
ON THE REPRESENTATION OF OPERATORS IN BASES OF
COMPACTLY SUPPORTED WAVELETS∗

G. BEYLKIN†

SIAM J. NUMER. ANAL. c© 1992 Society for Industrial and Applied Mathematics
Vol. 6, No. 6, pp. 1716-1740, December 1992 011

Abstract. This paper describes exact and explicit representations of the differential operators,
dn/dxn, n = 1, 2, · · ·, in orthonormal bases of compactly supported wavelets as well as the rep-
resentations of the Hilbert transform and fractional derivatives. The method of computing these
representations is directly applicable to multidimensional convolution operators.

Also, sparse representations of shift operators in orthonormal bases of compactly supported
wavelets are discussed and a fast algorithm requiring O(N log N) operations for computing the
wavelet coefficients of all N circulant shifts of a vector of the length N = 2n is constructed. As
an example of an application of this algorithm, it is shown that the storage requirements of the fast
algorithm for applying the standard form of a pseudodifferential operator to a vector (see [G. Beylkin,
R. R. Coifman, and V. Rokhlin, Comm. Pure. Appl. Math., 44 (1991), pp. 141–183]) may be reduced
from O(N) to O(log2 N) significant entries.
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1. Introduction. In [1] Daubechies introduced compactly supported wavelets
which proved to be very useful in numerical analysis [2]. In this paper we find exact

and explicit representations of several basic operators (derivatives, Hilbert transform,
shifts, etc.) in orthonormal bases of compactly supported wavelets. We also present
an O(N logN) algorithm for computing the wavelet coefficients of all N circulant
shifts of a vector of the length N = 2n.

Throughout this paper we only compute the nonstandard forms of operators since
it is a simple matter to obtain a standard form from the nonstandard form [2]. Meyer
[3], following [2], considered several examples of nonstandard forms of basic operators
from a general point of view. It is possible, however, to compute the nonstandard
forms of many important operators explicitly.

First, we explicitly compute the nonstandard form of the operator d/dx. The set
of coefficients that defines all nonzero entries of the nonstandard form appears as the
solution to a system of linear algebraic equations. This system, in turn, arises as a
consequence of the recursive definition of the wavelet bases. The operator dn/dxn is
treated similarly to d/dx.

The computation of the nonstandard forms of many other operators reduces to
solving a simple system of linear algebraic equations. Among such operators are
fractional derivatives, Hilbert and Riesz transforms, and other operators for which
analytic expressions are available. For convolution operators, there are significant
simplifications in computing the nonstandard form since the vanishing moments of
the autocorrelation function of the scaling function simplify the quadrature formu-
las. Moreover, by solving a system of linear algebraic equations combined with the
asymptotics of wavelet coefficients, we arrive at an effective method for computing the
nonstandard form of convolution operators. As examples, we compute the nonstan-
dard forms of the Hilbert transform and fractional derivatives. The generalization of
this method for multidimensional convolution operators is straightforward.
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Second, we compute the nonstandard form of the shift operator. This operator
is important in practical applications of wavelets because the wavelet coefficients are
not shift invariant. Since the nonstandard and standard forms of this operator are
sparse and easy to compute, knowing these representations “compensates” for the
lack of shift invariance. The wavelet expansion of shifts of vectors or of matrices may
be obtained by applying the shift operator directly to the coefficients of the original
expansion. The coefficients for the shift operators may be stored in advance and used
as needed.

It is clear, however, that the particular manner in which sparseness of the shift
operator may be exploited depends on the application and may be less straightforward
than is indicated above. We present an example of such an application in numerical
analysis. Observing that there are only N log2N distinct wavelet coefficients in the
decomposition of all N circulant shifts of a vector of the length N = 2n, we construct
an O(N logN) algorithm for computing all of these coefficients. Using this algorithm,
we show that the storage requirements of the fast algorithm for applying the standard
form of a pseudodifferential operator to a vector [2] may be reduced from O(N logN)
to O(log2N) significant entries.

2. Compactly supported wavelets. In this section, we briefly review the or-
thonormal bases of compactly supported wavelets and set our notation. For the details
we refer to [1].

The orthonormal basis of compactly supported wavelets of L2(R) is formed by
the dilation and translation of a single function ψ(x),

ψj,k(x) = 2−j/2ψ(2−jx− k),(2.1)

where j, k ∈ Z. The function ψ(x) has a companion, the scaling function ϕ(x), and
these functions satisfy the following relations:

ϕ(x) =
√

2
L−1
∑

k=0

hkϕ(2x− k),(2.2)

ψ(x) =
√

2

L−1
∑

k=0

gkϕ(2x− k),(2.3)

where

gk = (−1)khL−k−1, k = 0, · · · , L− 1,(2.4)

and

∫ +∞

−∞

ϕ(x)dx = 1.(2.5)

In addition, the function ψ has M vanishing moments

∫ +∞

−∞

ψ(x)xmdx = 0, m = 0, · · · ,M − 1.(2.6)
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The number L of coefficients in (2.2) and (2.3) is related to the number of van-
ishing moments M , and for the wavelets in [1], L = 2M . If additional conditions are
imposed (see [2] for an example), then the relation might be different, but L is always
even.

The wavelet basis induces a multiresolution analysis on L2(R) [4], [5], i.e., the
decomposition of the Hilbert space L2(R) into a chain of closed subspaces

· · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ · · ·(2.7)

such that

⋂

j∈Z

Vj = {0},
⋃

j∈Z

Vj = L2(R).(2.8)

By defining Wj as an orthogonal complement of Vj in Vj−1,

Vj−1 = Vj ⊕Wj ,(2.9)

the space L2(R) is represented as a direct sum

L2(R) =
⊕

j∈Z

Wj .(2.10)

On each fixed scale j, the wavelets {ψj,k(x)}k∈Z form an orthonormal basis of
Wj and the functions {ϕj,k(x) = 2−j/2ϕ(2−jx − k)}k∈Z form an orthonormal basis
of Vj .

The coefficients H = {hk}k=L−1
k=0 and G = {gk}k=L−1

k=0 in (2.2) and (2.3) are
quadrature mirror filters. Once the filter H has been chosen, it completely determines
the functions ψ and ϕ. Let us define the 2π-periodic function

m0(ξ) = 2−1/2
k=L−1
∑

k=0

hkeikξ(2.11)

where {hk}k=L−1
k=0 are the coefficients of the filter H . The function m0(ξ) satisfies the

equation

|m0(ξ)|2 + |m0(ξ + π)|2 = 1.(2.12)

The following lemma characterizes trigonometric polynomial solutions of (2.12)
which correspond to the orthonormal bases of compactly supported wavelets with
vanishing moments.

Lemma 1 (Daubechies [1]). Any trigonometric polynomial solution m0(ξ) of

(2.12) is of the form

m0(ξ) =
[

1

2
(1 + eiξ)

]M
Q(eiξ),(2.13)

where M ≥ 1 is the number of vanishing moments, and where Q is a polynomial such

that

|Q(eiξ)|2 = P (sin2 1

2
ξ) + sin2M ( 1

2
ξ) R( 1

2
cos ξ),(2.14)
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where

P (y) =

k=M−1
∑

k=0

(

M − 1 + k

k

)

yk,(2.15)

and R is an odd polynomial such that

0 ≤ P (y) + yMR( 1

2
− y) for 0 ≤ y ≤ 1,(2.16)

and

sup
0≤y≤1

[

P (y) + yMR( 1

2
− y)

]

< 22(M−1).(2.17)

3. The operator d/dx in wavelet bases. In this section we construct the
nonstandard form of the operator d/dx. The nonstandard form [2] is a representation
of an operator T as a chain of triplets

T = {Aj , Bj ,Γj}j∈Z(3.1)

acting on the subspaces Vj and Wj ,

Aj : Wj → Wj ,(3.2)

Bj : Vj → Wj ,(3.3)

Γj : Wj → Vj .(3.4)

The operators {Aj , Bj ,Γj}j∈Z are defined as Aj = QjTQj, Bj = QjTPj , and Γj =
PjTQj , where Pj is the projection operator on the subspace Vj and Qj = Pj−1 − Pj

is the projection operator on the subspace Wj .

The matrix elements αj
il, β

j
il, γ

j
il of Aj , Bj , Γj , and rj

il of Tj = PjTPj , i, l, j ∈ Z,
for the operator d/dx are easily computed as

αj
il = 2−j

∫ ∞

−∞

ψ(2−jx− i)ψ′(2−jx− l) 2−jdx = 2−jαi−l,(3.5)

βj
il = 2−j

∫ ∞

−∞

ψ(2−jx− i)ϕ′(2−jx− l) 2−jdx = 2−jβi−l,(3.6)

γj
il = 2−j

∫ ∞

−∞

ϕ(2−jx− i)ψ′(2−jx− l) 2−jdx = 2−jγi−l,(3.7)

and

rj
il = 2−j

∫ ∞

−∞

ϕ(2−jx− i)ϕ′(2−jx− l) 2−jdx = 2−jri−l,(3.8)

where

αl =

∫ +∞

−∞

ψ(x− l)
d

dx
ψ(x) dx,(3.9)
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βl =

∫ +∞

−∞

ψ(x− l)
d

dx
ϕ(x) dx,(3.10)

γl =

∫ +∞

−∞

ϕ(x− l)
d

dx
ψ(x) dx.(3.11)

and

rl =

∫ +∞

−∞

ϕ(x − l)
d

dx
ϕ(x) dx.(3.12)

Moreover, using (2.2) and (2.3) we have

αi = 2

L−1
∑

k=0

L−1
∑

k′=0

gk gk′ r2i+k−k′ ,(3.13)

βi = 2
L−1
∑

k=0

L−1
∑

k′=0

gk hk′ r2i+k−k′ ,(3.14)

and

γi = 2

L−1
∑

k=0

L−1
∑

k′=0

hk gk′ r2i+k−k′ ,(3.15)

and, therefore, the representation of d/dx is completely determined by rl in (3.12) or,
in other words, by the representation of d/dx on the subspace V0.

Rewriting (3.12) in terms of ϕ̂(ξ), where

ϕ̂(ξ) =
1√
2π

∫ +∞

−∞

ϕ(x) eixξ dx,(3.16)

we obtain

rl =

∫ +∞

−∞

(−iξ) |ϕ̂(ξ)|2 e−ilξ dξ.(3.17)

In order to compute the coefficients rl we first note that any trigonometric poly-
nomial m0(ξ) satisfying (2.12) is such that

|m0(ξ)|2 =
1

2
+

1

2

L/2
∑

k=1

a2k−1 cos(2k − 1)ξ,(3.18)

where an are the autocorrelation coefficients of H = {hk}k=L−1
k=0 ,

an = 2

L−1−n
∑

i=0

hi hi+n, n = 1, · · · , L− 1.(3.19)

The autocorrelation coefficients an with even indices are zero,

a2k = 0, k = 1, · · · , L/2− 1.(3.20)
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To prove this assertion we compute |m0(ξ)|2 using (2.11) and obtain

|m0(ξ)|2 =
1

2
+

1

2

L−1
∑

n=1

an cosnξ,(3.21)

where an are given in (3.19). Computing |m0(ξ + π)|2, we have

|m0(ξ + π)|2 =
1

2
− 1

2

L/2
∑

k=1

a2k−1 cos(2k − 1)ξ +
1

2

L/2−1
∑

k=1

a2k cos 2kξ.(3.22)

Combining (3.21) and (3.22) to satisfy (2.12), we obtain

L/2−1
∑

k=1

a2k cos 2kξ = 0,(3.23)

and hence, (3.20) and (3.18). (See also Remark 6 about vanishing moments of a2k−1.)
We prove the following:
Proposition 1.
(1) If the integrals in (3.12) or (3.17) exist, then the coefficients rl in (3.12) satisfy

the following system of linear algebraic equations:

rl = 2



r2l +
1

2

L/2
∑

k=1

a2k−1(r2l−2k+1 + r2l+2k−1)



 ,(3.24)

and
∑

l

l rl = −1,(3.25)

where the coefficients a2k−1 are given in (3.19).
(2) If M ≥ 2, then equations (3.24) and (3.25) have a unique solution with a

finite number of nonzero rl, namely, rl 6= 0 for −L+ 2 ≤ l ≤ L− 2 and

rl = −r−l.(3.26)

Remark 1. If M = 1, then equations (3.24) and (3.25) have a unique solution but
the integrals in (3.12) or (3.17) may not be absolutely convergent. Let us consider
Example 3.2 of [1], where L = 4 and

h0 = 2−1/2 ν(ν − 1)

ν2 + 1
, h1 = 2−1/2 1 − ν

ν2 + 1
, h2 = 2−1/2 ν + 1

ν2 + 1
, h3 = 2−1/2 ν(ν + 1)

ν2 + 1
,

where ν is an arbitrary real number. We have

a1 =
1 + 3ν2

(ν2 + 1)2
, a3 =

ν2(ν2 − 1)

(ν2 + 1)2
,

and

r1 = − (1 + ν2)2

2(3ν4 + 1)
, r2 =

ν2(1 − ν2)

2(3ν4 + 1)
.
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The parameter ν can be chosen so that the Fourier transform ϕ̂(ξ) does not have the
sufficient decay to insure the absolute convergence of the integral (3.17).

For the Haar basis (h1 = h2 = 2−1/2), a1 = 1 and r1 = − 1
2 , and thus, we obtain

the simplest finite difference operator ( 1
2 , 0,− 1

2 ). In this case the function ϕ is not
continuous and

ϕ̂(ξ) =
1√
2π

sin 1
2ξ

1
2ξ

ei
1
2 ξ,

so that the integral in (3.17) is not absolutely convergent.
Proof of Proposition 1. Using (2.2) for both ϕ(x − l) and d

dx ϕ(x) in (3.12) we
obtain

ri = 2

L−1
∑

k=0

L−1
∑

l=0

hk hl

∫ +∞

−∞

ϕ(2x− 2i− k)ϕ′(2x− l) 2 dx(3.27)

and hence,

ri = 2

L−1
∑

k=0

L−1
∑

l=0

hk hl r2i+k−l.(3.28)

Substituting l = k −m, we rewrite (3.28) as

ri = 2
L−1
∑

k=0

k−L+1
∑

m=k

hk hk−m r2i+m.(3.29)

Changing the order of summation in (3.29) and using the fact that
∑L−1

k=0 h
2
k = 1, we

arrive at

rl = 2r2l +

L−1
∑

n=1

an (r2l−n + r2l+n), l ∈ Z,(3.30)

where an are given in (3.19). Using (3.20), we obtain (3.24) from (3.30).
In order to obtain (3.25) we use the following relation:

l=+∞
∑

l=−∞

lmϕ(x− l) = xm +

l=m
∑

l=1

(−1)l

(

m

l

)

Mϕ
l x

m−l,(3.31)

where

Mϕ
l =

∫ +∞

−∞

ϕ(x)xl dx, where l = 1, · · · ,m,(3.32)

are the moments of the function ϕ(x). We note that (3.31) is well known if all moments
(3.32) are zero. The general statement follows simply on taking Fourier transforms
and using Leibniz’s rule. Using (3.12) and (3.31) with m = 1, we obtain (3.25).

If M ≥ 2, then

|ϕ̂(ξ)|2|ξ| ≤ C(1 + |ξ|)−1−ε,(3.33)
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where ε > 0, and hence, the integral in (3.17) is absolutely convergent. This assertion
follows from Lemma 3.2 of [1], where it is shown that

|ϕ̂(ξ)| ≤ C(1 + |ξ|)−M+log
2

B ,(3.34)

where

B = sup
ξ∈R

|Q(eiξ)|.

Due to condition (2.17), we have log2B = M − 1− ε with some ε > 0. The existence
of the solution of the system of equations (3.24) and (3.25) follows from the existence
of the integral in (3.17). Since the scaling function ϕ has a compact support there are
only a finite number of nonzero coefficients rl. The specific interval −L+2 ≤ l ≤ L−2
is obtained by the direct examination of (3.24).

Let us show now that
∑

l

rl = 0.(3.35)

Multiplying (3.24) by eilξ and summing over l, we obtain

r̂(ξ) = 2



 r̂even(ξ/2) +
1

2
r̂odd(ξ/2)

L/2
∑

k=1

a2k−1(e
−i(2k−1)ξ/2 + ei(2k−1)ξ/2)



,(3.36)

where

r̂(ξ) =
∑

l

rle
ilξ ,(3.37)

r̂even(ξ/2) =
∑

l

r2le
ilξ,(3.38)

and

r̂odd(ξ/2) =
∑

l

r2l+1e
i(2l+1) ξ/2.(3.39)

Noticing that

2 r̂even(ξ/2) = r̂(ξ/2) + r̂(ξ/2 + π)(3.40)

and

2 r̂odd(ξ/2) = r̂(ξ/2) − r̂(ξ/2 + π),(3.41)

and using (3.18), we obtain from (3.36)

r̂(ξ) =
[

r̂(ξ/2) + r̂(ξ/2 + π) + (2|m0(ξ/2)|2 − 1)(r̂(ξ/2) − r̂(ξ/2 + π))
]

.(3.42)

Finally, using (2.12) we arrive at

r̂(ξ) = 2( |m0(ξ/2)|2 r̂(ξ/2) + |m0(ξ/2) + π)|2 r̂(ξ/2) + π)).(3.43)
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Setting ξ = 0 in (3.43), we obtain r̂(0) = 2r̂(0) and thus, (3.35).
Uniqueness of the solution of (3.24) and (3.25) follows from the uniqueness of

the representation of d/dx. Given the solution rl of (3.24) and (3.25) we consider
the operator Tj defined by these coefficients on the subspace Vj and apply it to a

sufficiently smooth function f . Since rj
l = 2−jrl (3.8), we have

(Tjf)(x) =
∑

k∈Z

(

2−j
∑

l

rl fj,k−l

)

ϕj,k(x),(3.44)

where

fj,k−l = 2−j/2

∫ +∞

−∞

f(x)ϕ(2−jx− k + l) dx.(3.45)

Rewriting (3.45)

fj,k−l = 2−j/2

∫ +∞

−∞

f(x− 2jl)ϕ(2−jx− k) dx,(3.46)

and expanding f(x− 2j l) in the Taylor series at the point x, we have

fj,k−l =

∫ +∞

−∞

f(x)ϕj,k(x) dx − 2j l

∫ +∞

−∞

f ′(x)ϕj,k(x) dx

+22j l
2

2

∫ +∞

−∞

f ′′(x̃)ϕj,k(x) dx,

(3.47)

where x̃ = x̃(x, x − 2jl) and |x̃ − x| ≤ 2jl. Substituting (3.47) in (3.44) and using
(3.35) and (3.25), we obtain

(Tjf)(x) =
∑

k∈Z

(
∫ +∞

−∞

f ′(x)ϕj,k(x) dx

)

ϕj,k(x)

+2j
∑

k∈Z

(

1

2

∑

l

rll
2

∫ +∞

−∞

f ′′(x̃)ϕj,k(x) dx

)

ϕj,k(x).(3.48)

It is clear that as j → −∞, operators Tj and d/dx coincide on smooth functions. Using
standard arguments it is easy to prove that T−∞ = d/dx and hence, the solution to
(3.24) and (3.25) is unique. The relation (3.26) follows now from (3.17).

Remark 2. We note that expressions (3.13) and (3.14) for αl and βl (γl = −β−l)
may be simplified by changing the order of summation in (3.13) and (3.14) and

by introducing the correlation coefficients 2
∑L−1−n

i=0 gi hi+n, 2
∑L−1−n

i=0 hi gi+n and

2
∑L−1−n

i=0 gi gi+n. The expression for αl is especially simple: αl = 4r2l − rl.
Examples. For examples we will use Daubechies’ wavelets constructed in [1].

First, let us compute the coefficients a2k−1, k = 1, · · · ,M , where M is the number of
vanishing moments and L = 2M . Using relation (4.22) of [1],

|m0(ξ)|2 = 1 − (2M − 1)!

[(M − 1)!]2 22M−1

∫ ξ

0

sin2M−1 ξ dξ,(3.49)
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we find, by computing
∫ ξ

0 sin2M−1 ξ dξ, that

|m0(ξ)|2 =
1

2
+

1

2
CM

M
∑

m=1

(−1)m−1 cos(2m− 1)ξ

(M −m)! (M +m− 1)! (2m− 1)
,(3.50)

where

CM =

[

(2M − 1)!

(M − 1)! 4M−1

]2

.(3.51)

Thus, by comparing (3.50) and (3.18), we have

a2m−1 =
(−1)m−1 CM

(M −m)! (M +m− 1)! (2m− 1)
, where m = 1, · · · ,M.(3.52)

The coefficients re are rational numbers since they are solutions of a linear system
with rational coefficients (a2m−1 in (3.52) are rational by construction). We note that
the coefficients rl are the same for all Daubechies’ wavelets with a fixed number
of vanishing moments M , notwithstanding the fact that there are several different
wavelet bases for a given M (depending on the choice of the roots of polynomials in
the construction described in [1]).

Solving the equations of Proposition 1, we present the results for Daubechies’
wavelets with M = 2, 3, 4, 5, 6.

1. M = 2.

a1 =
9

8
, a3 = −1

8
,

and

r1 = −2

3
, r2 =

1

12
.

The coefficients (−1/12, 2/3, 0,−2/3, 1/12) of this example coincide with one of the
standard choices of coefficients for numerical differentiation.

2. M = 3.

a1 =
75

64
, a3 = − 25

128
, a5 =

3

128
,

and

r1 = −272

365
, r2 =

53

365
, r3 = − 16

1095
, r4 = − 1

2920
.

3. M = 4.

a1 =
1225

1024
, a3 = − 245

1024
, a5 =

49

1024
, a7 = − 5

1024
,

and

r1 = −39296

49553
, r2 =

76113

396424
, r3 = − 1664

49553
,

r4 =
2645

1189272
, r5 =

128

743295
, r6 = − 1

1189272
.
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4. M = 5.

a1 =
19845

16384
, a3 = −2205

8192
, a5 =

567

8192
, a7 = − 405

32768
, a9 =

35

32768
,

and

r1 = − 957310976

1159104017
, r2 =

265226398

1159104017
, r3 = − 735232

13780629
,

r4 =
17297069

2318208034
, r5 = − 1386496

5795520085
, r6 = − 563818

10431936153
,

r7 = − 2048

8113728119
, r8 = − 5

18545664272
.

5. M = 6.

a1 =
160083

131072
, a3 = − 38115

131072
, a5 =

22869

262144
,

a7 = − 5445

262144
, a9 =

847

262144
, a11 = − 63

262144
,

and

r1 =
3986930636128256

4689752620280145
, r2 =

4850197389074509

18759010481120580
, r3 =

1019185340268544

14069257860840435
,

r4 =
136429697045009

9379505240560290
, r5 =

7449960660992

4689752620280145
, r6 =

483632604097

112554062886723480
,

r7 =
78962327552

6565653668392203
, r8 =

31567002859

75036041924482320
, r9 =

2719744

937950524056029
,

r10 =
1743

2501201397482744
.

Iterative algorithm for computing the coefficients rl. We also use an itera-
tive algorithm as a way of solving equations (3.24) and (3.25). We start with r−1 = 0.5
and r1 = −0.5, and iterate using (3.24) to recompute rl. Using (3.43), it is easy to
verify that (3.25) and (3.26) are satisfied due to the choice of initialization. Table 1
was computed using this algorithm for Daubechies’ wavelets with M = 5, 6, 7, 8, 9. It
only displays the coefficients {rl}L−2

l=1 since r−l = −rl and r0 = 0.

4. The operator dn/dxn in wavelet bases. Again, as in the case with the
operator d/dx, the nonstandard form of the operator dn/dxn is completely determined
by its representation on the subspace V0, i.e., by the coefficients

r
(n)
l =

∫ +∞

−∞

ϕ(x− l)
dn

dxn
ϕ(x) dx, l ∈ Z,(4.1)

or, alternatively,

r
(n)
l =

∫ +∞

−∞

(−iξ)n |ϕ̂(ξ)|2 e−ilξ dξ(4.2)

if the integrals in (4.1) or (4.2) exist (see also Remark 3).
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Table 1

The coefficients {rl}
l=L−2
l=1

for Daubechies’ wavelets, where L = 2M and M = 5, · · · , 9.

Coefficients Coefficients

l rl l rl

M = 5 1 -0.82590601185015 M = 8 1 -0.88344604609097

2 0.22882018706694 2 0.30325935147672

3 -5.3352571932672E-02 3 -0.10636406828947

4 7.4613963657755E-03 4 3.1290147839488E-02

5 -2.3923582002393E-04 5 -6.9583791164537E-03

6 -5.4047301644748E-05 6 1.0315302133757E-03

7 -2.5241171135682E-07 7 -7.6677069083796E-05

8 -2.6960479423517E-10 8 -2.4519921109537E-07

9 -3.9938104563894E-08

10 7.2079482385949E-08

M = 6 1 -0.85013666155592 11 9.6971849256415E-10

2 0.25855294414146 12 7.2522069166503E-13

3 -7.2440589997659E-02 13 -1.2400785360984E-14

4 1.4545511041994E-02 14 1.5854647516841E-19

5 -1.5885615434757E-03

6 4.2968915709948E-06

7 1.2026575195723E-05 M = 9 1 -0.89531640583699

8 4.2069120451167E-07 2 0.32031206224855

9 -2.8996668057051E-09 3 -0.12095364936000

10 6.9686511520083E-13 4 3.9952721886694E-02

5 -1.0616930669821E-02

6 2.1034028106558E-03

M = 7 1 -0.86874391452377 7 -2.7812077649932E-04

2 0.28296509452594 8 1.9620437763642E-05

3 -9.0189066217795E-02 9 -4.8782468879634E-07

4 2.2687411014648E-02 10 1.0361220591478E-07

5 -3.8814546576295E-03 11 -1.5966864798639E-08

6 3.3734404776409E-04 12 -8.1374108294110E-10

7 4.2363946800701E-06 13 -5.4025197533630E-13

8 -1.6501679210868E-06 14 -4.7814005916812E-14

9 -2.1871130331900E-07 15 -1.6187880013009E-18

10 4.1830548203747E-10 16 -4.8507474310747E-24

11 -1.2035273999989E-11

12 -6.6283900594600E-16
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Proposition 2.
(1) If the integrals in (4.1) or (4.2) exist, then the coefficients r

(n)
l , l ∈ Z satisfy

the following system of linear algebraic equations:

r
(n)
l = 2n



r2l +
1

2

L/2
∑

k=1

a2k−1(r
(n)
2l−2k+1 + r

(n)
2l+2k−1)



 ,(4.3)

and

∑

l

ln r
(n)
l = (−1)n n!,(4.4)

where a2k−1 are given in (3.19).
(2) Let M ≥ (n + 1)/2, where M is the number of vanishing moments in (2.6).

If the integrals in (4.1) or (4.2) exist, then the equations (4.3) and (4.4) have

a unique solution with a finite number of nonzero coefficients r
(n)
l , namely,

r
(n)
l 6= 0 for −L+ 2 ≤ l ≤ L− 2, such that for even n

r
(n)
l = r

(n)
−l ,(4.5)

∑

l

l2ñ r
(n)
l = 0, ñ = 1, · · · , n/2 − 1,(4.6)

and

∑

l

r
(n)
l = 0,(4.7)

and for odd n

r
(n)
l = −r(n)

−l ,(4.8)

∑

l

l2ñ−1 r
(n)
l = 0, ñ = 1, · · · , (n− 1)/2.(4.9)

The proof of Proposition 2 is completely analogous to that of Proposition 1.
Remark 3. The linear system in Proposition 2 may have a unique solution

whereas integrals (4.1) and (4.2) are not absolutely convergent. A case in point
is the Daubechies’ wavelet with M = 2. The representation of the first derivative in
this basis is described in the previous section. Equations (4.3) and (4.4) do not have
a solution for the second derivative n = 2. However, the system of equations (4.3)
and (4.4) has a solution for the third derivative n = 3. We have

a1 =
9

8
, a3 = −1

8
,

and

r−2 = −1

2
, r−1 = 1, r0 = 0, r1 = −1, r2 =

1

2
.
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The set of coefficients (−1/2, 1, 0,−1, 1/2) is one of the standard choices of finite
difference coefficients for the third derivative.

We note that among the wavelets with L = 4, the wavelets with two vanishing
momentsM = 2 do not have the best Hölder exponent (see [6]), but the representation
of the third derivative exists only if the number of vanishing moments M = 2.

Remark 4. Let us derive an equation generalizing to (3.43) for dn/dxn directly
from (4.2). We rewrite (4.2) as

r
(n)
l =

∫ 2π

0

∑

k∈Z

|ϕ̂(ξ + 2πk)|2 (−i)n (ξ + 2πk)ne−ilξ dξ.(4.10)

Therefore,

r̂(ξ) =
∑

k∈Z

|ϕ̂(ξ + 2πk)|2 (−i)n (ξ + 2πk)n,(4.11)

where

r̂(ξ) =
∑

l

r
(n)
l eilξ .(4.12)

Substituting the relation

ϕ̂(ξ) = m0(ξ/2)ϕ̂(ξ/2)(4.13)

into the right-hand side of (4.11), and summing separately over even and odd indices
in (4.11), we arrive at

r̂(ξ) = 2n( |m0(ξ/2)|2 r̂(ξ/2) + |m0(ξ/2) + π)|2 r̂(ξ/2) + π)).(4.14)

By considering the operator M0 defined on 2π-periodic functions,

(M0f)(ξ) = |m0(ξ/2)|2 f(ξ/2) + |m0(ξ/2) + π)|2 f(ξ/2) + π),(4.15)

we rewrite (4.14) as

M0r̂ = 2−nr̂.(4.16)

Thus, r̂ is an eigenvector of the operator M0 corresponding to the eigenvalue 2−n and,
therefore, finding the representation of the derivatives in the wavelet basis is equivalent
to finding trigonometric polynomial solutions of (4.16) and vice versa. (The operator
M0 is also introduced in [7] and [8], where the problem (4.16) with eigenvalue 1 is
considered.)

Remark 5. While theoretically it is well understood that the derivative operators
(or, more generally, operators with homogeneous symbols) have an explicit diagonal
preconditioner in wavelet bases, the numerical evidence illustrating this fact is of
interest, since it represents one of the advantages of computing in the wavelet bases.

If an operator has a null space (the actual null space or a null space for a given ac-
curacy), then by the condition number we understand the ratio of the largest singular
value to the smallest singular value above the threshold of accuracy. Thus, we include
the situation where the operator may be preconditioned only on a subspace. We note
that the preconditioning described here addresses the problem of ill conditioning due
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only to the unfavorable homogeneity of the symbol and does not affect ill conditioning
due to other causes.

For periodized derivative operators the bound on the condition number depends
only on the particular choice of the wavelet basis. After applying such a precondi-
tioner, the condition number κp of the operator is uniformly bounded with respect
to the size of the matrix. We recall that the condition number controls the rate of
convergence of a number of iterative algorithms; for example, the number of iterations
of the conjugate gradient method is O(

√
κp). Thus, this remark implies a completely

new outlook on a number of numerical methods, a topic we will address elsewhere.
We present here two tables illustrating such preconditioning applied to the stan-

dard form of the second derivative (see [2] on how to compute the standard form from
the nonstandard form). In the following examples the standard form of the periodized
second derivative D2 of size N ×N , where N = 2n, is preconditioned by the diagonal
matrix P ,

Dp
2 = PD2P

where Pil = δil2
j , 1 ≤ j ≤ n, and where j is chosen depending on i, l so that

N −N/2j−1 + 1 ≤ i, l ≤ N −N/2j, and PNN = 2n.
Tables 2 and 3 compare the original condition number κ of D2 and κp of Dp

2 .

Table 2

Condition numbers of the matrix of periodized second derivative (with and without preconditioning)
in the basis of Daubechies’ wavelets with three vanishing moments M = 3.

N κ κp

64 0.14545E+04 0.10792E+02

128 0.58181E+04 0.11511E+02

256 0.23272E+05 0.12091E+02

512 0.93089E+05 0.12604E+02

1024 0.37236E+06 0.13045E+02

5. Convolution operators. For convolution operators, the computation of the
nonstandard form is considerably simpler than in the general case [2]. We will demon-
strate that the quadrature formulas for representing kernels of convolution operators
on V0 (see, e.g., Appendix B of [2]) are of the simplest form due to the fact that the
moments of the autocorrelation function of the scaling function ϕ vanish. Moreover,
by combining the asymptotics of wavelet coefficients with the system of linear algebraic
equations (similar to those in previous sections), we arrive at an effective method for
computing representations of convolution operators. This method is especially simple
if the symbol of the operator is homogeneous of some degree.

Let us assume that the matrix t
(j−1)
i−l (i, l ∈ Z) represents the operator Pj−1TPj−1

on the subspace Vj−1. To compute the matrix representation of PjTPj , we have the
following formula (3.26) of [2]:

t
(j)
l =

L−1
∑

k=0

L−1
∑

m=0

hk hm t
(j−1)
2l+k−m,(5.1)
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Table 3

Condition numbers of the matrix of periodized second derivative (with and without preconditioning)
in the basis of Daubechies’ wavelets with six vanishing moments M = 6.

N κ κp

64 0.10472E+04 0.43542E+01

128 0.41886E+04 0.43595E+01

256 0.16754E+05 0.43620E+01

512 0.67018E+05 0.43633E+01

1024 0.26807E+06 0.43640E+01

which easily reduces to

t
(j)
l = t

(j−1)
2l +

1

2

L/2
∑

k=0

a2k−1 (t
(j−1)
2l−2k+1 + t

(j−1)
2l+2k−1),(5.2)

where the coefficients a2k−1 are given in (3.19).
We also have

t
(j)
l =

∫ +∞

−∞

∫ +∞

−∞

K(x− y)ϕj,0(y)ϕj,l(x) dxdy,(5.3)

and by changing the order of integration, we obtain

t
(j)
l = 2j

∫ +∞

−∞

K(2j(l − y)) Φ(y) dy,(5.4)

where Φ is the autocorrelation function of the scaling function ϕ,

Φ(y) =

∫ +∞

−∞

ϕ(x)ϕ(x − y) dx.(5.5)

Let us verify that

∫ +∞

−∞

Φ(y)dy = 1(5.6)

and

Mm
Φ =

∫ +∞

−∞

ym Φ(y)dy = 0 for 1 ≤ m ≤ 2M − 1.(5.7)

Clearly, we have

Mm
Φ =

[(

1

i
∂ξ

)m

|ϕ̂(ξ)|2
]

ξ=0

.(5.8)
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Using (5.8) and the identity ϕ̂(ξ) = ϕ̂(ξ/2)m0(ξ/2) (see [1]), it is clear that (5.7) holds
provided that

[(

1

i
∂ξ

)m

|m0(ξ)|2
]

ξ=0

= 0 for 1 ≤ m ≤ 2M − 1,(5.9)

or (due to (2.12))
[(

1

i
∂ξ

)m

|m0(ξ + π)|2
]

ξ=0

= 0 for 0 ≤ m ≤ 2M − 1.(5.10)

But formula (5.10) follows from the explicit representation in (2.13).
Remark 6. Equations (5.9) and (3.21) also imply that even moments of the

coefficients a2k−1 from (3.19) vanish, namely,

k=L/2
∑

k=1

a2k−1(2k − 1)2m = 0 for 1 ≤ m ≤M − 1.(5.11)

Since the moments of the function Φ vanish equation (5.4) leads to a one-point
quadrature formula for computing the representation of convolution operators on
the finest scale. This formula is obtained in exactly the same manner as for the
special choice of the wavelet basis described in [2, eqns. (3.8)–(3.12)], where the shifted
moments of the function ϕ vanish; we refer to this paper for the details.

Here we introduce a different approach for computing representations of convo-
lution operators in the wavelet basis which consists of solving the system of linear
algebraic equations (5.2) subject to asymptotic conditions. This method is especially
simple if the symbol of the operator is homogeneous of some degree since in this
case the operator is completely defined by its representation on V0. We consider
two examples of such operators, the Hilbert transform and the operator of fractional
differentiation (or antidifferentiation).

The Hilbert transform. We apply our method to the computation of the
nonstandard form of the Hilbert transform

g(x) = (Hf)(y) =
1

π
p.v.

∫ ∞

−∞

f(s)

s− x
ds,(5.12)

where p.v. denotes a principal value at s = x.
The representation of H on V0 is defined by the coefficients

rl =

∫ ∞

−∞

ϕ(x − l) (Hϕ)(x) dx, l ∈ Z,(5.13)

which, in turn, completely define all other coefficients of the nonstandard form.
Namely, H = {Aj , Bj ,Γj}j∈Z, Aj = A0, Bj = B0, and Γj = Γ0, where matrix
elements αi−l, βi−l, and γi−l of A0, B0, and Γ0 are computed from the coefficients
rl,

αi =

L−1
∑

k=0

L−1
∑

k′=0

gk gk′ r2i+k−k′ ,(5.14)

βi =

L−1
∑

k=0

L−1
∑

k′=0

gk hk′ r2i+k−k′ ,(5.15)



OPERATORS IN BASES OF COMPACTLY SUPPORTED WAVELETS 1733

and

γi =

L−1
∑

k=0

L−1
∑

k′=0

hk gk′ r2i+k−k′ .(5.16)

The coefficients rl, l ∈ Z in (5.13) satisfy the following system of linear algebraic
equations:

rl = r2l +
1

2

L/2
∑

k=1

a2k−1(r2l−2k+1 + r2l+2k−1),(5.17)

where the coefficients a2k−1 are given in (3.19). Using (5.4), (5.6), and (5.7), we
obtain the asymptotics of rl for large l,

rl = − 1

πl
+O

(

1

l2M

)

.(5.18)

By rewriting (5.13) in terms of ϕ̂(ξ),

rl = −2

∫ ∞

0

|ϕ̂(ξ)|2 sin(lξ) dξ.(5.19)

we obtain rl = −r−l and set r0 = 0. We note that the coefficient r0 cannot be
determined from equations (5.17) and (5.18).

Solving (5.17) with the asymptotic condition (5.18), we compute the coefficients
rl, l 6= 0 with any prescribed accuracy. We note that the generalization for computing
the coefficients of Riesz transforms in higher dimensions is straightforward.

Example. We compute (see Table 4) the coefficients rl of the Hilbert transform for
Daubechies’ wavelets with six vanishing moments with accuracy 10−7. The coefficients
for l > 16 are obtained using asymptotics (5.18). (We note that r−l = −rl and r0 = 0.)

Table 4

The coefficients rl, l = 1, · · · , 16 of the Hilbert transform for Daubechies’ wavelet with six vanishing

moments.

Coefficients Coefficients

l rl l rl

M = 6 1 -0.588303698 9 -0.035367761

2 -0.077576414 10 -0.031830988

3 -0.128743695 11 -0.028937262

4 -0.075063628 12 -0.026525823

5 -0.064168018 13 -0.024485376

6 -0.053041366 14 -0.022736420

7 -0.045470650 15 -0.021220659

8 -0.039788641 16 -0.019894368
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Fractional derivatives. We use the following definition of fractional deriva-
tives:

(∂α
x f) (x) =

∫ +∞

−∞

(x − y)−α−1
+

Γ(−α)
f(y)dy,(5.20)

where we consider α 6= 1, 2 · · ·. If α < 0, then (5.20) defines fractional antiderivatives.
The representation of ∂α

x on V0 is determined by the coefficients

rl =

∫ +∞

−∞

ϕ(x− l) (∂α
xϕ) (x) dx, l ∈ Z,(5.21)

provided that this integral exists.
The nonstandard form ∂α

x = {Aj , Bj ,Γj}j∈Z is computed via Aj = 2−αjA0,
Bj = 2−αjB0, and Γj = 2−αjΓ0, where matrix elements αi−l, βi−l, and γi−l of A0,
B0, and Γ0 are obtained from the coefficients rl,

αi = 2α
L−1
∑

k=0

L−1
∑

k′=0

gk gk′ r2i+k−k′ ,(5.22)

βi = 2α
L−1
∑

k=0

L−1
∑

k′=0

gk hk′ r2i+k−k′ ,(5.23)

and

γi = 2α
L−1
∑

k=0

L−1
∑

k′=0

hk gk′ r2i+k−k′ .(5.24)

It is easy to verify that the coefficients rl satisfy the following system of linear
algebraic equations:

rl = 2α



r2l +
1

2

L/2
∑

k=1

a2k−1(r2l−2k+1 + r2l+2k−1)



 ,(5.25)

where the coefficients a2k−1 are given in (3.19). Using (5.4), (5.6), and (5.7), we
obtain the asymptotics of rl for large l,

rl =
1

Γ(−α)

1

l1+α
+O

(

1

l1+α+2M

)

for l > 0,(5.26)

rl = 0 for l < 0.(5.27)

Example. We compute (see Table 5) the coefficients rl of the fractional derivative
with α = 0.5 for Daubechies’ wavelets with six vanishing moments with accuracy
10−7. The coefficients for rl, l > 14, or l < −7 are obtained using asymptotics

rl = − 1

2
√
π

1

l1+
1

2

+O

(

1

l13+
1

2

)

for l > 0,(5.28)

rl = 0 for l < 0.(5.29)
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Table 5

The coefficients {rl}l, l = −7, · · · , 14 of the fractional derivative α = 0.5 for Daubechies’ wavelet

with six vanishing moments.

Coefficients Coefficients

l rl l rl

M = 6 -7 -2.82831017E-06 4 -2.77955293E-02

-6 -1.68623867E-06 5 -2.61324170E-02

-5 4.45847796E-04 6 -1.91718816E-02

-4 -4.34633415E-03 7 -1.52272841E-02

-3 2.28821728E-02 8 -1.24667403E-02

-2 -8.49883759E-02 9 -1.04479500E-02

-1 0.27799963 10 -8.92061945E-03

0 0.84681966 11 -7.73225246E-03

1 -0.69847577 12 -6.78614593E-03

2 2.36400139E-02 13 -6.01838599E-03

3 -8.97463780E-02 14 -5.38521459E-03

6. Shift operator on V0 and fast wavelet decomposition of all circulant

shifts of a vector. Let us consider a shift by one on the subspace V0 represented
by the matrix

t
(0)
i−j = δi−j,1,(6.1)

where δ is the Kronecker symbol. Using (5.1) with the an of (3.19) we have

t
(0)
l = δl,1, t

(1)
l = 1

2a|2l−1|, · · · .(6.2)

The only nonzero coefficients t
(j)
l on each scale j are those with indices −L+ 2 ≤ l ≤

L − 2. Also, t
(j)
l → δl,0 as j → ∞. As an example, the following Table 6 contains

the coefficients t
(j)
l , j = 1, 2, · · · , 8, for the shift operator in Daubechies’ wavelet basis

with three vanishing moments.
We note that the shift by an integer other than one is treated similarly. However,

if the absolute value of the shift is greater than L− 2, then, on the first several scales

j, there are nonzero coefficients t
(j)
l with l outside the interval |l| ≤ L − 2. As j

increases, all the nonzero coefficients t
(j)
l will have indices in the interval |l| ≤ L− 1.

The importance of the shift operator stems from the fact that the coefficients of
wavelet transforms are not shift invariant. However, as we have just demonstrated,
the nonstandard (and, therefore, the standard) forms of the shift operator are sparse
and easy to compute. By applying these sparse representations directly to the wavelet
coefficients, in many applications we can effectively compensate the absence of the
shift invariance of the wavelet transforms. For example, if the representation of a
vector in the wavelet basis is sparse, there is a corresponding reduction in the number
of operations required to shift such a vector. Specifically, in image processing the shift
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Table 6

The coefficients {t
(j)
l

}l=L−2
l=−L+2

for Daubechies’ wavelet with three vanishing moments, where L = 6
and j = 1, · · · , 8.

Coefficients Coefficients

l t
(j)
l

l t
(j)
l

j = 1 -4 0. j = 5 -4 -8.3516169979703E-06

-3 0. -3 -4.0407157939626E-04

-2 1.171875E-02 -2 4.1333660119562E-03

-1 -9.765625E-02 -1 -2.1698923046642E-02

0 0.5859375 0 0.99752855458064

1 0.5859375 1 2.4860978555807E-02

2 -9.765625E-02 2 -4.9328931709169E-03

3 1.171875E-02 3 5.0836550508393E-04

4 0. 4 1.2974760466022E-05

j = 2 -4 0. j = 6 -4 -4.7352138210499E-06

-3 -1.1444091796875E-03 -3 -2.1482413927743E-04

-2 1.6403198242188E-02 -2 2.1652627381741E-03

-1 -1.0258483886719E-01 -1 -1.1239479930566E-02

0 0.87089538574219 0 0.99937113652686

1 0.26206970214844 1 1.2046257104714E-02

2 -5.1498413085938E-02 2 -2.3712690179423E-03

3 5.7220458984375E-03 3 2.4169452359502E-04

4 1.3732910156250E-04 4 5.9574082627023E-06

j = 3 -4 -1.3411045074463E-05 j = 7 -4 -2.5174703821573E-06

-3 -1.0904073715210E-03 -3 -1.1073373558501E-04

-2 1.2418627738953E-02 -2 1.1081638044863E-03

-1 -6.9901347160339E-02 -1 -5.7198034904338E-03

0 0.96389651298523 0 0.99984123346637

1 0.11541545391083 1 5.9237906308573E-03

2 -2.3304820060730E-02 2 -1.1605296576369E-03

3 2.5123357772827E-03 3 1.1756409462604E-04

4 6.7055225372314E-05 4 2.8323576983791E-06
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j = 4 -4 -1.2778211385012E-05 j = 8 -4 -1.2976609638869E-06

-3 -7.1267131716013E-04 -3 -5.6215105787797E-05

-2 7.5265066698194E-03 -2 5.6059346249153E-04

-1 -4.0419702418149E-02 -1 -2.8852840759448E-03

0 0.99042607471347 0 0.99996009015421

1 5.2607019431889E-02 1 2.9366035254748E-03

2 -1.0551069863141E-02 2 -5.7380655655486E-04

3 1.1071795597672E-03 3 5.7938552839535E-05

4 2.9441434890032E-05 4 1.3777042338989E-06

operator allows us to “move” pictures in the “compressed” form. The coefficients

t
(j)
l for the shift operators can be stored in advance and used as needed. It is clear,

however, that the method of using sparseness of the shift operator depends on the
specific application and may be less straightforward than is indicated above.

The following is an example of an application where, instead of computing shift
operators, we compute all possible shifts. We describe a fast algorithm for the wavelet
decomposition of all circulant shifts of a vector and then show how it may be used to
reduce storage requirements of one of the algorithms of [2].

We recall that the decomposition of a vector of length N = 2n into a wavelet
basis requires O(N) operations. Since the coefficients are not shift invariant, the
computation of the wavelet expansion of all N circulant shifts of a vector appears to
require O(N2) operations.

We notice, however, that there are onlyN log2(N) distinct coefficients and present
here a simple algorithm to compute the wavelet expansion of N circulant shifts of a
vector in N log(N) operations.

We recall the pyramid scheme

{s0k} −→ {s1k} −→ {s2k} −→ {s3k} · · ·
↘ ↘ ↘

{d1
k} {d2

k} {d3
k} · · ·

(6.3)

where the coefficients s0k for k = 1, 2, · · · , N are given,

sj
k =

n=L−1
∑

n=0

hns
j−1
n+2k−1,(6.4)

dj
k =

n=L−1
∑

n=0

gns
j−1
n+2k−1,(6.5)

and sj
k and dj

k are periodic sequences with the period 2n−j , j = 0, 1, · · · , n.
In the pyramid scheme (6.3), on each scale j we compute one vector of differences

{dj
k}k=2n−j

k=1 and one vector of averages {sj
k}k=2n−j

k=1 . Instead, let us compute on each
scale j, (1 ≤ j ≤ n), 2j vectors of differences and 2j vectors of averages. We proceed
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as follows: let sj−1
k , k = 1, · · · , 2n−j be one of the vectors of averages on the previous

scale j − 1 and compute

sj
k(0) =

n=L−1
∑

n=0

hns
j−1
n+2k−1,(6.6)

sj
k(1) =

n=L−1
∑

n=0

hns
j−1
n+2k,(6.7)

and

dj
k(0) =

n=L−1
∑

n=0

gns
j−1
n+2k−1,(6.8)

dj
k(1) =

n=L−1
∑

n=0

gns
j−1
n+2k.(6.9)

To compute the sum in (6.7) and (6.9), we shift by one the sequence sj−1
k in (6.6)

and (6.8).
Thus, stepping from scale to scale we double the number of vectors of averages

and of differences and, at the same time, halve the length of each of them. Therefore,
the total number of operations in this computation is O(N logN).

Let us organize the vectors of differences and averages as follows: on the first
scale, j = 1, we set

v1 = (d1
k(0), d1

k(1))(6.10)

and

u1 = (s1k(0), s1k(1)),(6.11)

where d1
k(0), d1

k(1), s1k(0), and s1k(1) are computed from s0k according to (6.6)–(6.9).
On the second scale, j = 2, we set

v2 = (d2
k(00), d2

k(01), d2
k(10), d2

k(11))(6.12)

and

u2 = (s2k(00), s2k(01), s2k(10), s2k(11)),(6.13)

where d2
k(00), d2

k(01), s2k(00), s2k(01) are computed from s1k(0) according to (6.6)–
(6.9) and d2

k(10), d2
k(11), s2k(10), and s2k(11) from s1k(1), etc. We claim that we have

computed all the coefficients of the wavelet expansion of N circulant shifts of the
vector s0k, k = 1, 2, · · · , N .

Indeed, the periodic sequence d1
k(0) contains all the coefficients that appear if

s0k is circulantly shifted by 2, 4, · · · , 2n (see (6.8)), and the periodic sequence d1
k(1)

contains all the coefficients for odd shifts by 1, 3, · · · , 2n − 1 (see (6.9)). By the same
token, the periodic sequences s1k(0) and s1k(1) contain all possible coefficients for even
and odd circulant shifts of s0k (see (6.6) and (6.7)). Repeating this procedure on the
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next scale for both s1k(0) and s1k(1), we again obtain all possible coefficients for odd
and even shifts which we collect in v2 and u2, etc.

While the vectors v1, v2, · · · , vn contain all the coefficients, these coefficients are
not organized sequentially. In order to access them, we generate two tables iloc(is, j)
and ib(is, j) in O(N logN) operations as follows. For each shift is, 0 ≤ is ≤ N − 1 of
the vector s0k, k = 1, 2, · · · , N , let us write the binary expansion of is,

is =
l=n−1
∑

l=0

εl2
l,(6.14)

where εl = 0, 1. For a fixed scale j, 1 ≤ j ≤ n, we compute

iloc(is, j) =

l=j−1
∑

l=0

εl2
l,(6.15)

and

ib(is, j) =

l=j
∑

l=n−1

εl2
l,(6.16)

where ib(is, j) = 0 if j = n. The number ib(is, j) points to the begining of the subvec-
tor of differences in vj . Namely, the subvector of vj has indices between ib(is, j) + 1
and ib(is, j)+2n−j . Within this subvector (which is treated as a periodic vector with
the period 2n−j) the number iloc(is, j) points to the first element.

For all scales j, 1 ≤ j ≤ n, and shifts is, 0 ≤ is ≤ N−1, we compute two tables in
(6.15) and (6.16). These tables give us the direct access to the coefficients in vectors
v1, v2, · · · , vn for a constant cost per element.

We now briefly describe one of the applications of the algorithm for the fast
wavelet decomposition of all circulant shifts of a vector in numerical analysis. The al-
gorithms of [2] are designed to evaluate the Calderon–Zygmund or a pseudodifferential
operator T with kernel K(x, y),

g(x) =

∫ +∞

−∞

K(x, y) f(y) dy(6.17)

by constructing (for any fixed accuracy) its sparse nonstandard or standard form and
thereby, reducing the cost of applying it to a function.

Let us rewrite (6.17) as

g(x) =

∫ +∞

−∞

K(x, x− z) f(x− z) dz.(6.18)

If the operator T is a convolution, then K(x, x − z) = K(z) is a function of z
only. The nonstandard form of a convolution requires at most O(logN) of stor-
age (see the previous section), while the standard form of [2] will contain O(N) or
O(N logN) significant entries even for a convolution. Alternatively, the standard form
of K(x, x− z) = K(z) in variables x and z for the convolution operators contains no
more than O(logN) significant entries for any fixed accuracy, since the kernel depends
on one variable only.
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If we now construct the standard form of K(x, x−z) in variables x and z for pseu-
dodifferential operators (not necessarily convolutions), we obtain “super”-compression
of the operator. Indeed, if these operators are represented in the form (6.18), then
the dependence of the kernel K(x, ·) on x is smooth and the number of significant
entries in the standard form is of O(log2N).

The apparent difficulty in computing via (6.18) is that it is necessary to com-
pute the wavelet decomposition of f(x− z) for every x and thus, it appears to require
O(N2) operations. The algorithm of this section accomplishes this task in O(N logN)
operations. Therefore, the cost of evaluating (6.18) does not exceed O(N logN). The
advantage of such an algorithm is the reduced storage of O(log2N) significant entries
for the standard form, which is an important consideration for the multidimensional
operators. We note that the extension of the algorithm for the fast wavelet decompo-
sition of all circulant shifts of a vector to the multidimensional case is straightforward.
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