Outperforming The Market Portfolio With A Given Probability

Yu-Jui Huang

Joint work with Erhan Bayraktar and Qingshuo Song

Stochastic Analysis in Finance and Insurance Ann Arbor May 18, 2011

OUTLINE

2 On Quantile Hedging

3 The PDE Characterization

Yu-Jui Huang Outperforming The Market Portfolio With A Given Probability

 Consider a financial market with a bond B(·) = 1 and d stocks X = (X₁, · · · , X_d) which satisfy for i = 1; · · · d,

$$dX_{i}(t) = X_{i}(t) \left(b_{i}(X(t)) dt + \sum_{k=1}^{d} s_{ik}(X(t)) dW_{k}(t) \right).$$
(1)

- Let ${\mathcal H}$ denote the collection of all trading strategies.
- For each π ∈ H and initial wealth y ≥ 0, the associated wealth process will be denoted by Y^{y,π}(·).

The Problem

• In this paper, we want to determine and characterize

The Problem

$$V(T, x, p) = \inf\{y > 0 | \exists \pi \in \mathcal{H} \text{ s.t.} \mathbb{P}\{Y^{y, \pi}(T) \ge g(X(T))\} \ge p\}$$

, where $g:(0,\infty)^d\mapsto \mathbb{R}_+$ is a measurable function.

Related Work

• In the case where p = 1 and $g(x) = x_1 + \cdots + x_d$,

$$V(\mathcal{T}, x, 1) = \inf\{y > 0 | \exists \pi \in \mathcal{H} \text{ s.t. } Y^{y, \pi}(\mathcal{T}) \ge g(X(\mathcal{T})) \text{ a.s.} \}.$$

In Fernholz and Karatzas (2010), a PDE characterization for $\tilde{V}(T, x, 1) := V(T, x, 1)/g(x)$ was derived when V(T, x, 1) is assumed to be smooth.

- In Bouchard, Elie and Touzi (2009), a PDE characterization of V(t,x,p) was derived.
 - Assumptions: rather strong, e.g. existence of a unique strong solution of (1);
 - main tool used: Geometric dynamic programming principle.

Under the No-Arbitrage condition, they recovered the solution of quantile hedging problem proposed in Follmer and Leukert (1999).

Related Work

- In our paper, we will also have a PDE characterization for V(t, x, p), but
 - We only assume the existence of a weak solution of (1) that is unique in distribution;
 - We admit arbitrage in our model.

ASSUMPTIONS

Assumption 2.1

- Let $b_i : (0,\infty)^d \to \mathbb{R}$ and $s_{ik} : (0,\infty)^d \to \mathbb{R}$ be continuous functions and $b(\cdot) = (b_1(\cdot), \cdots, b_d(\cdot))'$ and $s(\cdot) = (s_{ij}(\cdot))_{1 \le i,j \le d}$, which we assume to be invertible for all $x \in (0,\infty)^d$.
- We also assume that (1) has a weak solution that is unique in distribution for every initial value.
- Let $\theta(\cdot) := s^{-1}(\cdot)b(\cdot)$, $a_{ij}(\cdot) := \sum_{i=1}^d s_{ik}(\cdot)s_{jk}(\cdot)$ s atisfy

$$\sum_{i}^{d}\int_{0}^{T}\left(|b_{i}(X(t))|+a_{ii}(X(t))+\theta_{i}^{2}(X(t))\right)<\infty. \tag{2}$$

CONSEQUENCES OF ASSUMPTIONS

- We denote by \mathbb{F} the augmentation of the natural filtration of $X(\cdot)$.
- Thanks to Assumption 2.1,
 - every local martingale of 𝔅 has the martingale representation property with respect to 𝑘(·) (adapted to 𝔅).
 - the solution of (1) takes values in the positive orthant
 - the exponential local martingale

$$Z(t) := \exp\left\{-\int_0^t \theta(X(s))' dW(s) - \frac{1}{2}\int_0^t |\theta(X(s))|^2 ds\right\},$$
(3)

the so-called *deflator* is well defined. We do not exclude the possibility that $Z(\cdot)$ is a strict local martingale.

OUTLINE

2 ON QUANTILE HEDGING

3 The PDE Characterization

Yu-Jui Huang Outperforming The Market Portfolio With A Given Probability

• Let
$$g: (0,\infty)^d \to \mathbb{R}_+$$
 be a measurable function satisfying
 $\mathbb{E}[Z(T)g(X(T))] < \infty.$ (4)

• We want to determine

$$V(T, x, p) = \inf\{y > 0 | \exists \pi \in \mathcal{H} \text{ s.t. } \mathbb{P}\{Y^{y, \pi}(T) \ge g(X(T))\} \ge p\},$$
(5)
for $p \in [0, 1]$.

• We will always assume Assumption 2.1 and (4) hold.

Lemma 3.1

We will present a probabilistic characterization of V(T, x, p).

PROPOSITIONS 3.1 & 3.3

PROPOSITION 3.1

Fix $(x, p) \in (0, \infty)^d \times [0, 1]$. There exists $A \in \mathcal{F}_T$ satisfying $\mathbb{P}(A) = p$ and (6). As a result, we have

$$V(T, x, p) = \mathbb{E}[Z(T)g(X(T))1_A].$$

Let

$$\mathcal{M} := \{ \varphi : \Omega \to [0,1] \text{ is } \mathcal{F}_{\mathcal{T}} \text{ measurable s.t. } \mathbb{E}[\varphi] \geq \rho \}.$$

Using Proposition 3.1, we give an alternative representation of V

PROPOSITION 3.3

$$V(T, x, p) = \inf_{\varphi \in \mathcal{M}} \mathbb{E}[Z(T)g(X(T))\varphi].$$

This will facilitate the PDE characterization in the next section.

OUTLINE

1 INTRODUCTION

2 On Quantile Hedging

3 The PDE Characterization

THE VALUE FUNCTION U

- $V(T, x, p) = \inf_{\varphi \in \mathcal{M}} \mathbb{E}[Z(T)g(X(T))\varphi].$
- Define the value function

$$U(t,x,p) := \inf_{\varphi \in \mathcal{M}} \mathbb{E}[Z^{t,x,1}(T)g(X^{t,x}(T))\varphi], \qquad (8)$$

where $X^{t,x}(\cdot)$ denotes the solution of (1) starting from x at time t, and $Z^{t,x,z}(\cdot)$ denotes the solution of

$$dZ(s) = -Z(s)\theta(X^{t,x}(s))'dW(s), \ Z(t) = z.$$
(9)
• $V(T, x, p) = U(0, x, p).$

THE PLAN...

$$U(t,x,p) \longrightarrow w(t,x,q)$$

1. : Legendre transform of U w.r.t. p.

The Functions w and \widetilde{w}

• Consider the Legendre tranform of *U* with respect to the *p* variable

$$w(t, x, q) := \sup_{p \in [0,1]} \{ pq - U(t, x, p) \},$$
(10)

• Define the process $Q^{t,x,q}(\cdot)$ by

$$Q^{t,x,q}(\cdot) := rac{1}{Z^{t,x,(1/q)}(\cdot)}, \ q \in (0,\infty).$$
 (11)

Then we see from (9) that $Q(\cdot)$ satisfies

$$\frac{dQ(s)}{Q(s)} = |\theta(X^{t,x}(s))|^2 ds + \theta(X^{t,x}(s))' dW(s), \ Q^{t,x,q}(t) = q.$$
(12)

The Functions w and \tilde{w} (conti.)

• Define the function

$$\widetilde{w}(t,x,q) := \mathbb{E}[Z^{t,x,1}(T)(Q^{t,x,q}(T) - g(X^{t,x}(T)))^+]$$

- By Proposition 3.1, we can show that $w = \tilde{w}$.
- Interpret \widetilde{w} as the superhedging price of $(Q^{t,x,q}(T) g(X^{t,x}(T)))^+$; then it potentially solves

$$\partial_t \widetilde{w} + \frac{1}{2} \operatorname{Tr}(\sigma \sigma' D_x^2 \widetilde{w}) + \frac{1}{2} |\theta|^2 q^2 D_q^2 \widetilde{w} + q \operatorname{Tr}(\sigma \theta D_{xq} \widetilde{w}) = 0.$$
(13)

where $\sigma_{ik}(x) := s_{ik}(x)x_i$.

The Functions w and \tilde{w} (conti.)

However, the covariance matrix is degenerate! Indeed, setting

$$v(\cdot) := \left[rac{s(\cdot)_{d imes d}}{\theta(\cdot)'_{1 imes d}}
ight],$$

degeneracy can be seen by observing that v(x)v(x)' is only positive semi-definite for all $x \in (0, \infty)^d$.

THE PLAN...

$$U(t, x, p) \longrightarrow w(t, x, q) = \widetilde{w}(t, x, q)$$

$$\downarrow$$

$$\widetilde{w}_{\varepsilon}(t, x, q)$$

- 1. : Legendre transform of U w.r.t. p.
- 2. : Elliptic regularization for \widetilde{w} .

ELLIPTIC REGULARIZATION

• For any $\varepsilon > 0$, introduce the process $Q_{\varepsilon}^{t,x,q}(\cdot)$ which satisfies

$$\frac{dQ_{\varepsilon}(s)}{Q_{\varepsilon}(s)} = |\theta(X^{t,x}(s))|^2 ds + \theta(X^{t,x}(s))' dW(s) + \varepsilon dB(s),$$
(14)

where $B(\cdot)$ is a one-dimensional B.M. independent of $W(\cdot)$. • Define the function

$$\widetilde{w}_{\varepsilon}(t,x,q):=ar{\mathbb{E}}[Z^{t, imes,1}(\mathcal{T})(Q^{t, imes,q}_{arepsilon}(\mathcal{T})-g(X^{t, imes}(\mathcal{T})))^+],$$

Assumption 4.1

 θ_i and σ_{ij} are, for all $i, j \in \{1, \cdots, d\}$, locally Lipschitz.

Applying Ruf [2010, Theorem 2], we obtain

Lemma 4.1

Under Assumption 4.1, $\widetilde{w}_{\varepsilon} \in C^{1,2,2}((0, T) \times (0, \infty)^d \times (0, \infty))$ satisfies the PDE

$$\partial_{t}\widetilde{w}_{\varepsilon} + \frac{1}{2}\mathrm{Tr}(\sigma\sigma'D_{x}^{2}\widetilde{w}_{\varepsilon}) + \frac{1}{2}(|\theta|^{2} + \varepsilon^{2})q^{2}D_{q}^{2}\widetilde{w}_{\varepsilon} + q\mathrm{Tr}(\sigma\theta D_{xq}\widetilde{w}_{\varepsilon}) = 0,$$
(15)

with the boundary condition

$$\widetilde{w}_{\varepsilon}(T, x, q) = (q - g(x))^+.$$
(16)

THE PLAN...

$$U(t, x, p) \longrightarrow w(t, x, q) = \widetilde{w}(t, x, q)$$

$$\downarrow$$

$$U_{\varepsilon}(t, x, p) \longleftarrow \widetilde{w}_{\varepsilon}(t, x, q)$$

- 1. : Legendre transform of U w.r.t. p.
- 2. : Elliptic regularization for \widetilde{w} .
- 3. : Legendre transform of $\widetilde{w}_{\varepsilon}$ w.r.t. q.

The PDE for U_{ε}

• Consider the Legendre transform of $\widetilde{w}_{arepsilon}$ w.r.t. the q variable

$$U_{\varepsilon}(t,x,p) := \sup_{q \in \mathbb{R}} \{pq - \widetilde{w}_{\varepsilon}(t,x,q)\} = \sup_{q \ge 0} \{pq - \widetilde{w}_{\varepsilon}(t,x,q)\}.$$

• Introduce a geometric Brownian motion $L_{\varepsilon}(\cdot)$ which satisfies

$$dL_{\varepsilon}(s) = \varepsilon L_{\varepsilon}(s) dB(s), \ s \in [t, T] \text{ and } L(t) = 1.$$

Then $L_{\varepsilon}(\cdot)$ attains any interval on the positive real line with positive probability. Using this property, we show that $\widetilde{w}_{\varepsilon}(t, x, q)$ is strictly convex in q.

The PDE for U_{ε} (conti.)

PROPOSITION 4.4

Under Assumption 4.1, $U_{\varepsilon} \in C^{1,2,2}((0,T) \times (0,\infty)^d \times (0,1))$ satisfies

$$0 = \partial_{t} U_{\varepsilon} + \frac{1}{2} Tr[\sigma \sigma' D_{xx} U_{\varepsilon}] + \inf_{a \in \mathbb{R}^{d}} \left((D_{xp} U_{\varepsilon})' \sigma a + \frac{1}{2} |a|^{2} D_{pp} U_{\varepsilon} - \theta' a D_{p} U_{\varepsilon} \right)$$
(17)
$$+ \inf_{b \in \mathbb{R}^{d}} \left(\frac{1}{2} |b|^{2} D_{pp} U_{\varepsilon} - \varepsilon D_{p} U_{\varepsilon} \mathbf{1}' b \right),$$

where $\boldsymbol{1}:=(1,\cdots,1)'\in\mathbb{R}^d$, with the boundary condition

$$U_{\varepsilon}(T, x, p) = pg(x).$$
(18)

THE PLAN...

- 1. : Legendre transform of U w.r.t. p.
- 2. : Elliptic regularization for \widetilde{w} .
- 3. : Legendre transform of $\widetilde{w}_{\varepsilon}$ w.r.t. q.
- 4. : "lim $\inf_{\varepsilon \to 0} U_{\varepsilon} = U$ " & "Stability of viscosity solutions."

The PDE for U

• For any
$$(x, \beta, \gamma, \lambda) \in (0, \infty)^d imes \mathbb{R} imes \mathbb{R} imes \mathbb{R}^d$$
, define

$$G(x, \beta, \gamma, \lambda) := \inf_{a \in \mathbb{R}^d} \left(\lambda' \sigma(x) a + \frac{1}{2} |a|^2 \gamma - \beta \theta(x)' a
ight).$$

Also, consider the lower semicontinuous envelope of G

$${\mathcal G}_*(x,eta,\gamma,\lambda):= \liminf_{(ilde x, ilde eta, ilde \gamma, ilde \lambda) o (x,eta,\gamma,\lambda)} {\mathcal G}(ilde x, ilde eta, ilde \gamma, ilde \lambda).$$

The PDE for U (conti.)

By using the stability of viscosity solutions, we have

PROPOSITION 4.5

Under Assumption 4.1, U is a lower semicontinuous viscosity supersolution of

$$0 \ge \partial_t U + \frac{1}{2} \operatorname{Tr}[\sigma \sigma' D_{xx} U] + G_*(x, D_p U, D_{pp} U, D_{xp} U), \quad (19)$$

for $(t,x,p)\in (0,T) imes (0,\infty)^d imes (0,1)$, with the boundary condition

$$U(T, x, p) = pg(x), \qquad (20)$$

Uniqueness??

CHARACTERIZE U FURTHER

We characterize U as the smallest nonnegative l.s.c. viscosity supersolution to (19) with the boundary condition (20) among a particular set of functions.

PROPOSITION 4.7

Suppose Assumption 4.1 holds. Let

- $u: [0, \mathcal{T}] imes (0, \infty)^d imes [0, 1] \mapsto [0, \infty)$ be such that
 - u(t, x, 0) = 0,
 - u(t, x, p) is convex in p,
 - the Legendre transform of u w.r.t. p is continuous on $[0, T] \times (0, \infty)^d \times (0, \infty)$.

Then, if u is a lower semicontinuous viscosity supersolution to (19) on $(0, T) \times (0, \infty)^d \times (0, 1)$ with the boundary condition (20), then $u \ge U$.

References

- B. BOUCHARD, R. ELIE, AND N. TOUZI, *Stochastic target problems with controlled loss*, SIAM Journal on Control and Optimization, 48 (5) (2009), pp. 3123–3150.
- D. FERNHOLZ AND I. KARATZAS, *On optimal arbitrage*, Annals of Applied Probability, 20 (2010), pp. 1179-V1204
- H. FÖLLMER AND P. LEUKERT, *Quantile hedging*, Finance Stoch., 3 (1999), pp. 251–273.
- J. RUF, Hedging under arbitrage, tech. rep., Columbia University, 2010.
 Available at http://www.stat.columbia.edu/~ruf/.

Thank you very much for your attention! Q & A