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Introduction

We consider the robust (worst-case) optimal stopping problem:

V (t, x) := sup
α∈At

inf
τ∈T t

t,T

E
[ ∫ τ

t
e−

∫ s
t c(u,X t,x,α

u )duf (s,X t,x ,α
s , αs)ds

+ e−
∫ τ
t c(u,X t,x,α

u )dug(X t,x ,α
τ )

]
,

where At : set of controls, T t
t,T : set of stopping times.

f (s,Xα
s , αs): running cost at time s.

g(Xα
τ ): terminal cost at time τ .

c(s,Xα
s ): discount rate at time s.

Xα: a controlled state process.

Think of this as a controller-stopper game between

us (stopper) and nature (controller)!
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Value Functions

If “Stopper” acts first: Instead of choosing one single stopping
time, he would like to employ a strategy π : At 7→ T t

t,T .

U(t, x) := inf
π∈Πt

t,T

sup
α∈At

E
[ ∫ π[α]

t
e−

∫ s
t c(u,X t,x,α

u )duf (s,X t,x ,α
s , αs)ds

+ e−
∫ π[α]
t c(u,X t,x,α

u )dug(X t,x ,α
π[α] )

]
,

where Π is the set of strategies π : At 7→ T t
t,T .

If “Controller” acts first: nature does NOT use strategies.

V (t, x) = sup
α∈At

inf
τ∈T t

t,T

E[· · · ].

By definition, V ≤ U. We say the game has a value if U = V .
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Related Work

The controller-stopper game is closely related to some common
problems in mathematical finance:

pricing American contingent claims, see e.g. Karatzas & Kou
[1998], Karatzas & Wang [2000] and Karatzas & Zamfirescu
[2005].

minimizing the probability of lifetime ruin, see Bayraktar &
Young [2011].

But, the game itself has been studied to a great extent only in
some special cases.
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Related Work

One-dimensional case: Karatzas and Sudderth [2001] study the
case where Xα moves along an interval on R.

they show that the game has a value;

they construct a saddle-point of optimal strategies (α∗, τ∗).

Difficult to extend their results to higher dimensions (their
techniques rely heavily on optimal stopping theorems for
one-dimensional diffusions).

Multi-dimensional case: Karatzas and Zamfirescu [2008] develop
a martingale approach to deal with this. But, require some strong
assumptions:

the diffusion term of Xα has to be non-degenerate, and it
cannot be controlled!
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Our Goal

We intend to investigate a much more general multi-dimensional
controller-stopper game in which

both the drift and the diffusion terms of Xα can be controlled;

the diffusion term can be degenerate.

Main Result: Under appropriate conditions,

the game has a value (i.e. U = V );

the value function is the unique viscosity solution to an
obstacle problem of an HJB equation.
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Methodology

U∗ ≥ U ≥ V ≥ V∗

1. Weak DPP for U

⇒ subsolution property of U∗

2. Weak DPP for V

⇒ supersolution property of V∗

3. A comparison result ⇒ V∗ ≥ U∗ (supersol. ≥ subsol.)
⇒ U∗ = V∗ ⇒ U = V , i.e. the game has a value.
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The Set-up

Consider a fixed time horizon T > 0.

Ω := C ([0,T ];Rd).

W = {Wt}t∈[0,T ]: the canonical process, i.e. Wt(ω) = ωt .

P: the Wiener measure defined on Ω.

F = {Ft}t∈[0,T ]: the P-augmentation of σ(Ws , s ∈ [0,T ]).

For each t ∈ [0,T ], consider

Ft : the P-augmentation of σ(Wt∨s −Wt , s ∈ [0,T ]).

T t :={Ft-stopping times valued in [0,T ] P-a.s.}.
At :={Ft-progressively measurable M-valued processes},
where M is a separable metric space.

Given F-stopping times τ1, τ2 with τ1 ≤ τ2 P-a.s., define
T t
τ1,τ2

:={τ ∈ T t valued in [τ1, τ2] P-a.s.}.
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Assumptions on b and σ

Given τ ∈ T , ξ ∈ Lpd which is Fτ -measurable, and α ∈ A, let
X τ,ξ,α denote a Rd -valued process satisfying the SDE:

dX τ,ξ,α
t = b(t,X τ,ξ,α

t , αt)dt + σ(t,X τ,ξ,α
t , αt)dWt , (1)

with the initial condition X τ,ξ,α
τ = ξ a.s.

Assume: b(t, x , u) and σ(t, x , u) are deterministic Borel functions,
and continuous in (x , u); moreover, ∃ K > 0 s.t. for t ∈ [0,T ],
x , y ∈ Rd , and u ∈ M

|b(t, x , u)− b(t, y , u)|+ |σ(t, x , u)− σ(t, y , u)| ≤ K |x − y |,
|b(t, x , u)|+ |σ(t, x , u)| ≤ K (1 + |x |),

(2)

This implies for any (t, x) ∈ [0,T ]× Rd and α ∈ A, (1) admits a
unique strong solution X t,x ,α

· .
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Assumptions on f , g , and c

f and g are rewards, c is the discount rate ⇒ assume f , g , c ≥ 0.

In addition, Assume:

f : [0,T ]× Rd ×M 7→ R is Borel measurable, and f (t, x , u)
continuous in (x , u), and continuous in x uniformly in u ∈ M.

g : Rd 7→ R is continuous,

c : [0,T ]× Rd 7→ R is continuous and bounded above by
some real number c̄ > 0.

f and g satisfy a polynomial growth condition

|f (t, x , u)|+ |g(x)| ≤ K (1 + |x |p̄) for some p̄ ≥ 1. (3)
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Reduction to the Mayer form

Set F (x , y , z) := z + yg(x). Observe that

V (t, x) = sup
α∈At

inf
τ∈T t

t,T

E
[
Z t,x ,1,0,α
τ + Y t,x ,1,α

τ g(X t,x ,α
τ )

]
= sup

α∈At

inf
τ∈T t

t,T

E
[
F (Xt,x ,1,0,α

τ )
]
,

where Xt,x ,y ,z,α
τ := (X t,x ,α

τ ,Y t,x ,y ,α
τ ,Z t,x ,y ,z,α

τ ). Similarly,

U(t, x) = inf
π∈Πt

t,T

sup
α∈At

E
[
F (Xt,x ,1,0,α

π[α] )
]
.

More generally, for any (x , y , z) ∈ S := Rd × R2
+, define

V̄ (t, x , y , z) := sup
α∈At

inf
τ∈T t

t,T

E
[
F (Xt,x ,y ,z,α

τ )
]
.

Ū(t, x , y , z) := inf
π∈Πt

t,T

sup
α∈At

E
[
F (Xt,x ,y ,z,α

π[α] )
]
.
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Subsolution Property of U∗

For (t, x , p,A) ∈ [0,T ]× Rd × Rd ×Md , define

Ha(t, x , p,A) := −b(t, x , a)− 1

2
Tr [σσ′(t, x , a)A]− f (t, x , a),

and set
H(t, x , p,A) := inf

a∈M
Ha(t, x , p,A).

Proposition

The function U∗ is a viscosity subsolution on [0,T )× Rd to the
obstacle problem of an HJB equation

max

{
c(t, x)w − ∂w

∂t
+ H∗(t, x ,Dxw ,D2

x w),w − g(x)

}
≤ 0.
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Subsolution Property of U∗

Sketch of proof:
1. Assume the contrary: ∃ smooth h, (t0, x0) ∈ [0,T )× Rd s.t.

0 = (U∗ − h)(t0, x0) > (U∗ − h)(t, x), ∀ (t, x) ∈ [0,T )× Rd \ (t0, x0);

max

{
c(t0, x0)h − ∂h

∂t
+ H∗(t0, x0,Dxh,D2

x h), h − g(x0)

}
(t0, x0) > 0.

2. Applying Itô’s rule locally at (t0, x0), we eventually get

U(t̂, x̂) > E
[

Y t̂,x̂ ,1,α
θα h(θα,X t̂,x̂ ,α

θα ) +

∫ θα

t̂
Y t̂,x̂ ,1,α
s f (s,X t̂,x̂ ,α

s , αs)ds

]
+
η

2
,

for any α ∈ At̂ , where

θα := inf
{

s ≥ t̂
∣∣∣ (s,X t̂,x̂ ,α

s ) /∈ Br (t0, x0)
}
∈ T t̂

t̂,T .

HOW TO GET A CONTRADICTION TO THIS?
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Subsolution Property of U∗

By the definition of U,

U(t̂, x̂) ≤ sup
α∈At̂

E
[
F
(

Xt̂,x̂ ,1,0,α
π∗[α]

)]
≤ E

[
F
(

Xt̂,x̂ ,1,0,α̂
π∗[α̂]

)]
+
η

4
, for some α̂ ∈ At̂ .

≤ E
[
Y t̂,x̂ ,1,α̂
θα̂

h(θ,X t̂,x̂ ,α̂
θα̂

) + Z t̂,x̂ ,1,0,α̂
θα̂

]
+
η

4
+
η

4
.

The BLUE PART is the WEAK DPP we want to prove!
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Weak DPP for U

Proposition (Weak DPP for U)

Fix (t, x) ∈ [0,T ]× S and ε > 0. For any π ∈ Πt
t,T and

ϕ ∈ LSC ([0,T ]× Rd) with ϕ ≥ U, ∃ π∗ ∈ Πt
t,T s.t. ∀α ∈ At ,

E
[
F (Xt,x,α

π∗[α])
]
≤ E

[
Y t,x ,y ,α
π[α] ϕ

(
π[α],X t,x ,α

π[α]

)
+ Z t,x ,y ,z,α

π[α]

]
+ 4ε.

To prove this weak DPP, we need

Lemma

Fix t ∈ [0,T ]. For any π ∈ Πt
t,T , Lπ : [0, t]× S 7→ R defined by

Lπ(s, x) := supα∈As
E
[
F (Xs,x,α

π[α] )
]

is continuous.

Idea of Proof: Generalize the arguments in Krylov[1980] for control
problems with fixed horizon to our case with random horizon.
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Weak DPP for U

Sketch of proof for “Weak DPP for U”:

1. Separate [0,T ]× S into small pieces. Since [0,T ]× S is
Lindelöf, take {(ti , xi )}i∈N s.t.

⋃
i∈N B(ti , xi ; r (ti ,xi )) = (0,T ]× S,

with B(ti , xi ; r (ti ,xi )) := (ti − r (ti ,xi ), ti ]× Br (ti ,xi )(xi ).

Take a disjoint subcovering {Ai}i∈N s.t. (ti , xi ) ∈ Ai .

2. Pick ε-optimal strategy π(ti ,xi ) in each Ai . For each (ti , xi ),
by def. of Ū, ∃ π(ti ,xi ) ∈ Πti

ti ,T
s.t.

sup
α∈Ati

E
[
F (Xti ,xi ,α

π(ti ,xi )[α]
)
]
≤ Ū(ti , xi ) + ε.

Set ϕ̄(t, x , y , z) := yϕ(t, x) + z . For any (t ′, x ′) ∈ Ai ,

Lπ
(ti ,xi )(t ′, x ′) ≤

usc
Lπ

(ti ,xi )(ti , xi ) + ε ≤ Ū(ti , xi ) + 2ε

≤ ϕ̄(ti , xi ) + 2ε≤
lsc

ϕ̄(t ′, x ′) + 3ε.
(4)
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Weak DPP for U

3. Paste π(ti ,xi ) together. For any n ∈ N, set Bn := ∪1≤i≤nAi

and define πn ∈ Πt
t,T by

πn[α] := T 1(Bn)c (π[α],Xt,x,α
π[α] ) +

n∑
i=1

π(ti ,xi )[α]1Ai
(π[α],Xt,x,α

π[α] ).

4. Estimations.

E[F (Xt,x,α
πn[α])]

= E
[
F (Xt,x,α

πn[α])1Bn(π[α],Xt,x,α
π[α] )

]
+ E

[
F (Xt,x,α

T )1(Bn)c (π[α],Xt,x,α
π[α] )

]
≤ E[ϕ̄(π[α],Xt,x,α

π[α] )] + 3ε+ ε,

where RED PART follows from (4) and BLUE PART holds for
n ≥ n∗(α).
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Weak DPP for U

5. Construct the desired strategy π∗. Define π∗ ∈ Πt
t,T by

π∗[α] := πn
∗(α)[α].

Then we get

E[F (Xt,x,α
π∗[α])] ≤ E[ϕ̄(π[α],Xt,x,α

π[α] )] + 4ε

= E[Y t,x ,y ,α
π[α] ϕ(θ,X t,x ,α

π[α] ) + Z t,x ,y ,z,α
π[α] ] + 4ε.

Done with the proof of Weak DPP for U!
Done with the proof of the subsolution property of U∗!
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Supersolution Property of V∗

Proposition (Weak DPP for V )

Fix (t, x) ∈ [0,T ]× S and ε > 0. For any α ∈ At , θ ∈ T t
t,T and

ϕ ∈ USC ([0,T ]× Rd) with ϕ ≤ V ,

(i) E[ϕ̄+(θ,Xt,x,α
θ )] <∞;

(ii) If, moreover, E[ϕ̄−(θ,Xt,x,α
θ )] <∞, then there exists α∗ ∈ At

with α∗s = αs for s ∈ [t, θ] s.t. for any τ ∈ T t
t,T ,

E[F (Xt,x,α∗
τ )] ≥ E[Y t,x ,y ,α

τ∧θ ϕ(τ ∧ θ,X t,x ,α
τ∧θ ) + Z t,x ,y ,z,α

τ∧θ ]− 4ε.

Proposition

The function V∗ is a viscosity supersolution on [0,T )× Rd to the
obstacle problem of an HJB equation

max

{
c(t, x)w − ∂w

∂t
+ H(t, x ,Dxw ,D2

x w), w − g(x)

}
≥ 0.
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Comparison

To state an appropriate comparison result, we assume

A. for any t, s ∈ [0,T ], x , y ∈ Rd , and u ∈ M,

|b(t, x , u)−b(s, y , u)|+|σ(t, x , u)−σ(s, y , u)| ≤ K (|t−s|+|x−y |).

B. f (t, x , u) is uniformly continuous in (t, x), uniformly in u ∈ M.

The conditions A and B, together with the linear growth condition
on b and σ, imply that the function H is continuous, and thus
H = H∗.

Proposition (Comparison)

Assume A and B. Let u (resp. v) be an USC viscosity subsolution
(resp. a LSC viscosity supersolution) with polynomial growth
condition to (19), such that u(T , x) ≤ v(T , x) for all x ∈ Rd .
Then u ≤ v on [0,T )× Rd .
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Main Result

Lemma

For all x ∈ Rd , V∗(T , x) ≥ g(x).

Theorem

Assume A and B. Then U∗ = V∗ on [0,T ]× Rd . In particular,
U = V on [0,T ]× Rd , i.e. the game has a value, which is the
unique viscosity solution to (19) with terminal condition
w(T , x) = g(x) for x ∈ Rd .
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Summary

U∗ ≥ U ≥ V ≥ V∗

1. Weak DPP for U

⇒ subsolution property of U∗

2. Weak DPP for V

⇒ supersolution property of V∗

3. A comparison result ⇒ V∗ ≥ U∗ (supersol. ≥ subsol.)
⇒ U∗ = V∗ ⇒ U = V , i.e. the game has a value.

No a priori regularity needed!
(U and V don’t even need to be measurable!)

No measurable selection needed!
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Thank you very much for your attention!
Q & A
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