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Wavelets and Fast Numerical Algorithms

GREGORY BEYLKIN

ABSTRACT. Wavelet-based algorithms in numerical analysis are similar
to other transform methods in that vectors and operators are expanded
into a basis and the computations take place in the new system of coordi-
nates. However, wavelet-based algorithms exhibit a number of important
properties due to the controllable localization of wavelets in both time and
frequency domains and their orthogonality to low degree polynomials. The
multiresolution structure of the wavelet expansions brings about an effi-
cient organization of transformations. Moreover, wide classes of operators
(Calderén-Zygmund operators, for example) which naively would requiré a
full (dense) matrix for their numerical description, have sparse representa-
tions in wavelet bases. For these operators sparse representations lead to
fast numerical algorithms, e.g. an O(—N loge) algorithm for the evaluation
of N x N matrices on vectors, or an O(—N loge) algorithm for matrix mul-
tiplications, where € is the desired accuracy. Since the performance of many
algorithms requiring multiplication of dense matrices has been limited by
O(N3) operations, these fast algorithms address a critical numerical issue.
In this lecture, we review the standard and non-standard representations of
operators in wavelet bases and associated fast numerical algorithms. The
non-standard representation uncouples the interaction among the scales.
Examples of the non-standard forms of several basic operators are com-
puted explicitly.

Numerical algorithms using wavelet bases are similar to other transform meth-
ods in that vectors and operators are expanded into a basis and the computations
take place in the new system of coordinates. As with all transform methods, such
an approach hopes to achieve that the computation is faster in the new system of
coordinates than in the original domain. However, due to the recursive definition
of wavelets, their controllable localization in both space and wave number (time
and frequency) domains, and the vanishing moments property, wavelet based
algorithms exhibit a number of new and important properties.
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In the usual transform methods, the functions of the basis (e.g. exponentials,
Chebyshev polynomials, etc.) are chosen to be eigenfunctions of some differ-
ential operator (e.g. solutions of the Sturm-Liouville problem). The choice of
the differential operator and, hence, of the basis functions, is dictated by the
availability of fast algorithms for expanding an arbitrary function into the basis.
Unfortunately, classes of operators which have a sparse representation -in such
bases are very narrow.

Wavelets, on the other hand, are not solutions of a differential equation. These
functions are defined recursively and are generated via an iterative algorithm.
They are translations and dilations of a single function.! Instead of diagonalizing
some differential operator, representations in the wavelet bases reduce a wide
class of operators to a sparse form. Here the orthogonality of wavelets to the
low degree polynomials (the vahishing moments property) plays a crucial role in
producing sparse systems.?

Historically, the orthonormal bases of wavelets were first constructed by
Stromberg [33] and.then by Meyer [25]. Later, the notion of the Multiresolution
Analysis was introduced by Meyer [26] and Mallat [23]. Orthonormal bases of
compactly supported wavelets were constructed by Daubechies [16] There are
many new constructions of orthonormal bases with a controllable localization
in the time-frequency domain, notably “wavelet-packet” bases in [13] and [15],
local trigonometric bases in [14] and [24], and wavelet bases on the interval in
[11], [12] and [22]. There exists a very important connection between wavelets
and the technique of subband coding in signal processing. In fact, the discrete
wavelet transform is accomplished by a pair of so-called quadrature mirror fil-
ters. Quadrature mirror filters (QMF's) with the “exact reproduction property”
were introduced by Smith and Barnwell [32].

Wavelets have some of their historical roots in thtlewood -Paley and Calderdn-
Zygmund theories (see e.g. [28]) which have beén powerful tools in the analysis
of linear and non-linear operators. In numerical analysis some of the ingredi-
ents of Calderén-Zygmund theory appear in the Fast Multipole Method (FMM)
for computing potential interactions [30], [1t 9], [10]. FMM was designed for
computing potential interactions between N particles in O(—Nlog €) operations
(instead of O(N?) operations). The reduction of the complexity in FMM is
achieved by approximating the far field effect of a cloud of charges located in a
box by the effect of a single multipole at the center of the box. All boxes are
then organized in a dyadic hierarchy enabling an efficient O(N) algorithm.

The fast wavelet-based algonthms of [7] provide a systematic generalization of
the FMM and its descendents (e.g. [29], [2], [18]) to all Calderén-Zygmund and
pseudo-differential operators. The subdivision of the space and its organization

11t i5 also possible to construct bases with translations and dilations of several functions,
see e.g. [1].

2This property and the fact that the basis is orthonormal distinguish the wavelet bases
from the hierarchical bases:
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in a dyadic hierarchy are a consequence of the multiresolution properties of the
wavelet bases, while the vanishing moments of the basis functions make them
useful tools for approximation.

A novel aspect of representing operators in the wavelet bases is the so-called
non-standard form {7]. The remarkable feature of the non-standard form is the
uncoupling of the interactions between the scales. The non-standard form leads
to an order N algorithm for evaluating operators on functions. It is also quite
remarkable that the error estimates for the non-standard form lead to a proof of
the celebrated “T(1)” theorem of David and Journé (see [7]). The non-standard
forms of many basic operators, such as derivatives, fractional derivatives, the
Hilbert and Riesz transforms, may be computed explicitly [4]. A straightforward
realization, or the standard form, by contrast, contains matrix entries reflecting
“interactions” between all pairs of scales. The standard form yields, in general,
only an order N log(NN) algorithm for evaluating operators on functions.

The representation of wide classes of operators in wavelet bases may be viewed
as a method for their “compression”, i.e., conversion to a sparse form. For these
operators sparse representations lead to fast algorithms for matrix multiplica-
tions. Since the performance of many algorithms requiring multiplication of
dense matrices has been limited by O(N?) operations, these fast algorithms ad-
dress a critical numerical issue.

Examples of such algorithms requiring multiplication of matrices are, for in-
stance, an iterative algorithm for constructing the generalized inverse [31], the
scaling and squaring method for computing the exponential of an operator, and
similar algorithms for sine and cosine of an operator, to mention a few. By re-
placing the ordinary matrix multiplication in these algorithms by the fast multi-
plication in the wavelet bases, the number of operations is reduced to, essentially,
O(N) operations. For example, if both the operator and its generalized inverse
admit sparse representations in the wavelet basis, then the iterative algorithm
[31] for computing the generalized inverse requires only O(N log ) operations,
where « is the condition number of the matrix. Various numerical examples and
applications may be found in [9], [1] and (8]

Solving the two-point boundary value problem for the elliptic differential op-
erators in the wavelet “system of coordinates” allows us to construct the Green’s
function (the inverse operator) in O{N) operation. We note that the ordinary
matrix representation of the Green’s function requires O(NN?) significant entries
but the representation of the Green’s function in the wavelet bases requires (for
a given accuracy) only O(N) entries. The main tool in constructing the Green’s
function numerically is the diagonal preconditioner available for periodized dif-
ferential operators in the wavelet bases [4], [5] (see also [21]).

Unfortunately, the format of one lecture does not allow us to cover all the
developments or mention all the results available today. Instead, we will review
several features of the new numerical methodology based on the wavelet repre-
sentations. Starting from the notion of multiresolution analysis, we will consider
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the non-standard form (which achieves uncoupling among the scales) and the as-
sociated fast numerical algorithms. Examples of non-standard forms of several
basic operators (e.g. derivatives) will be computed explicitly.

1. Multiresolution analysis and wavelets.

We briefly outline here the properties of compactly supported wavelets and re-
fer for details to [16], [17] and [28]. Let us start with the notion of a multiresolu-
tion analysis [26], [23] which captures the essential features of all multiresolution
approaches developed so far.

DEFINITION 1.1. A multiresolution analysis is a decomposition of the Hilbert
space L2(R9), d > 1, into a chain of closed subspaces

(1.1) - CVaCViCcVyCc Vo CcV_,C--.

such that
(1) Njez V5 ={0} and Ujez V; is dense in L2(R9).
(i) For any f € L*(R9) and any j € Z, f(z) € V; if and only if f(2z) €

\ZY A
(iii) For any f € L2(R9) and any k € Z9, f(z) € Vy if and only if flz—k) e
Vo.
(iv) There exists a function ¢ € Vj such that {¢(x—k)}recza is a Riesz basis
of Vo.

In this lecture we use only orthonormal bases, so that we replace Condition iv
by '

(iv’) There exists a function ¢ € Vg such that {p(z — k)}reza is an
orthonormal basis of V.

Let us define the subspaces W; as an orthogonal complement of V; in V;_,,

(1.2) Vi :Vjﬁawj;

and represent the space L%(RY) as a direct sum

(1.3) : L*(RY) = Pw,.
J€Z

Selecting the coarsest scale n, we may replace the chain of the subspaces (1.1)
by '

(1.4) VnC~--CV2CV1CVOCV~1CV..2C...,
and obtain
(1.5) L*RY) =V.Pw,.

j<n
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If there is a finite number of scales then, without loss of generality, we set 7=0
to be the finest scale and consider

(1.6) VoaC---CVaCViCVy, VocLi(RY)

instead of (1.4). In numerical realizations the subspace Vy is finite dimensional.

First, let us consider bases in L%(R), d = 1. The function @ is the so-called
scaling function and, with its help, we may define the function 9, the wavelet,
such that the set of functions {1/(z — k)}rez is an orthonormal basis of Wo.

An example of a multiresolution analysis satisfying Definition 1.1 with Con-
dition iv’ is the chain of subspaces generated by the Haar basis [20]. The scaling
function in this case is the characteristic function of the interval (0,1). The Haar
function is defined as

I for 0<z<1/2
(1.7) h(z)=¢ -1 for 1/2<z<1 ,
0 elsewhere.

and the Haar basis is formed by functions h; x(z) = 279/2h(2 9z — k), j,k € Z.

Wavelet bases (with a smooth scaling function ¢ in Condition iv’) generalizing
the Haar functions were first constructed by Stromberg [33] and then Meyer
[25]. The notion of the Multiresolution Analysis was introduced by Meyer [26]
and Mallat [23] and is more recent than the constructions of [33], [25] and, of
course, of [20]. Compactly supported wavelets with vanishing moments were
constructed by I. Daubechies [16]; those are the ones we will use in this lecture.
However, most of the results that we discuss do not depend on this particular
choice of the wavelet basis.

'The vanishing moments property simply means that the basis functions are
chosen to be orthogonal to the low degree polynomials, namely, if the set of
functions {¢(z — k) }tez is an orthonormal basis of Wy, then

+oo
(1.8) P(x)z™dz = 0, m=0,...,M~ 1.
For the Haar function in (1.7) M = 1 and it is indeed trivially orthogonal to
constants. _

There are two immediate consequences of Definition 1.1 with Condition iv’.
First, the function ¢ may be expressed as a linear combination of the basis
functions of V_;. Since the functions {¢; x(z) = 277/%p(27 Iz — k) }4ez form an
orthonormal basis of V;, we have

L—-1
(19) 0(@) = V2 ha(25 — k).

k=0

In general, the sum in (1.9) does not have to be finite and, by choosing a finite
sum in (1.9), we are selecting compactly supported wavelets. We may rewrite
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(1.9) as

(1.10) PO = mole/2p(E/2),
where '

. o . +oo .
Ly #e)= 2= [ et

and the 2-7r—peribdic function myq is defined ‘as
o L-1

(1.12) mo(§) =272 " hyeltt
k=0

Second, the orthogonality of {¢x(z — k)}rcz implies that

—co —00

+00 +00
118 b= [ ele-meledr= [ pOF

and, therefore,

, 2 : o
(1.14) b= / ST Ip(€ + 2m[2 e de,
' 0 ez '
and o |
. 1
(1.15) D lpE +2nl)? = o
leZ :

Using (1.10), we obtain
. 1
(1.16) Y Imo(€/2+m)2p(&/2 + mi)[? = Py
: leZ :
é.nd,‘ by taking the sum in (1.16) separately over odd and even indices, we have

(1.17) > Imo(€/2 + 2md)[?|p(¢/2 + 2r))?

lez

+ lZZjlmo<§/2+27rz+ PIp(e/2+ 2nt + )P = o
e B

Using the 2ﬂ-periqdicity of the functiomr mg and (1.15), we obtain (after replacing
£/2 by £) a necessary condition

(1.18) Imo(€)1? + Imo(€ + m)? = 1,
for the coefficients hy in (1.12). On defining the function 9 by
(1.19) (@) = V2 gep(2z ~ k),
P
where

(1.20) gk =(-D*hp_x_1, k=0,...,L-1,
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or, equivalently, the Fourier transform of 1 by

(1.21) P(€) = ma(£/2)p(E/2),
where
k=L—-1
(1.22) mi(§) =272 Y gre™t = e74mg(¢ + ),
k=0

it is not difficult to show (see e.g.; [28], [16], [17]), that for each fixed scale
j € Z, the wavelets {1; x(z) = 277/2¢)(2"72 — k) }xez form an orthonormal basis
of WJ S . : S S

Equation (1.18) can also be viewed as the condition for exact reconstruc-
tion for a pair of the quadrature mirror filters (QMFs) H and G, where H =
{re}rzt=1 and G = {gk}E=L"". Such exact QMF filters were first introduced
by Smlth and Barnwell [32Tfor subband coding, '

We will not go into a full discussion of the necessary and sufficient conditions
for the quadrature mirror filters H and G to generate a wavelet basis and refer
to [17] for the details. The coefficients of the quadrature mirror filters H and
G are computed by solving a set of algebralc equations (see e.g. [17]). The
number L of the filter coefficients in (1,12) and (1,22) is related to the number
of varushlng moments M, and. L = 2M for the wavelets constructed' in [16]
If additional conditions are 1mposed (see [7] for an example), then the relation
might be different, but L is always even.

We observe that once ‘the filter H has been chosen, it completely determines
the functions ¢ and ¥ and therefore the multlresolutlon analySIS Moreover,
in properly" constructed algorlthms the values of ‘the- functions @ and 1 -are
(almost) never computed. Due to the recursive definition of the wavelet bases,
“all the manipulations are performed with the quadrature mirror filters H and G,
even if they involve quantities associated with ¢ and .

As an example, let us compute the moments of the scaling functlon ¢. The
expressmns for the moments, : :

(1.23) Moy, /;c p(z m, m=0,... M—1,

may be found in terms of the filter coefﬁments {hk} =L-1 . Applying the operator
(3 d/d{)m to both sides of (1. 10) and setting £ = 0, we obtain

L o

. P . _m —\ m y a4 .
(1.24) My =277 ( ; )MjM’:n_j,

§=0
Wher_e
: k=L-1

(1.25) Mp=27% % hkk’ 1=0,...,M-1.
k=0~ ’
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Thus, we have from (1.24)

' 1 &N m
(1.26) M=o Y ( ; )Mjan_j,
7=0
with MO = 1.
Alternatively, using
(1.27) #(€) = (2m) 712 [ mo(27%¢),

j=1

the moments M,,, may be obtained within the desired accuracy as a limit of &
recursively generated sequence of vectors, {M&?}zzM Lforr=12...,

j=m
r4+1) __ ] m —j(r+1 (r) h
(1.28) M = 3" ( ; )2_J< IM) ME,
‘ . 7=0 -
starting with
129) MD =o=mph =0, M1

Each vector {Mﬁg’}gz(’)” ~1 represents M moments of the product in (1.27) with
7 terms, and the iteration converges rapidly. Notice that in both algorithms we

never computéed the values of the function ¢ itself.

2. The non-standard form.

- A wavelet basis in L*(RY), d > 2, may be constructed as a tensor product
of one-dimensional bases. Considering d = 2 and using the Haar basis as an
example, we note that the supports of the basis functions are rectangles of various
dyadic sizes. Representing operators in such bases leads to the standard form
which we will discuss in the next section.

Alternatively, wavelet bases in L%(R%), d > 2 may be constructed using the
scaling function in addition to the wavelets. Such a construction is specific to
wavelet bases. Considering d = 2.as an example, we note that the triplet of
functions

(2.1) {56 (2) 5.0 (v), Yik(2) ik (U)y @ik(E) Yine (U)},

where j, k, k' € Z, forms a basis of L2(R?). We note that the basis functions have
square supports. Representing operators in these bases leads to the non-standard
form [7].

Let us introduce the non-standard form in the context of Multiresolution
Analysis, independently of the specific choice of the wavelet basis. Let T be an
operator

(2.2) T:L*R) — L*(R),
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with kernel K (z,y). The orthogonal projection operators on the subspace V;,
J€L,

(2.3) P, . L*(R) — V;,

are given by

(2.4) Zf‘!’]k ‘ij z).
k
Expanding T in a “telescopic” series, we obtain
(2.5) T =) (Q;TQ; + Q;TP; + P;TQ;),
JEZ
where
(2.6) Q; =P;_, — P

is the projection operator on the subspace W;. If there is a coarsest scale n,
then instead of (2.5) we have

(2.7) T= ) (QTQ;+QTP;+PTQ;)+ FTP,,
j=—00
and if the scale 7 = 0 is the finest scale, then

(28) Ty = Z(QJTQ] + QjTPj + P]TQ]) + P, TP,

j=1

where T ~ Ty = BT F, is a discretization of the operator T on the finest scale.
The non-standard form is a representation (see [7]) of the operator T" as a
chain of triplets

(2.9) T ={A4;,B;,Tj}jez

actmg on the subspaces V; and W,

(2.10) A W; - W,
2.11 B, :V, =W,
J 7 2

The operators {A4;, Bj,T';}jez are defined as A; = Q;TQ;, B; = Q;TP; and
I'; = B;TQ;. These operators admit a recursive definition via the relation

Aivi By
2.13 T; = £3+t ZiH )
(213) ’ ( Fiv1 Tjn
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where the operators T},

are defined by T; = P;TP;.
If there is a coarsest scale n, then

(215) T = {{A]aB]ij}]EZ]Sn»Tn}v

where T,, = P,TP,. If the number of scales is finite, then j = 1,2,... nin (2.15)
and the operators are organized as blocks of a matrix (see Figures 1 and 2).

FIGURE 1. Organization of the non-standard form of a matrix.
The submatrices 4;, B;, and I';,7=1,2,3, and T are the only
non-zero submatrices.

Let us make the following observations:
(i) The map (2.10) implies that the operator Aj describes the interaction
on the scale j only, since the subspace W; is an element of the dlrect
sum in (1.5).
(ii) The operators B;, T; in (2.11) and (2.12) describe the interaction be-
tween scale j and all coarser scales. Indeed, the subspace V; contains
all the subspaces V;: with j > j (see (1.1)).
(iii) The operator T} is an “averaged” version of the operator Tj_
The operators: Aj;, B; and I'; are represented by the matrices o, 67 and 7,

(2.16) oy = / / K (2,9) y1(2) 5,00 (y) dady,
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Al

FIGURE 2. An example of a matrix in the non-standard form
(see Example 4.2).

N\
N\

Ay
\
5

FIGURE 3. The non-standard form of the same matrix as in
Figure 2 using a basis of wavelets on the interval [6]. The verti-
cal and horizontal bands (which are present in Figure 2 due to
periodization) do not appear in this representation. o
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(217) ﬂyz//K@m%A@%mwmw
and ‘
(2.18) ﬂW://K@w%A@%MMM@

The operator T; is represented by the matrix s7,

(2.19) #W=//K@w%Amwmwmw

3. The standard form.

The standard form is the representation of an operator in the tensor product
basis. Instead of introducing the standard form in this manner, we emphasize
the connection with the non-standard form. The standard form is obtained by
representing

(3.1) V; = @ Wi,
3'>3
and considering for each scale 7 the operators {B;:', F;:’} 1>
(32) B :Wj —W;, .
(3.3) T W, — W,

If there is a coarsest scale n, then instead of (3.1) we have

i'=n

(3.4) V=V, @ W;.
3'=3+1

In this case, the operators {Bj:’, I‘;'} for/ =j+1,...,nareas in (3.2) and (3.3)

and, in addition, for each scale j there are operators {BJ'-H'I} and {I‘?“},

(35) Byt v, - W,

(3.6) I3 W, — Vi,

(In this notation, I'?*! = I', and B?*' = B,). If there are finitely many
scales and Vj is finite dimensional, then the standard form is a representation
of TO = POTP 0 as

37 To={A4{B Y. AT Ml By L T Tadjmt,n:

The operators (3.7) can again be organized as blocks of a matrix (see Fig-
ures 4 and 5).
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FIGURE 4. Organization of a matrix in the standard form.

If the operator T is a Calde_réh—Zygmund or a pseudo-differential operator
then, for a fixed accuracy, all the operators:in (3.7) (except T,) are banded.
As a result, the standard form has several “finger” bands which correspond to
the interaction between different scales. For a large class of operators (pseudo-
differential, for example), the interaction between different scales, characterized
by the size of the coefficients of “finger” bands, decays as the distance j' — j
between the scales increases. Therefore, if the scales j and j' are well separated,
then for a given accuracy, the operators Bg: ’, F;l can be neglected.

There are two ways of computing the standard form of a matrix. The first
consists in applying the one-dimensional transform to each column (row) of the
matrix and, then, to each row (colu.mn) of the result. Alternatively, one can
compute the non-standard form and then apply the one-dimensional transform
to each row of all operators B’ and each column of all operators I';. We refer to
[7] for details.

4. Compression of operators.

If the operator T is a Calderén-Zygmund or a pseudo-differential operator
then, by using the wavelet basis with M vanishing moments, we force the entries
of the matrices {A;, B;,T;} ez to decay roughly as 1/dM*1, where d is the
distance from the diagonal. For example, let the kernel satisfy the conditions

1
[z —yl’
Co
|z —y|t*+M

(4.1) ' K (z,9)|

(4.2) |02 K (z, 9)| + 18" K ()|

IA
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FIGURE 5. An example of a matrix in the standard form (see Example 4.2).

for some M > 1. Then by choosing the wavelet basis with M vanishing moments,
the coefficients o |, 5], 7], of the non-standard form (see (2.16) - (2.18)) satisfy
the estimate '

_ ‘ A Cu
(4.3) lo |+ 167, + 17,1 < T e
for all

(4.4) i 1] >2M.

If, in addition to (4.1}, (4.2},

(4.5)

K(z,y) dmdy| <ay
IxI

for all dyadic intervals I (this is the “weak cancellation condition”, see [27]),
then (4.3) holds for all 7,1.

If T is a pseudo-differential operator with symbol o(z,£) of order A defined
by the formula

(46) T(f)(z) = oz, D)f = / &7 o(z,€) f(€) d = / K(z,9)f(y) dy,
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where K is the distributional kernel of T, then assuming that the symbols ¢ of
T and o* of T satisfy the standard conditions

(4.7 | 08 07 0(2,€) | < Cap(1+] € [)) 47
(4.8) | 08 82 0*(2,6) | < Cap(1+] € NP,
we have the inequality

) ) ) 227 Oy

J J ] I —
(4.9) laz,z! + lﬁz,ll + I'Yz,zi =+ - M+

for all integer 1, 1.

Suppose now that we approximate the operator Ty by the operator TOB ob-
tained from T by setting to zero all coefficients of matrices o/, 87 and 47 outside
bands of width B > 2M around their diagonals. We obtain

C
(410) 176"~ To || < 537 logz NV,

where C' is a constant determined by the kernel K and log, N is the number of
scales in the representation. In most numerical applications, the accuracy € of
calculations is fixed, and the parameters of the algorithm (in our case, the band
width B and the order M) have to be chosen in such a manner that the desired
computational precision is achieved. If M is fixed, then we choose B so that

1/M
(4.11) B> <glog2 N) .

In other words, Ty has been approximated to precision € with its truncated
version, which can be applied to arbitrary vectors for a cost proportional to
N ((C/e)logs N )1/ M which for all practical purposes does not differ from N.

A more detailed investigation [7] permits the estimate (4.10) to be replaced
with the estimate

C
(4.12) - 1T ~To || < B

making the application of the operator T to an arbitrary vector with arbitrary
fixed accuracy into a procedure of order N. Obtaining this uniform estimate
leads to a proof of

THEOREM 4.1 (G. DaviD, J.L. JOURNE). Suppose that the operator

(4.13) Tm=/waﬂw@

satisfies the conditions (4.1), (4.2), (4.5). Then a necessary and sufficient condi-
tion for T' to be bounded on L? is that ) '

(4.14) B(z) = T(1)(z),
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(4.15) y) =T"(1)(y)
satisfy the dyadic bounded mean oscillation (B.M.O.) condition,

(4.16) %W%Lmuwmuwwmsa

where J is a dyadic interval and

1

(4.17) mi(6) = 17 [ Plalde.
IJ1 /s

Again we refer to 7] for details.

The compression of operators results in fast algorithms for evaluation of op-
erators on functions. We present here one example and refer to (7] for additional
examples.

EXAMPLE 4.2. In this example, we consider the matrix

Aij = { =
0 1=7,
and convert it to the non-standard form using wavelets with six vanishing mo-
ments. Setting to zero all entries whose absolute values are smaller than 1077,
we obtain the non-standard form where the non-zero elements are shown in black
in Figure 2. The results of experiments in applying this sparse matrix to a vector
are tabulated in Table 1. The standard form of the operator A with N = 256 is
depicted in Figure 5.

Input Time Error of Single Precision Error of FWT Compression
Size Multiplication Multiplication Coefficient
N Ts Tw Ta| Lo-norm L oo-norm Ly-norm Loo~norm Ceomp
64 | 0.12] 0.16 7.76| 1.26-1077| 365 - 10°7 | 8.89-1078| 1.72-1077 1.39
128 | 048] 0.38| 32.62] 2.17-1077| 8.64 - 10~7 | 1.12-10"7| 9.94- 107 2,22
256 | 1.92| 0.80| 96.44| 2.81-1077|1.12 - 107% | 1.25-1077} 5.30-10"7 3.93
512 | 7.68| 1.80| 252.72) 4.21-1077{ 1.75 - 107° | 1.23-10"7| 5.16 - 10~" 7.33
1024 | 80.72| 3.72 605.74] 6.64-10"7| 3.90 - 107% | 1.36-10"7| 5.04- 107 14.09_

TABLE 1. Numerical results for Example 4.2.

Column 1 of Table 1 contains the number N indicating the size of N x N
matrix A;;, columns 2, 3 contain CPU times Ty, T, required by the standard
order O(N?) and the fast O(N) schemes to multiply a vector by the matrix,
and column 4 contains the CPU T, time used to produce the non-standard
form of the operator. Columns 5,6 contain the Ly and L, errors of the direct
calculation, and columns 7, 8 contain the same information for the result obtained
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by computing in the wavelet system of coordinates. Finally, the last column
contains the compression coefficients Ceomp, defined by the ratio of N? to the
number of non-zero elements in the non-standard form of of the matrix.

5. The operator d/dz in wavelet bases.

For a number of operators (e.g., differential operators, fractional derivatives,
Hilbert and Riesz transforms) we may compute the non-standard form in the
wavelet bases by solving a small system of linear algebraic equations [4]. As an
example, we construct the non-standard form of the operator d/dz. The matrix
elements afl, ﬁg',, and 751 of A;, Bj, and I';, where 4,1,j € Z for the operator
d/dz are easily computed as

1) ol =27 / W@z — i)W (2 — 1) 27 ds = 2Ty,

(5.2) 551 =277 /°° Y27z 1) (279 — 1)277dr =277 B,

and
(5.3) v =277 / w27z — i) (2772 — 1) 270dx = 277y, _y,
where
400 d
(5.4) o = N Pz —1) &Ed)(m) dzx,
+o0 d
. = — ) =
(5.5) By . b(z =) —w(z)dz,
and _
+o00 d
. = 1) — dx.
(56) w= [ ela-d) L)
Moreover, using (1.9) and (1.19) we have
L—1.L-1 -
(5.7) =2 " gk Gk Taitk—krs
k=0 k'=0
L-1 L-1
(58) Bi =2 Z Z 9k Pk Toi -k
‘ k=0 k'=0
and
L-1 L—1

(5.9) %=2Y D hgr Taitk—ks,
k -

=0 k'=0
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where

400 d
(5.10) T = / plx =) —p(z)dz, leZ.
. oo dz
Therefore, the representation of d/dzx is completely determined by the coefficients
r;.in (5.10) or in other words, by the representation of d/dz on the subspace V.

Rewriting (5.10) in terms of ¢(€) (see (1.11)), we obtain

+o00
(6.11) = [ leorage e as

-0
Thus, the coefficients r; depend only on the autocorrelation function of the scal-
ing function ¢, rather than the scaling function itself since the integral in (5.11)
depends only on |¢(¢)[2. The same holds, in fact, for all convolution operators

(4]

Remark. The autocorrelation function of the scaling function (see (5.24))
has 2M — 1 vanishing moments and its "zero moment” is equal to one (see (5.25)
and (5.26)). This implies that if we consider the representation of the derivative
operator on the subspace Vg as a finite-difference scheme, such a scheme has
order 2M. For integral convolution operators, this implies that the asymptotics
is accurate-to order 2M (see [4] and below).

The following observations [4] reduce the computation of the coefficients ; to
solving a system of linear algebraic equations. )

1. If the integrals in (5.10) or (5.11) exist, then the coeflicients v, I € Z in
(5.10) satisfy the following system of linear algebraic equations ‘

L/2
(5.12) r=2|ra+ 3> asko1(ra—zess +ragak-1) |
k=1
and » . '
(5.13) > in =1,
1
where
L—2k
(5.14) Aog—1 = 2 Z hihiyor—1, k=1,...,L/2
i=0

are the autocorrelation coefficients of the filter H.
2. If M > 2, then the equations (5.12) and (5.13) have a unique solution with
a finite number of non-zero r;, namely, r; # 0 for —L+2<I[< L -2 and

(5.15) = —T-,
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Solving equations (5.12), (5.13), we present the results for Daubechies’ wave-
lets with M = 2,3. For further examples we refer to [4].

1. M=2
1

az = —3,

L9
Ty 8

and

2 1
Ty = —— = —
1 3) T2 121
We note that the coefficients (—1/12,2/3,0,—-2/3,1/12) of this example can
be found in many beoks on numerical analysis as a choice of coefficients for

numerical differentiation.

2 M=3
_ 7 25 3
a); = 64’ az = as = )
and
- 272 53 - 16 , 1
= — — To = ——— = - = m—
YTU3650 2365 0 1005 4T T 2020
The structure of non-standard and standard forms of derivative operators is
illustrated in Figures 6 and 7. '

4

‘
NN
FIGURE 6. Sparse structure of the non-standard form of deriva-

tive operators. The width of the bands depends only on the
choice of the basis and is equal to 2L — 3.
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FIGURE 7. Sparse structure of the standard form of derivative operators.

For the coefficients rl(n) of d"/dx™, n > 1, the system of linear algebraic
equations is similar to that for the coefficients of d/dz. This system (and (5.12))
may be written in terms of

(5.16) (€)= ZT}")G”E‘,
4
as

(5.17) 7€) = 2" (Imo(&/2)* #(€/2) + [mo(€/2 + m)[2#(¢/2 + 7)) ,

where mg is the 2n-periodic function in ( 1.12). Considering the operator My on
.2m-periodic functions

(5.18)  (Mof)(€) = Imo(£/2)[> F(€/2) + Imo(&/2 + m)|? f(€/2 + ),

we rewrite (5.17) as
(5.19)  MeP =27,

so that # is an eigenvector of the operator My corresponding to the eigenvalue
27". Thus, finding the representation of the derivatives in the wavelet basis is
equivalent to finding trigonometric polynomial solutions of (5.19) and vice versa
[4]. v

An important property of the wavelet representation of the (periodized) deriva-
tive operators (and, in general, pseudodifferential operators with homogeneous
symbols) is that these operators have an explicit diagonal preconditioner in wave-
let bases.
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We present here two tables illustrating such preconditioning applied to the
standard form of the second derivative. In the following examples the standard
form of the periodized second derivative D4 of size N x N, where N = 2™, is

preconditioned in the wavelet basis by the diagonal matrix P,

D? = PDYP,

where Py = 6427, 1 < j < n, and where j is chosen depending on 4,/ so that
N - N/27' +1<il<N-N/2, and Pyny = 2". The matrix P is illustrated

in Figure 8.

32]

[39

FIGURE 8. An example (n = 5) of the diagonal matrix P used
to rescale the matrix of the periodized second derivative DY in
the wavelet system of coordinates.

Tables 2 and 3 .below compare the original condition number « of DY and &,

of DE.

Fractional derivatives. First, let us consider a convolution operator T' and
the infinite matrix tEJ_ :1), 1,1 € Z, representing P;_,TP;_, on the subspace V;_;.
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N K Kp

64 0.14545E+04 0.10792E4-02

128 0.58181E4-04 0.11511E+02

256 0.23272E4-05 0.12091E+02

512 0.93089E+05 0.12604E+-02

1024 0.37236E406 0.13045E+02 !

TaBLE 2. Condition numbers of the matrix of the periodized
second derivative (with and without preconditioning) in the

basis of Daubechies’ wavelets with three vanishing moments
M =3.

To compute the representation of P;TP;, we have (see e.g., formula (3.26) of [7])

-1 L—1
(5.20) £ = L}: S bk 55k
k=0 m=0
It easily reduces to
L/2
(5.21) t( = t(J Do 3 Za% 1 2z é?c+1 + tg]l:;l)c»l)'

where the coefficients asx_1 are given in (5.14).
We also have

) “+o0 “+oo .
(5.22) t, = / K(z — y) ¢j,0(y) p;,1(z) dzdy,
—o0 J—o0
and, by changing the order of integration, we obtain
T o -
(5:23) =2 [ K@(-y)e)dy,
—00

where & is the autocorrelation function of the scaling function ¢,

+oo
(5.24) 3(y) = / (@) ol — y) dz.

—o

It is easy to verify (see [4]) that

(5.25) / " ey =1,
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N Ko Kp
64 0.10472E+04 0.43542E+01
128 0.41886E+04 0.43595E4-01
256 0.16754E+05 0.43620E4-01
512 0.67018E+05 0.43633E+01
1024 0.26807E~+06 0.43640E+01

TABLE 3. Condition numbers of the matrix of the periodized
second derivative (with and without preconditioning) in the ba-
sis of Daubechies’ wavelets with six vanishing moments M = 6.

Coeflicients Coeflicients

l ] l T
-7 1-2.82831017E-06 | 4 | -2.77955293E-02
-6 | -1.68623867E-06 | 5 | -2.61324170E-02
-5 | 4.45847796E-04 | 6 | -1.91718816E-02
-4 | -4.34633415E-03 | 7 | -1.52272841E-02
-3 | 2.28821728E-02 | 8 | -1 .2466740313-02
-2 | -8.49883759E-02 | 9 | -1.04479500E-02
-1 0.27799963 10 | -8.92061945E-03
0 0.84681966 11 | -7.73225246E-03
1 -0.69847577 12 | -6.78614593E-03 |
2 | 2.36400139E-02 | 13 | -6.01838599E-03
3 | -8.97463780E-02 | 14 | -5.38521459E-03

TABLE 4. The coefficients {r;};, { = —7,...,14 of the fractional
derivative @ = 0.5 for Daubechies’ wavelets with six vanishing
moments.
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and

+00

(5.26) MP = / y"®(y)dy =0, for 1<m<2M 1.
-0

The vanishing moments of the autocorrelation function ® allow us to compute

the elements of the matrix tl(J ) for large [ and sufficiently fine scales j < 0.°

Expanding the kernel K in its Taylor series, we obtain from (5.23)

) . ) (_1)2M2(2M+1)j +o00 Iy ] ~ ’
(527) )" = K2 + KECM(27(1 - ) (y) dy,
(2M)! —eo

where § = §(y,l) and KM denotes the (2M)th derivative of K. The decay of
K'2M)(23(1~)) for large I is faster than that of the original kernel (see (4.1) and
(4.2) with an appropriate choice of M) and (5.27) implies a one-point quadrature
formula tl(j )~ 29K (271) for large [ and sufficiently fine scales j < 0.

Computing representations of convolution operators simplifies further if the
symbol of the operator is homogeneous of some degree. Let us illustrate this
using the example of fractional derivatives. We define fractional derivatives as

+0 (g - )7
2 o = —
(5.28) CHIOEY s — 1w,
where we consider a # 1,2.... If @ < 0, then (5.28) defines fractional anti-
derivatives.

The representation of 8% on Vj is determined by the coefficients

+oo ‘
(5.29) o= ee-) @@, ez,

-0
provided that this integral exists. ,
The non-standard form 03 = {A4;, B;,T;} ez is computed via A; = 2% 4,
Bj = 27% By, and T'; = 27%T, where matrix elements o;_;, Bi—1, and v;_; of
Ao, By, and I'y are obtained from the coefficients ,

) L—1 L—1

(5.30) oy =2 Z Z 9k Gk! T2itk—k'

k=0 k’'=0

L—-1 L-1

(531) Bi = 2% Z Z Gk P Toit ke,

k=0 k'=0
and

L-1 L-1

(5.32) % =2 D" higr Taiik—-
k

=0 k’'=0
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1t easy to verify that the coefficients r; satisfy the following system of linear
algebraic equations

L/2

(5.33) T =2% |ry + %Za%—1(rzz—2k+1 + roryok-1) |
k=1

where the coefficients agx_; are given in (5.14). Using (5.27), we obtain the
asymptotics of r; for large [,

- 1 1 1
(5.34) r, = F(—a)zl+a+0<11+a+2M> for >0,

(5.35) rp = 0 for [ <O.

EXAMPLE 5.1. We compute the coefficients r; of the fractional derivative with
a = 0.5 for Daubechies’ wavelets with six vanishing moments with accuracy 1077.
The coefficients for r;, [ > 14 or [ < —7 are obtained using the asymptotics

1 1. 1
(536) r = —m Zl—‘*'—%+0<l13—+§) for >0,

(5.37) rn = 0 for 1 <0.

6. Multiplication of matrices and. fast iterative construction of the
generalized inverse.

The standard and non-standard forms may be multiplied in fast manner if the
matrices represent Calderén-Zygmund or pseudo-differential operators. Multi-
plication of matrices in the standard form is a straightforward algorithm (8}, [1]
and requires at most O(N log® N) operations. The algorithm for the multiplica-
tion of matrices in the non-standard form has been outlined in [3] and requires
O(N) operations. This is a significant improvement over O(N?) operations for
dense matrices which arise in the ordinary discretization of the operators from
these classes.

Fast multiplication algorithms give a second life to a great number of iterative
algorithms. Indeed, powers of matrices may be computed as well as other func-
tions of matrices. Let us consider an iterative construction of the generalized
inverse. In order to construct the generalized inverse A' of the matrix A, we use
the following result [31]:

Let o1 be the largest singular value of the m x n matriz- A. Consider the
sequence of matrices Xy

(6‘1) ) Xk+1 = 2Xk - XkAXk
with

(6.2) Xo = aA*,
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where A* is the adjoint matriz and o is chosen so that the largest eigenvalue
of aA*A is less than one. Then the sequence Xy converges to the generalized
inverse Al

Combining this iteration with fast multiplication algorithms, we obtain an
algorithm for constructing the generalized inverse in at most O(Nlog?> N log R)
operations, where R is the condition number of the matrix. (By the condition
number we understand the ratio of the largest singular value to the smallest
singular value above the threshold of accuracy).

The details of this algorithm (in the context of computing in wavelet bases)
will be described in [9]. We note that throughout the iteration (6.1), it is neces-
sary to maintain the “finger” band structure of the standard form of matrices X k-
Hence, the standard form of both the operator and its generalized inverse must
admit such structure. We note that the pseudo-differential operators satisfy this
condition.

Table 5 contains timings and accuracy comparisons for the construction of
the generalized inverse via the singular value decomposition (SVD), which is an
O(N3) procedure, and via the iteration (6.1)-(6.2) in the wavelet basis using
the Fast Wavelet Transform (FWT). The computations were performed on a
Sun Sparc workstation and we used a routine from LINPACK for computing the
singular value decomposition. For tests we used the following full rank matrix

1 . . »
-7 ¢ #J
Aij = ’
1 i=j
where 4,7 = 1,..., N. The accuracy threshold was set to 1074, i.e., entries of

X below 10~ were systematically removed after each iteration.

We note that the iteration in (6.1) also allows us to compute the projector on
the null space (see [8] for this and several other examples).

The algorithm for the exponential is based on the identity

(6.3) exp(A) = [exp(Z_LA)] 2 .

First, exp(27L A) is computed by means of the Taylor series (for instance). The
number L is chosen so that the largest singular value of 2~L A is less than one.
At the second stage of the algorithm the matrix exp(2~LA) is squared L times to
obtain the result. Similarly, sine and cosine of a matrix can be computed using
the elementary double-angle formulas. Unlike the algorithm for the generalized
inverse, this algorithm is not self-correcting. Thus, it is necessary to maintain
sufficient accuracy initially so as to obtain the desired accuracy after all the
multiplications have been performed.
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Size N x N SVD FWT Generalized Inverse  Ls-Error
128 x 128 20.27 sec. 25.89 sec. 3.1-107%
256 x 256 144.43 sec. 77.98 sec. 3.42-107¢
512 x 512 1,155 sec. (est.) 242.84 sec. 6.0-107%

1024 x 1024 9,244 sec. (est.) 657.09 sec. 7.7 16_4
215 x 215 9.6 years (est.) 1 day (est.)

TABLE 5. Comparison of the time needed to construct the gen-
eralized inverse of an N x N matrix via singular value decom-
position (SVD) or the fast wavelet transform (FWT).

\

T

FIGURE 9. Standard form of the matrix D;~! computed via
the iterative algorithm of this section with diagonal rescaling.
Entries with absolute value greater than 10~® are shown black.
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Finally, as an example, let us consider the matrix

-2 1 0 -~ 0 0 0

1 -2 1 0 0 0
(6.4) D, =

0 0 0 1 -2 1

0 0 0 1 -2

which arises in the finite-difference formulation of the two-point boundary value
problem. We note that the inverse of this matrix is sparse in the wavelet basis.
As an illustration we display in Figure 9 the matrix D, ™" obtained via the algo-
rithm sketched above for computing the generalized inverse. Using the diagonal
preconditioning (see Figure 8), this computation involves only well-conditioned
matrices [5].
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