1000. Other model parameters are ~a ¼ 2, ~b ¼ 2, ~g ¼ 0:1, ~r ¼ 1,
T = 100 min and τ = 0.
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inhibition, but we just provide the discriminate stop-signalling model here. Others can be written
similarly. The probability p(nA, nB, t) of finding nA bees committed to A and nB committed to B at
time t given system size N is (dropping the argument in t for brevity):

_p(nA, nB) ¼ r0A(nA � 1, nB)p(nA � 1, nB)þ r0B(nA, nB � 1)þ rA0(nA þ 1, nB)
þ rB0(nA, nB þ 1)p(nA, nB þ 1)� [r0A(nA, nB)þ r0B(nA, nB)
þ rA0(nA, nB)þ rB0(nA, nB)]p(nA, nB), (C 3)

for nA, nB = 0, 1,…, N with the condition that nA + nB≤N, boundary conditions p(−1, nB) = p(nA,− 1) =
p(N + 1, nB) = p(nA, N + 1) = 0, and transition rates

r0A(nA, nB) ¼ (N � nA � nB)(~aA(t)þ ~bnA), r0B(nA, nB) ¼ (N � nA � nB)( ~aA(t)þ ~bnB)

and

rA0(nA, nB) ¼ ~gnA þ ~raB(t� t)nAnB, rB0(nA, nB) ¼ ~gnB þ ~raA(t� t)nAnB:

As in the single-feeder model, periodic switching with environmental switches is apparent, and the
amplitude of fluctuations decreases with system size (figure 14c,d ).

A detailed study of the finite-size population model would require a much more thorough
treatment and statistical analysis. We expect the effects of stochasticity will not considerably
impact our general findings. The only qualitative differences we would expect would be in the
case of unrealistically small systems (e.g. N = 10), and in bistable systems (like cases of the
discriminate stop-signalling model), where fluctuations could drive switching between multiple stable
equilibria [66].
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