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Consider a financial market with a bond B(·) = 1 and d
stocks X = (X1, · · · ,Xd) which satisfy for i = 1; · · · d ,

dXi (t) = Xi (t)
(

bi (X (t))dt +
∑d

k=1 sik(X (t))dWk(t)
)
.

(1)

Let H denote the collection of all trading strategies.

For each π ∈ H and initial wealth y ≥ 0, the associated
wealth process will be denoted by Y y ,π(·).
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The Problem

In this paper, we want to determine and characterize

The Problem

V (T , x , p) = inf{y > 0|∃π ∈ H s.t.P{Y y ,π(T ) ≥ g(X (T ))} ≥ p}

, where g : (0,∞)d 7→ R+ is a measurable function.
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Related Work

In the case where p = 1 and g(x) = x1 + · · ·+ xd ,

V (T , x , 1) = inf{y > 0|∃π ∈ H s.t.Y y ,π(T ) ≥ g(X (T )) a.s.}.

In Fernholz and Karatzas (2010), a PDE characterization for
Ṽ (T , x , 1) := V (T , x , 1)/g(x) was derived when V (T , x , 1) is
assumed to be smooth.

In Bouchard, Elie and Touzi (2009), a PDE characterization
of V (t, x , p) was derived.

Assumptions: rather strong, e.g. existence of a unique strong
solution of (1);
main tool used: Geometric dynamic programming principle.

Under the No-Arbitrage condition, they recovered the solution
of quantile hedging problem proposed in Follmer and Leukert
(1999).
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Related Work

In our paper, we will also have a PDE characterization for
V (t, x , p), but

We only assume the existence of a weak solution of (1) that is
unique in distribution;
We admit arbitrage in our model.
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Assumptions

Assumption 2.1

Let bi : (0,∞)d → R and sik : (0,∞)d → R be continuous
functions and b(·) = (b1(·), · · · , bd(·))′ and
s(·) = (sij(·))1≤i ,j≤d , which we assume to be invertible for all
x ∈ (0,∞)d .

We also assume that (1) has a weak solution that is unique in
distribution for every initial value.

Let θ(·) := s−1(·)b(·), aij(·) :=
∑d

i=1 sik(·)sjk(·) s atisfy

d∑
i

∫ T

0

(
|bi (X (t))|+ aii (X (t)) + θ2

i (X (t))
)
<∞. (2)
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Consequences of Assumptions

We denote by F the augmentation of the natural filtration of
X (·).

Thanks to Assumption 2.1,

every local martingale of F has the martingale representation
property with respect to W (·) (adapted to F).
the solution of (1) takes values in the positive orthant
the exponential local martingale

Z (t) := exp

{
−
∫ t

0

θ(X (s))′dW (s)− 1

2

∫ t

0

|θ(X (s))|2ds

}
,

(3)
the so-called deflator is well defined. We do not exclude the
possibility that Z (·) is a strict local martingale.
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Let g : (0,∞)d → R+ be a measurable function satisfying

E[Z (T )g(X (T ))] <∞. (4)

We want to determine

V (T , x , p) = inf{y > 0|∃π ∈ H s.t. P{Y y ,π(T ) ≥ g(X (T ))} ≥ p},
(5)

for p ∈ [0, 1].

We will always assume Assumption 2.1 and (4) hold.
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Lemma 3.1

We will present a probabilistic characterization of V (T , x , p).

Lemma 3.1

Given A ∈ FT ,

(i) if P(A) ≥ p, then

V (T , x , p) ≤ E[Z (T )g(X (T ))1A].

(ii) if P(A) = p and

ess supA{Z (T )g(X (T ))} ≤ ess infAc{Z (T )g(X (T ))}, (6)

then
V (T , x , p) = E[Z (T )g(X (T ))1A]. (7)

Yu-Jui Huang Outperforming The Market Portfolio With A Given Probability



Introduction
On Quantile Hedging

The PDE Characterization

Propositions 3.1 & 3.3

Proposition 3.1

Fix (x , p) ∈ (0,∞)d × [0, 1]. There exists A ∈ FT satisfying
P(A) = p and (6). As a result, we have

V (T , x , p) = E[Z (T )g(X (T ))1A].

Let

M := {ϕ : Ω→ [0, 1] is FT measurable s.t. E[ϕ] ≥ p}.

Using Proposition 3.1, we give an alternative representation of V

Proposition 3.3

V (T , x , p) = infϕ∈M E[Z (T )g(X (T ))ϕ].

This will facilitate the PDE characterization in the next section.
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The Value Function U

V (T , x , p) = infϕ∈M E[Z (T )g(X (T ))ϕ].

Define the value function

U(t, x , p) := inf
ϕ∈M

E[Z t,x ,1(T )g(X t,x(T ))ϕ], (8)

where X t,x(·) denotes the solution of (1) starting from x at
time t, and Z t,x ,z(·) denotes the solution of

dZ (s) = −Z (s)θ(X t,x(s))′dW (s), Z (t) = z . (9)

V (T , x , p) = U(0, x , p).
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The Plan...

U(t, x , p) // w(t, x , q)

1. : Legendre transform of U w.r.t. p.
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The Functions w and w̃

Consider the Legendre tranform of U with respect to the p
variable

w(t, x , q) := sup
p∈[0,1]

{pq − U(t, x , p)}, (10)

Define the process Qt,x ,q(·) by

Qt,x ,q(·) :=
1

Z t,x ,(1/q)(·)
, q ∈ (0,∞). (11)

Then we see from (9) that Q(·) satisfies

dQ(s)

Q(s)
= |θ(X t,x(s))|2ds + θ(X t,x(s))′dW (s), Qt,x ,q(t) = q.

(12)
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The Functions w and w̃ (conti.)

Define the function

w̃(t, x , q) := E[Z t,x ,1(T )(Qt,x ,q(T )− g(X t,x(T )))+]

By Proposition 3.1, we can show that w = w̃ .

Interpret w̃ as the superhedging price of
(Qt,x ,q(T )− g(X t,x(T )))+; then it potentially solves

∂tw̃ +
1

2
Tr(σσ′D2

x w̃)+
1

2
|θ|2q2D2

q w̃ +qTr(σθDxqw̃) = 0. (13)

where σik(x) := sik(x)xi .
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The Functions w and w̃ (conti.)

However, the covariance matrix is degenerate! Indeed, setting

v(·) :=

[
s(·)d×d

θ(·)′1×d

]
,

degeneracy can be seen by observing that v(x)v(x)′ is only
positive semi-definite for all x ∈ (0,∞)d .
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The Plan...

U(t, x , p) // w(t, x , q) = w̃(t, x , q)

��
w̃ε(t, x , q)

1. : Legendre transform of U w.r.t. p.

2. : Elliptic regularization for w̃ .
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Elliptic Regularization

For any ε > 0, introduce the process Qt,x ,q
ε (·) which satisfies

dQε(s)

Qε(s)
= |θ(X t,x(s))|2ds +θ(X t,x(s))′dW (s)+εdB(s), (14)

where B(·) is a one-dimensional B.M. independent of W (·).

Define the function

w̃ε(t, x , q) := Ē[Z t,x ,1(T )(Qt,x ,q
ε (T )− g(X t,x(T )))+],
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Assumption 4.1

θi and σij are, for all i , j ∈ {1, · · · , d}, locally Lipschitz.

Applying Ruf [2010, Theorem 2], we obtain

Lemma 4.1

Under Assumption 4.1, w̃ε ∈ C1,2,2((0,T )× (0,∞)d × (0,∞))
satisfies the PDE

∂tw̃ε +
1

2
Tr(σσ′D2

x w̃ε) +
1

2
(|θ|2 + ε2)q2D2

q w̃ε + qTr(σθDxqw̃ε) = 0,

(15)
with the boundary condition

w̃ε(T , x , q) = (q − g(x))+. (16)
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The Plan...

U(t, x , p) // w(t, x , q) = w̃(t, x , q)

��
Uε(t, x , p) w̃ε(t, x , q)oo

1. : Legendre transform of U w.r.t. p.

2. : Elliptic regularization for w̃ .

3. : Legendre transform of w̃ε w.r.t. q.
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The PDE for Uε

Consider the Legendre transform of w̃ε w.r.t. the q variable

Uε(t, x , p) := sup
q∈R
{pq − w̃ε(t, x , q)} = sup

q≥0
{pq − w̃ε(t, x , q)}.

Introduce a geometric Brownian motion Lε(·) which satisfies

dLε(s) = εLε(s)dB(s), s ∈ [t,T ] and L(t) = 1.

Then Lε(·) attains any interval on the positive real line with
positive probability. Using this property, we show that
w̃ε(t, x , q) is strictly convex in q.
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The PDE for Uε (conti.)

Proposition 4.4

Under Assumption 4.1, Uε ∈ C1,2,2((0,T )× (0,∞)d × (0, 1))
satisfies

0 = ∂tUε +
1

2
Tr [σσ′DxxUε]

+ inf
a∈Rd

(
(DxpUε)

′σa +
1

2
|a|2DppUε − θ′aDpUε

)
+ inf

b∈Rd

(
1

2
|b|2DppUε − εDpUε1

′b

)
,

(17)

where 1 := (1, · · · , 1)′ ∈ Rd , with the boundary condition

Uε(T , x , p) = pg(x). (18)
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The Plan...

U(t, x , p) // w(t, x , q) = w̃(t, x , q)

��
Uε(t, x , p)

OO

w̃ε(t, x , q)oo

1. : Legendre transform of U w.r.t. p.

2. : Elliptic regularization for w̃ .

3. : Legendre transform of w̃ε w.r.t. q.

4. : “lim infε→0 Uε = U” & “Stability of viscosity solutions.”

Yu-Jui Huang Outperforming The Market Portfolio With A Given Probability



Introduction
On Quantile Hedging

The PDE Characterization

The PDE for U

For any (x , β, γ, λ) ∈ (0,∞)d × R× R× Rd , define

G (x , β, γ, λ) := inf
a∈Rd

(
λ′σ(x)a +

1

2
|a|2γ − βθ(x)′a

)
.

Also, consider the lower semicontinuous envelope of G

G∗(x , β, γ, λ) := lim inf
(x̃ ,β̃,γ̃,λ̃)→(x ,β,γ,λ)

G (x̃ , β̃, γ̃, λ̃).
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The PDE for U (conti.)

By using the stability of viscosity solutions, we have

Proposition 4.5

Under Assumption 4.1, U is a lower semicontinuous viscosity
supersolution of

0 ≥ ∂tU +
1

2
Tr [σσ′DxxU] + G∗(x ,DpU,DppU,DxpU), (19)

for (t, x , p) ∈ (0,T )× (0,∞)d × (0, 1), with the boundary
condition

U(T , x , p) = pg(x), (20)

Uniqueness??
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Characterize U further

We characterize U as the smallest nonnegative l.s.c. viscosity
supersolution to (19) with the boundary condition (20) among a
particular set of functions.

Proposition 4.7

Suppose Assumption 4.1 holds. Let
u : [0,T ]× (0,∞)d × [0, 1] 7→ [0,∞) be such that

u(t, x , 0) = 0,

u(t, x , p) is convex in p,

the Legendre transform of u w.r.t. p is continuous on
[0,T ]× (0,∞)d × (0,∞).

Then, if u is a lower semicontinuous viscosity supersolution to (19)
on (0,T )× (0,∞)d × (0, 1) with the boundary condition (20),
then u ≥ U.
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Thank you very much for your attention!
Q & A
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