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We present a simple algorithm for the factored polynomial (Fi-
nite Impulse Response, FIR) approximation of rational (Infinite
Impulse Response, IIR) filters which may be used to construct
inverse filters. When applied to quadrature mirror filters, our ap-
proach yields a simple way of generating an efficient FIR filter
bank which inherits the properties of IIR filter bank with any de-
sired accuracy. ®© 1995 Academic Press. Inc.

I. INTRODUCTION

In this paper we describe a simple and accurate method
of approximating Infinite Impulse Response (IIR) fiiters by
Finite Impulse Response (FIR) filters. Let H(z) be an IIR
filter,

H@) = ) h(nz™" (1.1)
such that
)
H(z) = o)’ (1.2)
where
Np Ng
PQ) =) bz, Q@)= az* a=1 (1.3
k=0 k=0

We assume that Q does not vanish on the unit circle. If
Q(z) = 1 then H(z) is a polynomial in 1/z and represents a
FIR filter. The class of FIR filters is rather narrow, e.g., the
inverse of FIR filter is not an FIR filter. On the other hand
the class of IIR filters appears naturally and the inverse filter
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H(z) = Q(z)/P(z) is an IR filter according to our definition
(provided P does not vanish on the unit circle).

Recently a significant attention has been devoted to var-
ious constructions of multirate filter banks using Quadra-
ture Mirror Filters (QMFs) (see, e.g., [1, 6] and references
therein). These filter banks may be used to generate wave-
lets and wavelet packets and perform decomposition/
reconstruction of functions into wavelet and wavelet packet
bases. In this case FIR filter banks correspond to compactly
supported wavelets.

It is well known that IIR filters are better as a tool for
approximation than FIR filters (rational vs polynomial ap-
proximations). Moreover, one has a greater flexibility in the
design of IIR filters. For example, it is easier to construct
the coefficients for IR multirate filter banks than FIR filter
banks (see, e.g., [6]). It is of interest in this case to find
FIR approximations of IIR multirate filter banks.

As it is well known, IIR filters may be implemented
via recursive algorithms by solving the standard difference
equations. Such implementations result in fast and effec-
tive algorithms. However, the control of truncation errors is
more difficult for recursive than for nonrecursive implemen-
tations since truncation errors tend to accumulate. There
has been a significant effort to design the so-called struc-
turally passive IIR filters (see [5] and references therein)
with low pass-band sensitivity. Such implementations are
typically more accurate than the standard FIR approxima-
tions of IIR filters. There are situations, however, where
one may choose to use an FIR approximation. As an ex-
ample, consider a non-causal IIR filter where some of the
roots of O are outside the unit disk. In order to have a sta-
ble recursive implementation, it is necessary to access the
data in the time-reverse order which presents a problem in
some applications.

In finding FIR approximations of IIR filters the standard
approach consists in using some optimization criterion (e.g.
least squares) for a fixed length of FIR filter (see, e.g., [2]).
The reason for fixing the degree of approximating polyno-
mial is to ensure efficiency of the resulting filter. In this
paper we depart from the traditional approach and do not
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fix the degree of approximating polynomial. Instead, we
attain efficiency by considering a factored FIR approxima-
tion with a small number factors where implementation of
each factor is inexpensive inspite of the fact that the degree
of approximating polynomial might be large. As a result,
we may achieve an accurate and efficient implementation
which may be viewed as an alternative to structurally pas-
sive IIR implementations. In the case of non-causal IIR
filters our approach allows one to improve accuracy of the
output adaptively as more data become available.

We describe a method for arriving at accurate factored
FIR approximations to IIR filters based on the formula

lz] <1, (1.4)

LTI+,

which is easily proven by induction with respect to n in

ane 1 -1 .
oo 2F = H;=o(1 + z%'). Our construction may be used

to generate simple and accurate FIR approximations to in-
verse filters. We also construct approximate FIR QMFs
which satisfy quadrature mirror condition with any desired
accuracy. These QMFs may be used for the discrete wave-
let and wavelet packet transforms and for computing
compactly supported approximations of non-compactly sup-
ported wavelets.

II. APPROXIMATION OF IIR BY FIR FILTERS

Let H in (1.2) be an IIR filter, where P(z) and Q(z) in
(1.3) are polynomials in 1/z of degree Np and Ny. We
factor Q so that Q(z) = Q"™(z)Q°"'(z), where all roots of Q™"
are inside and all roots of Q°" are outside the unit disk. We
assume that Q(z) does not have roots on the unit circle.

Factoring Q"(z) and Q°"'(z), we have

Nitg Zin
Q"‘(z)=H(1—i>, @2.1)
k=1 <
where roots |z}"| < 1,k = ]Né‘ and
Nzul Zout N;))u( Z
Q°“'(z)=H(—L)H(1 - Tﬁ) (2.2)
k=1 2 /=i <k

where roots |z > 1, k = 1,...,Np", and N3" + NJ
= No.

Using (1.4) to expand (2.1) and (2.2), we arrive at
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NZ\J( Nm Noul .
HE) = P) II( om)mm

k=1 t m=1j=0

x [1 + (%n)l] [1 + (Lfm)y]. (2.3)

Let us formulate conditions for the truncation of the in-
finite product in (2.3). Given ¢ > 0, for each root inside
the unit disk, let j,! = 1,...,N{, be such that

22 < e (2.4)
and, for each root outside the unit disk, let j,,,m =1,...,
Ng", be such that

1

I ~out
“~m

|7" < e. 2.5)

We then approximate H(z) by H(z),

P(v)ﬁ( %) ﬁﬁ[l+( )]

k
X (NQ ﬁ [1 + (Zm[)z]) . (26)

m=1 j=0

A(z) =

Proposimion 111 If ji,l = 1,...,N§ and jm,m=1,...,
NO"[ are such that the conditions in (2.4) and (2.5) are sat-
1sﬁedfor some ¢ > 0, then for |z} = 1

~ NQ“Z
|HG) - AG)| . ( e )
e < e/ + (e} | 1+ — , (2.7
|H(Z)| 2 NQ
where e/ = Nge.

To arrive at (2.7), we note that since

T (1) ] s

L=/

1 —(@"/2)
and
Louty2im+! jm 2
%:H[H(é) ] (2.9)
we have
v g
A) = z)H[l—(J"/z)zj'”]H[I @/z5*"™"']. (2.10)



FACTORED FIR APPROXIMATION

Therefore,

1]
Ny

IH(Z) - H(Z)l = |H(Z)|“ — H[l _ (Ziln/z)zlull
=1

Ul
Ng

x [0 = @/z292"1. @.11)
m=1

For |z] = 1 the second factor in (2.11) is of the form
|1 — F(xy,x3,...,x,)|, where F(x,x2,...,x,) = [[i; (1 —
x¢) and |x] < e,k = 1,...,n. We have 9F/0xyx=0 =
—1,k=1,...,n, where x = (x),x3,...,x,) and

62F z n—2
= H (1—x)| < +ey2
0x1 0y k=Tk#lm
Thus, we obtain |1 — F(xj,x2....,x,) < ne + %(ne)z(l +

€)' 2. Applying these considerations to (2.11), we arrive at
2.7.

Remark 1. The approximation of the filter H by H in
(2.6) achieves the desired accuracy if the conditions in (2.4)
and (2.5) are satisfied. We note that usually the number of
factors in (2.6) is not very large. The number of factors
slowly increases for the roots close to the unit circle. If z
is a root at the distance 6 away from the unit circle, then
the number of factors for this root may be estimated as
Ji = log,(— log,(€)) — log,(—log, (1 — &)).

Remark 2. In order to approximate a non-causal IIR filter,
it is necessary to introduce a delay (a number of samples
of the input which must be accumulated before a sample
of the output can be computed). For non-causal IR filters
(Ng" # 0), the delay (the highest degree of z) for the given
accuracy ¢ is as follows

out
NG m

D =NJ'+) > 2m,

m=1 j=0

In other words, in order to achieve the accuracy e for a non-
causal IIR filter, the delay of the output with respect to the
input is D,. Thus, by simply using additional factors, it is
possible to improve the accuracy with very little additional
computational expense as more and more samples arrive.

ExAMPLE 1. Let us consider the inverse of FIR filter
| —az !,
H@) =1 -az ), (2.12)
where [a| < 1. Using (2.6), we have
_ i o 2/
H(z)=H[l +(—) (2.13)
i=0 <
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where

la]?" < e. (2.14)

In particuolar, if « = % it is sufficient to choose j, = 5

in order to achieve accuracy € ~ 2 - 107", If we were to
truncate the usual expansion of H(z),

m

Ho =S %
m=0

bt
<

(2.15)

then the approximation (2.13) with j; = 5 is equivalent to
retaining 64 terms in (2.15). Implementation of the filter
in (2.13) requires one multiplication and one addition per
factor and, thus, six additions and six multiplications to
achieve accuracy e ~ 2 X 10719,

If |a| > 1, then

_ 2 Ji z 24
Hi) = —;g[l + (;) ] (2.16)
where
1 5
=% <e 2.17)
(3

In particular, if « = 2 and j; = 5, then the truncation error
e =~ 2 x 10710 and the delay D, = 64.

HI. APPROXIMATION OF IIR QUADRATURE
MIRROR FILTERS

The perfect reconstruction filter banks give rise to or-
thogonal and biorthogonal wavelet bases. Both FIR (see
[1]) and IIR (see, e.g., [6]) filters may be found to satisfy the
necessary perfect reconstruction condition which we write
here for the orthogonal case,

H@H@ ) + H(-gH(-z) = 1. (3.1)

The wavelet bases which correspond to trigonometric
polynomial (FIR) and rational TIR solutions of (3.1) have
significantly different properties. For example, compactly
supported wavelets [1] generated using trigonometric poly-
nomial solutions of (3.1) cannot be symmetric (with the ex-
ception of the Haar basis, see, e.g., [1]). On the other hand,
rational solutions, or IIR filters, permit the construction of
symmetric orthogonal wavelets (see e.g. [6, 3]).

A similar situation exist with respect to the interpolating
property of the scaling function. The Fourier transform of
the scaling function is defined as
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. 1 = »
) = N Emo(2 Je), (3.2)

where mg(¢) = H(e*). The scaling function has interpo-
lating property if for any f in the subspace spanned by

{¢(x - k)}k(Z’

f) =" flk)blx - k), (3.3)
k

where f(k) are values of the function f at the integer lattice.
Since ¢ also satisfies (3.3) and {¢(x — k)} are orthonormal,
we have

bmpo = / d(x)p(x — m)dx
= / > dk)px ~ k)plx — m)dx
k

= Y dk)oxm = dim). (3.4)
k
Thus, on any scale
f0) =" fQRG2x — k), (3.5)

k

which is a very convenient property in many applications
since values and coefficients are the same. There are no or-
thogonal compactly supported wavelets with scaling func-
tion that has the interpolating property. There exist, how-
ever, non-compactly supported wavelets with interpolating
scaling function.

In this section we construct compactly supported approx-
imations of non-compactly supported wavelets which over
any practical number of scales inherit the properties of non-
compactly supported wavelets with any desired accuracy.
At the same time these approximate wavelets have proper-
ties (e.g., symmetry of interpolating property of the scaling
function) which cannot be achieved by their exact counter-
parts. The approximate quadrature mirror filters may be
used to implement the corresponding IIR filters. In such
capacity our approach provides an alternative to, for exam-
ple, [7]. Such implementations are particularly useful for
non-causal QMFs in applications where accessing the input
data in the time-reverse order presents a problem.

Using (2.10) to approximate H(z),

NG . » N
H@2) = HO [ 11 - /27 T = /20091, (3.6)
=1 m=1
we have

ProposITIONIIL1. If ji,l = 1,...,N§ and jm,m = 1,...,
N°Q'" in (3.6) are such that the conditions in (2.4) and (2.5)
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are satisfied for some ¢ > 0, then FIR filter H(z) is a solu-
tion of

HQHEZ Y+ H(-2H(-z7") = 1 + E(2), (3.7)
where
NG Ny
E(z) = E“ —("/2¥"' N - (z}"z)”’“]g
X [1 = (/29" 1 = @3 "1 -1, (3.8)

and, on the unit circle |z| = 1,

-2
E@Z)| < 2er + 2(er)? (1 + ;—i) (3.9)
0

where 1 = Nge.

Proof of Proposition IIL.1 is straightforward. We note
that on the unit circle |z| = 1 E(z) is approximately 2N ge.
By choosing € to be sufficiently small, we find that FIR filter
H(z) satisfies the perfect reconstruction condition (3.1) with
the error E(z).

EXAMPLE |
QMF filter

(Butterworth Wavelets). Let us consider IIR

(1+z7H

Uiz yW+a—yp 10

HiZ) =z

where N is odd. Let us set N = 3 for this example so that

_(+2P

H(z) = 01D

(3.11)

for the non-causal version of the filter. In order to gener-
ate the causal version, z should be replaced by 1 /z. We
approximate H by H,

- 1 31 2 Y
H(z) = 5(1 +2) ]11 1+ (—?) .

If we choose j; = 4, then

I PRUNCY SN o 2 z2
H(z)—6(l+z) (1 3)(1+9)(]+81)

| Zlﬁ : 232 313
X\ ese1 )\ 230a6721 )0 @Y

(3.12)

and

Eq(z) ~29x 1077 — 5.4 % 10716 (264 + %) . (3.14)
4
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FIG. 1.
wider than shown in the picture.

On the unit circle |E4| =~ 5.4-107'%. The delay D = 65 in
this case. If we choose j; = 3, then

1
Exz) ~54-10—-23x108 (z32 + 23) , (3.1%

and the delay D = 33. Finally, if j; = 5 then |E5| =~ 2.9 -
10731, The causal version of the approximate Butterworth
filter is obtained by replacing z by 1/z in (3.13).

Although Butterworth filters are well-known, it is a re-
cent observation that H satisfies (3.1) and generates non-
compactly supported orthonormal wavelets with vanishing

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Compactly supported approximation of Butterworth scaling function N = 3 obtained by FIR approximation to QMFs. The support is

moments (see e.g. [6]). It is even more recent observation
that these wavelets are interpolating ([4]).

Let us use FIR filter in (3.13) to generate the scaling
function for Butterworth wavelets. These compactly sup-
ported approximations reproduce the interpolating property
of Butterworth wavelets with any given accuracy e. By
replacing H by H, the error in approximating the scaling
function does not exceed e-number of scales. FIR gener-
ated approximations of Butterworth scaling functions are
illustrated in Fig. 1 for N = 3 and in Fig. 2 for N = 5.

EXAMPLE 2 (Symmetric Wavelets). Let us consider an
example of IIR QMFs to generate symmetric wavelets,

0.5

T T T

7 6 5 4 38 2 1 0 1

2 3 4 6 6 7 8 9 10 11 12

FIG. 2. Compactly supported approximation of Butterworth scaling function N = S obtained by FIR approximation to QMFs. The support is

wider than shown in the picture.
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-0.25

10 9 8 7 6 5 4 3 2 1

0 1 2 3 465 67 8 910

FIG. 3. Compactly supported symmetric scaling function obtained by FIR approximation to QMFs corresponding to symmetric orthonormal
wavelets with 4 vanishing moments. The support is wider than shown in the picture but the scaling function is less than 2.229 x 107 outside [~ 10, 10]

and less than 1.5 x 1074 outside [-25,25].

iy~ + 24200 — 2 + (1 + 2%
=B+ (4B V200 - 2

(3.16)

A complete characterization of IIR QMFs for symmetric
wavelets (which includes this example) may be found in
[3]. The denominator in (3.16) may be factored as

(1-2% +(1+ 2+ V21 = 2H*
= @+ + 1) (22 + ;]2—) (zz + *12—) (3.17)
1

r

where r; = tan*(37/32) and r, = tan’(57/32). Using
Proposition III.1, we construct FIR approximation to the
quadrature mirror filters and use these approximate filters
to generate the scaling function. The resulting symmetric
wavelet where € = 107" is illustrated in Fig. 3.

Approximate filters as in (2.6) and (3.13) are implemented
as cascaded convolutions. Typically, each root of Q requires
5-6 factors. Thus, factored FIR implementations of IIR
filters require about 5-6 times more operations than imple-
mentations of IIR filters via recursive algorithms. However,
there are several advantages of cascaded implementations
that might offset the apparent increase in the number of
operations. First, in hardware implementations there is no

need to control truncation errors which tend to accumulate
in recursive algorithms. Second, for the non-causal filters
there is a simple mechanism for improving accuracy of the
output. Namely, as the delay increases and more samples of
the input signal become available, we may apply additional
factors of the approximate filter. Each factor requires one
addition and one multiplication but improves the accuracy
(due to the given root) quadratically. We refer to Example
2 for the trade-off between the accuracy and the delay.
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